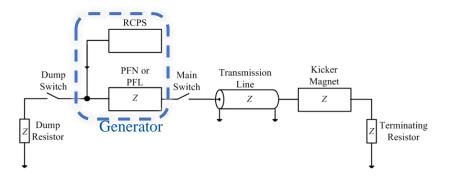
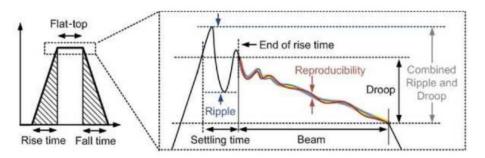


FUTURE CIRCULAR COLLIDER

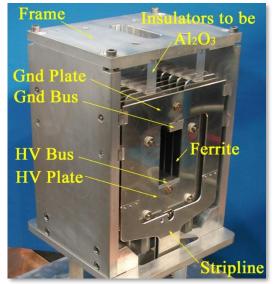
Overview of and Challenges for the FCC-ee Fast Pulsed Beam Transfer Systems

G. Favia on behalf of SY-ABT CERN, Geneva, Switzerland

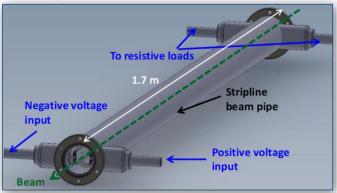



Outline

- Kicker system design principles
- FCC-ee kicker systems requirements
- Kicker systems design for DR, Booster and Collider
- Kicker systems integration
- Conclusion and next steps


Kicker system design

- A kicker magnet is designed to provide a required field magnitude, duration, rise and fall time and homogeneity
- The pulse generator provides a certain current and voltage output to match the requirements for the needed pulse
- Critical parameters are:
 - current and voltage values
 - system impedance
 - pulse rise time and fall time, droop, flat-top stability, pulse-to-pulse stability
 - repetition rate



Transmission line

Stripline

Lumped inductance

13/06/2024

G. Favia - SY/ABT - FCC Kickers

ТҮРЕ	PRO	CONS
Stripline	 Compact design Very fast rise time (few ns) Low beam coupling impedance 	 Uses both E and B (voltage up to 50 kV and weaker deflection) Impedance matching important Challenging flat-top stability More power consumption
Transmission line		
Lumped inductance		

ТҮРЕ	PRO	CONS
Stripline	 Compact design Very fast rise time (few ns) Low beam coupling impedance 	 Uses both E and B (voltage up to 50 kV and weaker deflection) Impedance matching important Challenging flat-top stability More power consumption
Transmission line	 Fast rise time << 1µs Strong deflecting field At CERN: 80 kV, 5 kA 	 Complex to manufacture and costly Impedance matching important High beam coupling impedance
Lumped inductance		

ТҮРЕ	PRO	CONS			
Stripline	 Compact design Very fast rise time (few ns) Low beam coupling impedance 	 Uses both E and B (voltage up to 50 kV and weaker deflection) Impedance matching important Challenging flat-top stability More power consumption 			
Transmission line	 Fast rise time << 1µs Strong deflecting field At CERN: 80 kV, 5 kA 	 Complex to manufacture and costly Impedance matching important High beam coupling impedance 			
Lumped inductance	 Simple and robust magnet design Can be out of vacuum Strong deflecting field At CERN: 30 kV, 25 kA 	 Suitable for rise time ≥ 1µs Needs minimizing interconnection inductance High beam coupling impedance 			

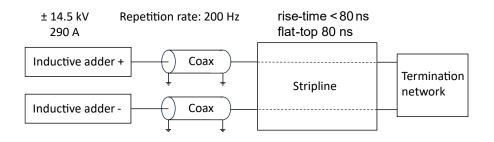
Marx generator

13/06/2024

TYPE	PRO	CONS
PFN	 Compact design Low droop and long pulses > 3 µs 	 Complex and costly constructions Risetime limited by cells cut-off frequency Pulses are prone to ripples - may require cells adjustment Require high voltage capacitors
PFL		
Marx Generator		
Inductive adder		

ТҮРЕ	PRO	CONS
PFN	 Compact design Low droop and long pulses > 3 µs 	 Complex and costly constructions Risetime limited by cells cut-off frequency Pulses are prone to ripples - may require cells adjustment Require high voltage capacitors
PFL	 Simple design Short pulses < 3 µs Ripple-free (flat) pulses 	 Significant droop in pulses > 3 µs Bulky: 3 µs pulse 300 m of cable Above 40 kV SF6 used at CERN
Marx Generator		
Inductive adder		

TYPE	PRO	CONS
PFN	 Compact design Low droop and long pulses > 3 µs 	 Complex and costly constructions Risetime limited by cells cut-off frequency Pulses are prone to ripples - may require cells adjustment Require high voltage capacitors
PFL	 Simple design Short pulses < 3 µs Ripple-free (flat) pulses 	 Significant droop in pulses > 3 µs Bulky: 3 µs pulse 300 m of cable Above 40 kV SF6 used at CERN
Marx Generator	 Long duration pulse capability High repetition-rate Low-voltage components Modular 	 Sensitive to radiation Complex triggering system
Inductive adder	 Short and precise pulses Modular, redundant, scalable Easier triggering circuits 	 Available pulse duration is affected by magnetic material (<3 µs) Sensitive to radiation
	13/06/2024	G. Favia - SY/ABT - FCC Kickers 12


	Damping	Booster	Booster	Booster	Collider	Collider
	Ring	injection	extraction	dump	injection	dump
Energy [GeV]	1.54-2.86	20	45 – 182.5	45 – 182.5	45 – 182.5	45 – 182.5
	(tbc)					
Beam line length [m]	tbc	5.5	15	15	15	15
Total kick angle [mrad]	3	0.09	0.429	0.3	0.072	0.3
Aperture (beam stay clear) (Ø) [mm]	30	30	60	60	60	60
Rise / fall time [ns]	82	25	1100	1100	1100	1100
Flat top length [µs]	0.08	0.08	30 – 304 (tbc)	304	30 – 304 (tbc)	304
Flat top quality [%]	±0.5 (tbc)	±0.5 (tbc)	±0.5 (tbc)	5 (tbc)	±0.5 (tbc)	5 (tbc)
Repetition rate [Hz]	200-100	200-100	10	1	10	0.1
	(tbc)	(tbc)	(tbc)		(tbc)	

	Damping	Booster	Booster	Booster	Collider	Collider
	Ring	injection	extraction	dump	injection	dump
Energy [GeV]	1.54-2.86	20	45 – 182.5	45 – 182.5	45 – 182.5	45 - 182.5
	(tbc)	20	10 10210			
Beam line length [m]	tbc	5.5	15	15	15	15
Total kick angle [mrad]	3	0.09	0.429	0.3	0.072	0.3
Aperture (beam stay clear) (Ø) [mm]	30	30	60	60	60	60
Rise / fall time [ns]	82	<mark>25</mark>	1100	1100	1100	1100
Flat top length [µs]	0.08	0.08	30 – <mark>304</mark> (tbc)	<mark>304</mark>	30 – <mark>304</mark> (tbc)	<mark>304</mark>
Flat top quality [%]	<mark>±0.5 (tbc)</mark>	<mark>±0.5 (tbc)</mark>	±0.5 (tbc)	5 (tbc)	±0.5 (tbc)	5 (tbc)
Repetition rate [Hz]	<mark>200-100</mark>	200-100	10	1	10	0.1
	<mark>(tbc)</mark>	<mark>(tbc)</mark>	(tbc)		(tbc)	

	Damping	Booster	Booster	Booster	Collider	Collider
	Ring	injection	extraction	dump	injection	dump
Energy [GeV]	1.54-2.86	20	45 – 182.5	45 – 182.5	45 – 182.5	45 – 182.5
	(tbc)					
Beam line length [m]	tbc	5.5	15	15	15	15
Total kick angle [mrad]	3	0.09	0.429	0.3	0.072	0.3
Aperture (beam stay clear) (Ø) [mm]	30	30	60	60	60	60
Rise / fall time [ns]	82	25	1100	1100	1100	1100
Flat top length [µs]	0.08	0.08	30 – 304 (tbc)	304	30 – 304 (tbc)	304
Flat top quality [%]	±0.5 (tbc)	±0.5 (tbc)	±0.5 (tbc)	5 (tbc)	±0.5 (tbc)	5 (tbc)
Repetition rate [Hz]	200-100	200-100	10	1	10	0.1
	(tbc)	(tbc)	(tbc)		(tbc)	
4						

Damping ring (1.54 GeV)

- The same system is suitable for injection and extraction
- Magnet: Stripline to satisfy fast rise and fall time requirements
- Generator: Inductive adder can provide the short flat top and the required homogeneity

- Impedance matching optimization needed to limit both pulse reflections and beam coupling impedance
- ➤ Coaxial cable length ≤30m to achieve rise time and field homogeneity

Damping ring (2.86 GeV)

- Magnet: Stripline to satisfy fast rise and fall time requirements
- Generator: Inductive adder can provide the short flat top and the required homogeneity
- Similar system developed for CLIC DR:
 - 12.5kV 250A
 - feasibility confirmed through prototyping
 - slightly slower rise time wrt FCC DR requirements
 - Inductive Adder + cable delay = 13ns (~2.5m)

Parameter	PDR	DR
Beam Energy (GeV)	2.86	2.86
Deflection Angle (mrad)	2	1.5
Aperture (mm)	40	20
Field rise and fall time (ns)	700	1000
Pulse flat top duration (ns)	~160	~160
Flat top reproducibility	1×10^{-4}	1×10^{-4}
Injection stability (per system)	$\sim 2 \times 10^{-2}$	$\sim 2 \times 10^{-3}$
Extraction stability (per system)	$\sim 2 \times 10^{-3}$	$\sim 2 x 10^{-4}$
Injection field homogeneity (%)	± 0.1	± 0.1
Extraction field homogeneity (%)	± 0.1	± 0.01
Repetition rate (Hz)	50	50
Available length (m)	~3.4	~1.7
Stripline pulse current [50 Ω load] (A)	±340	±250

CLIC PDR & DR Kicker Specifications

- \succ Coaxial cable length \leq **30m** to achieve rise time and field homogeneity
- Impedance matching optimization needed to limit both pulse reflections and beam coupling impedance

Damping ring (2.86 GeV)

- Magnet: Stripline to satisfy fast rise and fall time requirements
- Generator: Inductive adder can provide the short flat top and the required homogeneity
- Similar system developed for CLIC DR:
 - 12.5kV 250A
 - feasibility confirmed through prototyping
 - slightly lower rise time wrt FCC DR requirements
 - Inductive Adder + cable delay = 13ns (~2.5m)

Parameter	PDR	DR
Beam Energy (GeV)	2.86	2.86
Deflection Angle (mrad)	2	1.5
Aperture (mm)	40	20
Field rise and fall time (ns)	700	1000
Pulse flat top duration (ns)	~160	~160
Flat top reproducibility	1×10^{-4}	1×10^{-4}
Injection stability (per system)	$\sim 2 \times 10^{-2}$	$\sim 2 \times 10^{-3}$
Extraction stability (per system)	$\sim 2x10^{-3}$	$\sim 2x10^{-4}$
Injection field homogeneity (%)	± 0.1	± 0.1
Extraction field homogeneity (%)	± 0.1	± 0.01
Repetition rate (Hz)	50	50
Available length (m)	~3.4	~1.7
Stripline pulse current [50 Ω load] (A)	±340	±250

- \succ Coaxial cable length $\leq 30m$ to achieve rise time and field homogeneity
- Impedance matching optimization needed to limit both pulse reflections and beam coupling impedance
- Feasibility ok for both injection schemes, but need to freeze requirements to develop proper magnet design

CLIC PDR & DR Kicker Specifications

	Damping	Booster	Booster	Booster	Collider	Collider
	Ring	injection	extraction	dump	injection	dump
Energy [GeV]	1.54-2.86	20	45 – 182.5	45 – 182.5	45 – 182.5	45 – 182.5
	(tbc)					
Beam line length [m]	tbc	5.5	15	15	15	15
Total kick angle [mrad]	3	0.09	0.429	0.3	0.072	0.3
Aperture (beam stay clear) (Ø) [mm]	30	30	60	60	60	60
Rise / fall time [ns]	82	25	1100	1100	1100	1100
Flat top length [µs]	0.08	0.08	30 – 304 (tbc)	304	30 – 304 (tbc)	304
Flat top quality [%]	±0.5 (tbc)	±0.5 (tbc)	±0.5 (tbc)	5 (tbc)	±0.5 (tbc)	5 (tbc)
Repetition rate [Hz]	200-100	200-100	10	1	10	0.1
	(tbc)	(tbc)	(tbc)		(tbc)	

13/06/2024

G. Favia - SY/ABT - FCC Kickers

Booster

Injection

- Magnet: Stripline
- Generator: Inductive adder

Extraction

- Magnet: Lumped inductance
- Generator: Marx generator

<u>Dump</u>

• Magnet: Lumped inductance

	Booster injection	Booster extraction	Booster dump
Kicker / Systems	1/2	10/2	6/2
Impedance [Ω]	50	10	10
Current [kA]	0.36	1.4	1.7
Voltage [kV]	±13.4	14.5	5
Element aperture [mm]	30	70	70
Integrated field [mT.m]	3	26.5	30
[MV]	0.9		
Effective length [m]	1	1	1
Physical length [m]	1.4	1.4	1.4

- Generator: Main capacitor discharge stage boosted by droop compensation stage(s)
- ➢ Injection system: cable length ≤30m to achieve rise time and homogeneity
- Extraction system: long flat top requires large charging capacitor (hence generator space, <u>x10</u>)
- Dump system: cable length <100m to achieve rise time and field homogeneity</p>
- Heat load, radiation impact, beam coupling impedance need to be accounted for in the design optimization

	Damping	Booster	Booster	Booster	Collider	Collider
	Ring	injection	extraction	dump	injection	dump
Energy [GeV]	1.54-2.86 (tbc)	20	45 – 182.5	45 – 182.5	45 – 182.5	45 – 182.5
Beam line length [m]	tbc	5.5	15	15	15	15
Total kick angle [mrad]	3	0.09	0.429	0.3	0.072	0.3
Aperture (beam stay clear) (ø) [mm]	30	30	60	60	60	60
Rise / fall time [ns]	82	25	1100	1100	1100	1100
Flat top length [µs]	0.08	0.08	30 – 304 (tbc)	304	30 – 304 (tbc)	304
Flat top quality [%]	±0.5 (tbc)	±0.5 (tbc)	±0.5 (tbc)	5 (tbc)	±0.5 (tbc)	5 (tbc)
Repetition rate [Hz]	200-100 (tbc)	200-100 (tbc)	10 (tbc)	1	10 (tbc)	0.1

Collider

Injection

- Magnet: Stripline
- Generator: Marx generator

<u>Dump</u>

- Magnet: Lumped inductance
- Generator: Main capacitor discharge stage boosted by droop compensation stages

	Collider injection	Collider dump
Elements / Systems	2/2	6/2
Impedance [Ω]	50	10
Current [kA]	0.32	1.2
Voltage [kV]	±16	5
Element aperture [mm]	70	70
Integrated field [mT.m]	5.5	30
[MV]	1.5	
Effective length [m]	3	1
Physical length [m]	3.6	1.5

- ► <u>Injection system</u>: cable length ≤250m to achieve rise time and homogeneity
- Dump system: cable length <100m to achieve rise time and field homogeneity</p>
- Heat load, radiation impact, beam coupling impedance need to be accounted for in the design optimization

Kicker hardware systems integration

Integration of magnet in the tunnel:

- Magnet length accounts for tank and flanges space allocation
- Radiation sensitive components requires knowledge of radiation map in the tunnel and dedicated tests

Services galleries:

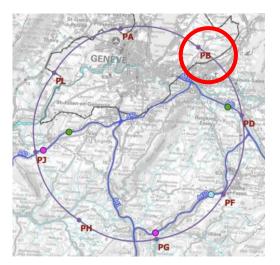
- All radiation sensitive elements can't be installed in the tunnel (generator and controls)
- Galleries' location determines the length of cables between magnet and generator, hence affecting the systems' final performance

Kicker hardware systems integration

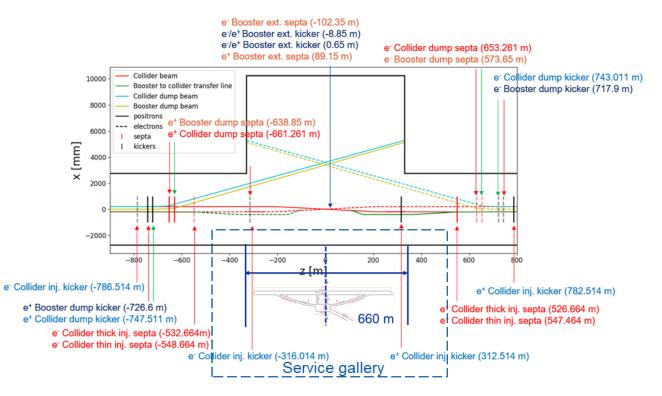
Integration of magnet in the tunnel:

- Magnet length accounts for tank and flanges space allocation
- Radiation sensitive components requires knowledge of radiation map in the tunnel and dedicated tests

Services galleries:

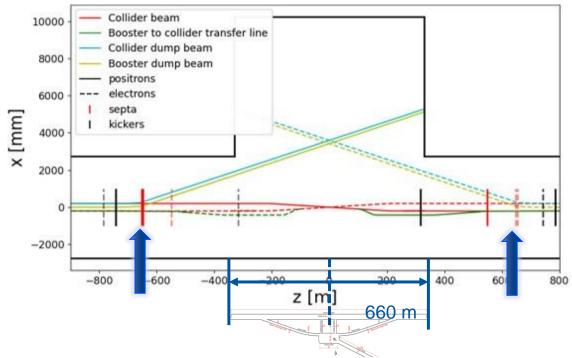

- All radiation sensitive elements can't be installed in the tunnel (generator and controls)
- Galleries' location determines the length of cables between magnet and generator, hence affecting the systems' final performance

Experience from LEP


- Injection and dump systems:
 - A fast Resonant Charging Power Supply (RCPS) in surface building + small final generator near each magnet (~0.3-0.5 m³)
 - 100m long cable in between
- That was possible because thyratron switches are not sensitive to radiation
- Significant concern on the availability of high voltage thyratron switches → use semiconductor switches only (in service areas or dedicated low-radiation space)

Kickers and septa in Point B

13/06/2024



FCC

P.Trubacova, Reunion Integration FCC 15.05.2024

Kickers and septa in Point B

- The current alcove layout imposes long cables for some kickers and septa systems
- Two additional service areas would keep cable length "short" enough and serve efficiently more systems
- Booster injection integration need to be verified as well

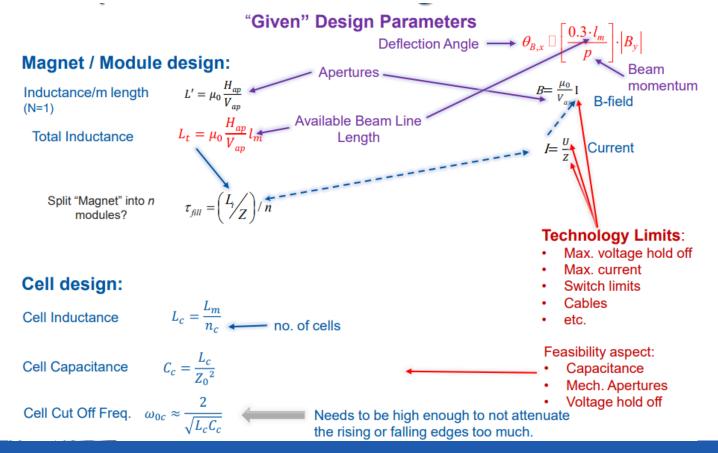
13/06/2024

Conclusion

- Simulation models for striplines and ferrite loaded magnets, including their generators, have been established to validate FCC-ee kickers feasibility
- No showstoppers were found but several challenges identified (matching and droop compensation, cable length..)
- Further work is needed to adapt to changing requirements and to harmonize the kicker subsystems across the FCC machines

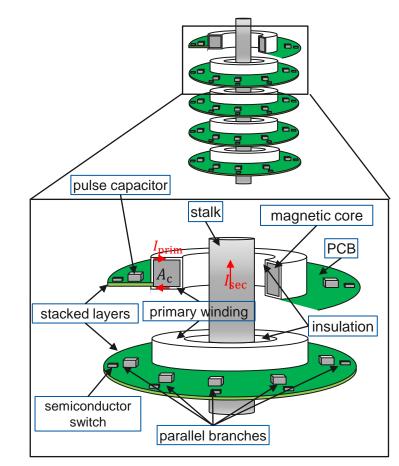
Conclusion

- Simulation models for striplines and ferrite loaded magnets, including their generators, have been established to validate FCC-ee kickers feasibility
- No showstoppers were found but several challenges identified (matching and droop compensation, cable length..)
- Further work is needed to adapt to changing requirements and to harmonize the kicker subsystems across the FCC machines

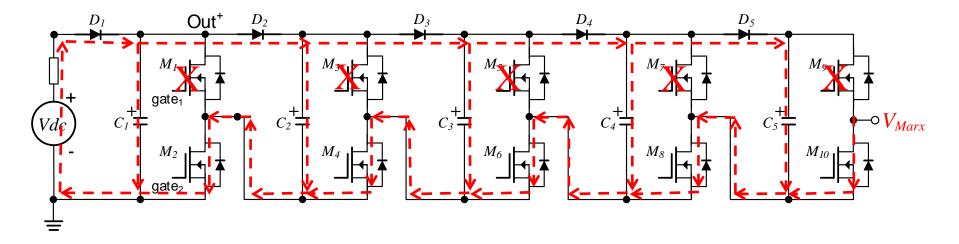

...next steps:

- Evaluate systems beam coupling impedance and consequent heat deposition
 - > Need to define beam impedance budget and eventually implement beam shielding solutions
- Implement solutions for limiting heat load due to power dissipation
- Define HW integration in the tunnel and in the galleries and consequent cable length
- R&D laboratory activities and early prototyping is envisaged to develop and implement effective pulse optimization solutions (DR stripline and LI magnet + long pulse generator)

Thanks for you attention


Spare slides

Simplified magnet design


Inductive adder

- The IA is a solid-state modulator, which can provide relatively short and precise pulses
- An inductive adder consists of multiple parallel layers (also known as stages), each of which has a 1:1 transformer
- The single turn primary totally encloses a magnetic core; hence, the leakage inductance of this geometry is negligible
- The secondary winding of each of these transformers is connected in series: hence a step-up voltage ratio of 1:N is achieved by using N-layers, with adequate voltage isolation

Marx generator

- In a Marx generator n capacitors are charged in parallel from a relatively low-voltage DC power supply, and discharged in series into the load
- The output voltage pulse has an amplitude approximately equal to the number of stages (n) times the input voltage (Vdc), Vmarx=n·Vdc
- 16 kV, 2.6 kA, 75 ns rise and fall prototype developed for FCC-hh

Thyatrons vs semiconductor switches

Semiconductor switches can be used in fast high current pulsed power accelerator applications to replace thyratrons and PFLs.

Thyratrons

- + Generally reliable
- + Robust (fault tolerant)
- + Relatively high voltage
- + Relatively high current
- Long term availability
- Spontaneous turn on
- Can only be turned on

+ Cost-effective

Solid-state

- + Easy to use
- + Off-the-shelf
- + Flexible
- + Modular
- + Maintainability
- + Can be turned on and off (thus PFL/PFN is not required)
- Relatively low voltage
- Relatively low current

But.... Semiconductors have limited voltage and current rating. Hence, requires **series and parallel connection of power semiconductors** to achieve high pulsed power.

Versus: