
Juraj Smieško, CERN

FCCAnalayses is a framework which builds on top of the new
powerful event processing abstraction developed by ROOT,
RDataFrame. It adds other necessary components needed for the
analysis framework. Most notably, the management of the input
samples and a standard library of analyzer functions.
In order to use FCCAnalyses you need to write one or more analysis
scripts, where you design your analysis in the form of a graph
consisting of analyzer functions which define variables you are
interested in.

Key4hep stack comes in two flavors “Release” and “Nightly”. For
the analysis it is recommend to use “Release” as it is retained
indefinitely, “Nightly” releases are deleted after few months.
FCCAnalyses is available in the Key4hep stack by default. To see
all available sub-commands you can run:
fccanalysis -h

To see what are the available Key4hep stack versions:
source /cvmfs/sw.hsf.org/key4hep/setup.sh -r

Setup specific version of the stack:
source /cvmfs/sw.hsf.org/key4hep/setup.sh -r 2024-04-12

Pin your analysis to a specific version of the Key4hep stack:
fccanalysis pin

See what is the stack version you pin your analysis to:
fccanalysis pin -s

To clear your stack pin do:
fccanalysis pin -c

In order to be able to properly communicate between various
components of the Key4hep stack one needs a common description
format of the event. EDM4hep datamodel defines optimized set of
collections to describe almost any data in the event. The
FCCAnalyses framework expects input in the EDM4hep format
saved in ROOT file(s).

To list collections contained within a particular file:
podio-dump file.edm4hep.root

Dumping all data contained in a particular event:
podio-dump -d -e event_number file.edm4hep.root

FCCAnalyses can ingest local samples as well as centrally produced
pre-generated samples.
In order to see which version of the Key4hep stack was used to
produce Full Sim file one can do:
podio-dump -c runs -d file_edm4hep.root

To specify locally produced sample to run on use:
fccanalysis run –files-list file1.edm4hep.root

All centrally produced pre-generated physics samples are listed at:
https://fcc-physics-events.cern.ch

What are the available campaigns?
Delphes (Fast Sim) samples are available in spring2021 and
winter2023 samples.
Note: EDM4hep 1.0 coming soon — new campaign will be gene-
rated and will include also Full Sim samples.
Which Key4hep stack was used for the production of the particular
centrally produced sample?
The stack used is shown at top of the page which lists the sample
information.

In ROOT RDataFrame you are designing your analysis in a form of
a graph. This computational graph is not executed right away as
you are defining it, rather it is executed only when the result is
actually needed.

In order to see more information from the FCCAnalyses framework
which also includes ROOT RDataFrame information you can use
-v or -vv:
fccanalysis -v run analysis_script.py

Most verbose output you can obtain includes output of the JIT
compiled code:
fccanalysis -vvv run analysis_script.py

When you are designing your analyzer function you can use few
logging macros to output some information:
rdfInfo « "Info message";
rdfDebug « "Debug info";
rdfVerbose « "Verbose information";

What are the different modes FCCAnalyses can run in?
• Stages

One can split the analysis into several preparatory stages
stage1, stage2, . . . , then have final selection in the final stage
and finally generate plots in the plots stage.

• Histmaker
This mode combines all work usually done in the stages and final
into one script, after which one can generate plots.

• NTupleizer
Enables generation of flat NTules with the ability to access
detector geometry (specialized form of the standalone mode).

• Standalone Python/C++
One can benefit from the use of the standard library of analyzer
functions, but needs to manage the samples manually.

FCCAnalyses supports running on your local machine, but also at
the CERN’s HTCondor. To run on HTCondor you can set the
appropriate attribute in your analysis script:
runBatch = True

Note: Before unnecessarily building FCCAnalyses, please try to use
the version of the FCCAnalyses distributed in the Key4hep stack.
To build FCCAnalyses one can use built-in sub-command:
fccanalysis build -j n_threads

To rebuild whole FCCAnalyses from scratch, run:
fccanalysis build -c

In case the compilation fails and fccanalysis command is not
available to you, try recovering with:
hash -r

If custom version of the FCCAnalyses is required one can use
standard CMake build procedure:
git clone git@github.com:HEP-FCC/FCCAnalyses.git
cd FCCAnalyses
source setup.sh
mkdir build install
cd build
cmake -DCMAKE_INSTALL_PREFIX=install ..
make install
cd ..
fccanalysis run analysis_script.py

In order to be able to define new variables in the dataframe
FCCAnalyses comes with a standard set of analyzer functions.
However, there is still many analyzer functions missing. There are
several options, how to add yours.
Simple analyzers can be defined right in the dataframe .Define()
statement:

.Define("first_electron_pt",
"all_electrons_pt[0]")

More complex ones can be defined either in the analysis script itsef:

import ROOT
ROOT.gInterpreter.Declare("""

bool myFilter(ROOT::VecOps::RVec<float> mass) {
for (size_t i = 0; i < mass.size(); ++i) {

if (mass.at(i) > 80. && mass.at(i) < 100.)
return true;

}
return false;

}
""")

or in the separate C++ header file:

ROOT.gInterpreter.Declare(
’#include "my_header.hxx"’

)

Libraries integrated into FCCAnalyses, which can be used in your
analyzer(s):

ROOT ONNX DD4hep
ACTS FastJet Delphes

Any contribution to the framework is warmly welcome. In any stage
of the development of your analyzer function you can contact us.
Here are few recommendations when designing your analyzer
function(s). As it will be used also by other fellow analyzers we
would like to ensure certain level of quality.
• With your analyzer function design also few tests for it, so its

correctness can be guaranteed over time.
• Write few lines of documentation in the form of a comment

above your function.
• Format your function with the help of clang-format. This

helps with readability of the function and keeps style consistent
across all analyzer functions.

• Try to design your function in a way that it is composable with
other analyzer functions.

• If your analyzer function grows above ∼ 30 lines, try to slit it up
into smaller functions.

• Use logging macros to inform users about what is happening
inside your analyzer function.

Central hub for the FCCAnalyses documentation materials is:
https://hep-fcc.github.io/FCCAnalyses/

Several FCCAnalyses related tutorials can be found at:
https://hep-fcc.github.io/fcc-tutorials/

The reference documentation itself is hosted at:
https://hep-fcc.github.io/FCCAnalyses/doc/latest/

Finally, the manual pages can be invoked with:
man fccanalysis or man fccanalysis-subcommand .

FCCAnalyses section in FCCSW forum:
https://fccsw-forum.web.cern.ch/c/fccanalysis/

FCCAnalyses Github repository:
https://github.com/HEP-FCC/FCCAnalyses/

FCC-PED SW Analysis mailing list:
FCC-PED-SoftwareAndComputing-Analysis@cern.ch

FCC Week, 10–14 June 2024, San Francisco, USA


