FCC Week 2024 10 - 14 June 2023 San Francisco, United States

FCC

MAGNET POWERING CIRCUITS

B. Wicki, S. Pittet, D. Aguglia, M. Colmenero Moratalla CERN

Accelerator Systems (SY Dept.), Electrical Power Converter (EPC) Group

Many thanks to:

M. Parodi and C. Marcel, CERN Electrical Group J.-P. Burnet, CERN

12 June 2024

Table of Content

12 June 2024

□ Introduction

FCC

- Number of Circuits and Alternatives
- Parameters Affecting Number of Circuits
 - Granularity
 - Controllability
 - Availability
 - Precision
- □ Conclusion

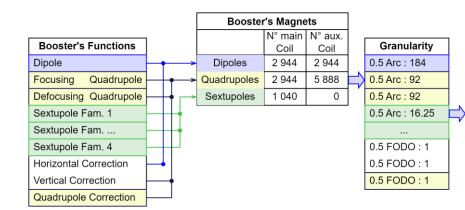
Introduction

Parameters such as controllability, granularity and availability directly impact the number and performance of power converters powering the magnets. This presentation will illustrate the effect of each parameters.

Number of Circuit – Baseline

○ FCC

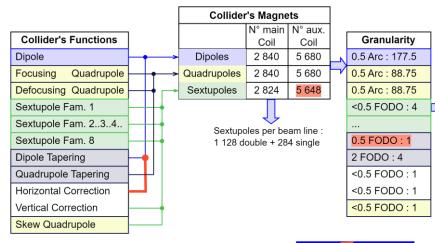
12 June 2024


		Collider's Magnets				
Collider's Functions	1		N° main			Granularity
		Disalaa	Coil	Coil	$\left \right $	
Dipole		Dipoles	2 840	5 680		0.5 Arc : 177.5
Focusing Quadrupole	┝┼ ┥ →	Quadrupoles	2 840	5 680	$ \models $	0.5 Arc : 88.75
Defocusing Quadrupole	┝─┼┥┌─>	Sextupoles	2 824	8 472		0.5 Arc : 88.75
Sextupole Fam. 1						<0.5 FODO : 4
Sextupole Fam. 234		Sextup	oles per be	am line ·		
Sextupole Fam. 8			ouble + 28			2 FODO : 4
Dipole Tapering						2 FODO : 4
Quadrupole Tapering						<0.5 FODO : 1
Horizontal Correction						<0.5 FODO : 1
Vertical Correction	 					<0.5 FODO : 1
Skew Quadrupole	 					

Collider Magnets	N° Magnets	N° Circuits
Dipole	2'840	16
Quadrupole	2'840	32
Sextupole	5'080	706
Sub-Total	10'760	754
Dipole Tapering	5'680	710
Quadrupole Tapering	5'680	710
Sub-Total	11'360	1'420
Horizontal Corrector	2'824	2'824
Vertical Corrector	2'824	2'824
Quadrupole Corrector		
Skew Quadrupole	2'824	2'824
Sub-Total	8'472	8'472
Straight Section	?	?
Total	30'592	10'646

Number of Circuit – Baseline

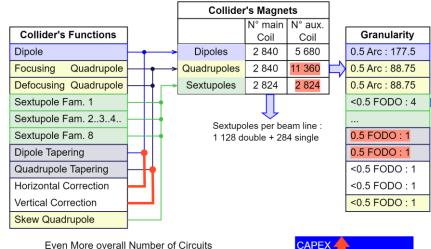
FCC


12 June 2024

Booster Magnets	N° Magnets	N° Circuits
Dipole	2 944	16
Quadrupole	2 944	32
Sextupole	1 040	64
Sub-Total	6 928	112
Dipole Tapering		
Quadrupole Tapering		
Sub-Total		
Horizontal Corrector	? 2944 ?	2 944
Vertical Corrector	? 2944 ?	2 944
Quadrupole Corrector	? 2944 ?	2 944
Skew Quadrupole		
Sub-Total	8 832	8 832
Straight Section	?	?
Total	15 760	8 944

Number of Circuit – Collider's Alternative

Horizontal Correction with Dipole's Auxiliary Coil

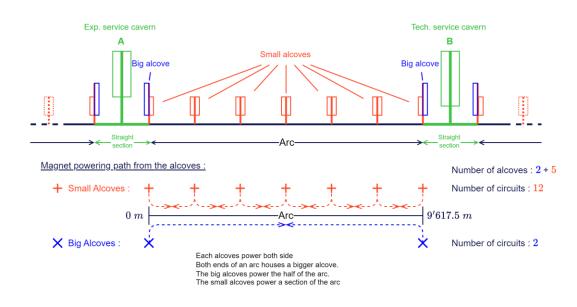

More overall Number of Circuits CAPEX Smaller Granularity for Dipole Tapering More space for main coil in Sextupole CAPEX OPEX OPEX

Collider Magnets	N° Magnets	N° Circuits			
Dipole	2'840	16			
Quadrupole	2'840	32			
Sextupole	5'080	706			
Sub-Total	10'760	754			
Dipole Tapering	Achieved with Horizontal Corrector				
Quadrupole Tapering	5'680	710			
Sub-Total	5'680	710			
Horizontal Corrector	5'680	5'680			
Vertical Corrector	2'824	2'824			
Quadrupole Corrector					
Skew Quadrupole	2'824	2'824			
Sub-Total	11'328	11'328			
Straight Section	?	?			
Total	27'768	12'792			

Number of Circuit – Collider's Alternative

OPEX

Horizontal Correction with Dipole's Auxiliary Coil Vertical Correction with Quadrupole's Auxiliary Coil


Even More overall Number of Circuits CAPEX Smaller Granularity for Dipole and Quadrupole Tapering Even More space for main coil in Sextupole CAPEX

Collider Magnets	N° Magnets	N° Circuits
Dipole	2'840	16
Quadrupole	2'840	32
Sextupole	5'080	706
Sub-Total	10'760	754
Dipole Tapering	Achieved with Ho	rizontal Corrector
Quadrupole Tapering	Achieved with V	ertical Corrector
Sub-Total	0	0
Horizontal Corrector	5'680	5'680
Vertical Corrector	11'360	11'360
Quadrupole Corrector		
Skew Quadrupole	2'824	2'824
Sub-Total	19'864	19'864
Straight Section	?	?
Total	30'624	20'618

Granularity – Arc

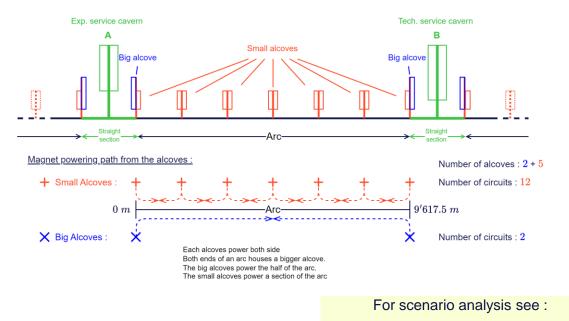
12 June 2024

FCC

Power converter's location impact the maximum granularity of a circuit :

- **Big Alcoves**, can power up to a Half-Arc (4.8 km).
- Small Alcoves, can power up to a 12'th of an Arc (800 m).

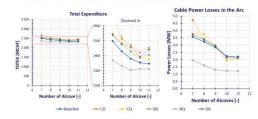
For individually powered magnet, the best OPEX + CAPEX is from the Small Alcoves.


For magnet powered in series, the location will affect :

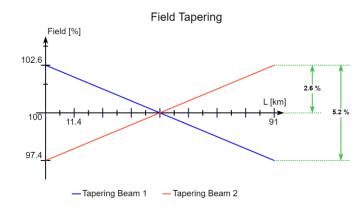
Length of Cables

Voltage of Converter
Precision of Converters

8

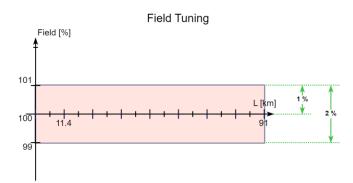


FCC Week 2024 – Global Optimisation 11th June – Room Elizabethan C


	Magnets powering emplacement	Big Alcoves	Small Alcoves
	Dipoles	×	
	Quadrupoles		
Sextupoles			+
Sextupoles Horizontal Correctors			+
Vertical Correctors			+
	Skew Quadrupoles		+
	Dipoles	×	
	Quadrupoles	×	
Booster	Sextupoles	×	
Horizontal Correctors			+
Vertical Correctors			+
	Quadrupole Correctors		+

Number of Alcoves & Powering from Small Alcoves

FCC 11 June 2024



Granularity – Tapering and Tuning

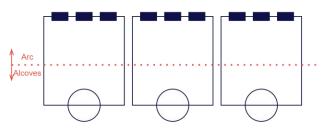
FCC

12 June 2024

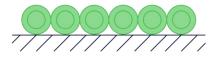
Creating multiple families that power in steps from 2.6% to 0%, instead of having all magnet powering up to 2.6% :

- □ Families of Converter + Magnet
- Power of Converter
- Precision of Converters

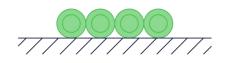
Uniting both field Tapering and Tuning with the same circuit could further save in number of circuits.


Controllability : 0% to +100%

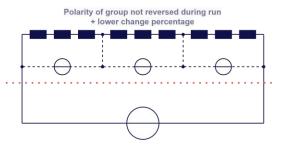
Polarity of group not reversed during run


Controllability

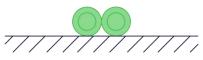
Controllability : -100% to +100%


Polarity of group can be reversed during run

 $N_{cable} = 2N_{circ}$

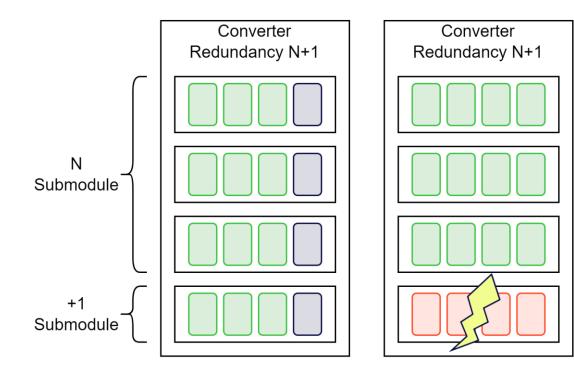

Power converters are too big to be put in the arcs.

 $N_{cable} = N_{circ} + 1$


Close to half the space by using cable sharing.

 $N_{cable}=2$

Only one converter in the alcoves.


The trimmers + cabling in the arc section, closest to magnets.

But need of Radiation hard trimmers

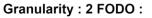
Availability – Redundancy of Converters

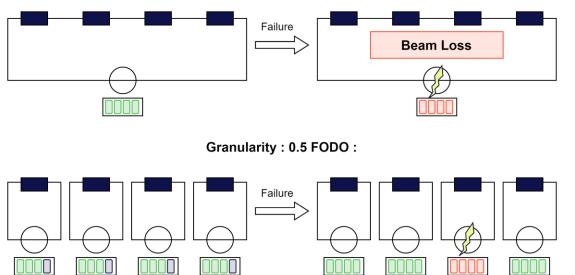
FCC

12 June 2024

Redundancy is used to increase *Mean Time Between Failure* (**MTBF**). The converter can suffer one submodule loss without Beam Loss.

During stops the faulty submodule can be replaced with a spare and the damaged can be repaired on the surface.


N+2 redundancy level, is almost safe by design.


□ Less appealing for lower power, as it doubles the number of submodules
 N=1 → 1+1 = 2

Availability – Redundancy of System

FCC

12 June 2024

With a greater granularity allowance, we can choose a lower granularity to have redundancy of the circuit.

In case of a fault with a corrector the nearby corrector takes over and continue operation.

Number of convertersPower of converter

Precision

FCC

What parameter we need to define "precision"?

FCC-performance metrics shall follow metrology vocabulary – need for adopting metrics as done for HL-LHC (<u>EPC reference document</u>)

	PC REQUIREMEN / SUMMARY - ACCURACY V SES					
	0	1	2	3	4	Up to 8
Resolution [ppm]	0.5		1.0	1.0	1.0	
Initial uncertainty after cal [2xrms ppm] normal	2.0		3.0	7.0	10.0	
Linearity [ppm] [max abs ppm] uniform	2.0	S S	5.0	8.0	9.0	Standard
Stability during a fill (12h) [max abs ppm] uniform	0.7	$\mathbf{\tilde{G}}$	5.0		9.5	×01
Short term stability (20min) [2xrms ppm] normal	0.2		1.2	S.	5.0	
Noise (<500Hz) [2xrms ppm] normal	3.0	X -	7	15.0	19.0	
Fill to fill repeatability [2xrms ppm] normal	0.4	.8	2.6	4.0	5.0	5
Long term fill to fill stability [max abs ppm] uniform	8	8.0	19.0	40.0	45.0	
Temperature coefficient [max abs ppm/C] uniform		1.2	2.5	5.5	6.5	
12h Delta T for HL-LHC [max C] constant		1.0	5.0	5.0	5.0	
1 y Delta T for HL-LHC [max C] constant	0.5	1.0	5.0	5.0	5.0	

Accuracy classes per circuit need to be defined

Conclusion

- □ Number of circuits and their parameters impacts overall powering cost.
- □ Number of circuit is dependent of the number of optic functions and their granularity.
- Moving optics functions among magnets (existing for other functions or dedicated) have a huge cost consequences.
- Parameters such as Controllability, Availability, Precision drives the cost of the converter.
- □ All parameter requirements needs to be assessed in .

