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deep learning framework designed to probe the
limits of jet classifier models by using generative
Al.  State-of-the-art generative models called
diffusion neural networks are wused to create
synthetic jet data where we simultaneously estimate

the probability density by solving a differential Reverse SDE (noise — data) =g
equation. The likelihood ratio built from the

prOb ablhty d@HSity 1S the theOFEtiC al Optlm al Diffusion models are a class of generative models that works in two directions; the forward stochastic differential equation adds noise over time T, mimicking a gradual increase in entropy and The architecture is designed to handle the high-dimensional and structured

data associated with hadronic jet tagging due to several key features: MultiHead Attention: The model uses MultiHead Attention with 4
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o [ . transforming the initial data into pure noise. The reverse SDE does the opposite; it starts with the noise and applies a log-likelihood score function to guide the noise back to a plausible and coherent heads. allowi . .
g . e : : > e the network to focus on different parts of the particle
1 f h 1 1 h W 1 data structure. Training the model to understand this transition, the reverse process can be used to generate new synthetic samples of jet data by sampling from the noise distribution and then . i : . . eads, allowing :
C as Sl ]‘er° Our res earc go a ls tO eXp Ore O C O S e 'denoising' to create data samples that are indistinguishable from real gluon and top jet events. Given the challenges in computing the likelihood ratio directly from raw data, we leveraged this model, gg?:kcl]ggslﬁiegffgf tfl\l/éarsrll(éré%llav}:f%ric%n?;lrcersugil:lt ?(;Iry dlergfilsva\r:rtitﬁrvl?;?a%lneg- igﬂll:f;lrlcsehiﬁsnlljuelttjfréi?lutﬁg’ :3?522%1 tahiae tmodel to capture complex
f h 1 3 f' d 1 h : b d applying the "likelihood ratio trick." Through learning the score of the probability density, we perform a monotonic transformation on the model output to approximate the probability density of lenoth particle jets ’ & Laver Nor?n alization and %ELU ACtng:l tion: Normalization stabilizes
State-O _t e_art C aSS]. ].er mO e S are tO t ].S OU_H . observing some event given the origin jet as either top or gluon, then using this we determined the likelihood ratio, serving as a proxy for the optimal classifier performance. Ti rr%eD?stributeJ d L.ayerS' These layers apply a layer to every temporal slice lea}r’nin g and GELU allows the mo del to capture non-linear

. of an input, as each particle's data needs to be processed independentl relationships, which are expected due to the complex nature of jet
We f].nd that a State Of the art tranSfOFmer mO d@l before bging Combineg, mirroring the physical prolztess of particle?s in a je}; data. P P P :

f 11 . . . . . contributing independently to the jet's overall characteristics. Global Average Pooling 1D: Consolidates information across all
= aen = acncen 0.040 = aen == accen = e = accen S = e, 5 San = g LeakyReLU Layers: By having some neurons remain slightly active, it can particles using global average pooling, reducing the feature
per Orms Very We ) nOtlng lncreases ]-n true pOSltlve oo 0.035 ! 08 help in learning fine details of non-linear and complex patterns, allowing dimension while retaining essential information.
. o, 0 - %0030 £ g the model to continue learning even if some nodes start outputting negative Dense and Output Layers: Combined with dropout this prevents
rates and decreases ]_n false OSltlve rates but there : %o.ozs 2 %0'6 s values. overfitting, ending in a single-node output layer with a sigmoid
p ) Zoot0 So020 T £ g ~ s Add Layer: Allows layers to "skip" if they do not contribute towards activation function for binary classification.
5 : 5 5 reducing the loss, which helps avoid the Vanishing Gradient Problem.

is still a gap with respect to the optimal classifier. = ;
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: closely approaches the curve derived from the likelihood ratios.
. However, it has not fully converged, indicating that while the
ParticleNet 107 4 P model captures the essence of the data, refinement is needed to
TreeNiN Log Likelihoods of Tops on Top Model Log Likelihoods of Tops on Gluon Model UTTT S enhanc‘e aCCUracy. We concentrate on parthIE data l‘n ‘thlS apa!yS}S,
—.— ResNeXt 0 [} 7000 ° ] p(w ‘ 6 ) g 1024 e e which inherently encompasses broader jet characteristics within its
0- - ¥ - - - > - - - PEN 1 3 feature set. Although these are strong results, we can improve
l / r) = e performance through various methods. By investigating the impact
ali 100 . T 9 z 1077 e of adding more layers to the neural network we can potentially
-== NSub(8) s000 p 0 & . capture more complex relationships in the data. Exploring different
o 4 ot . . .
LBN 5000 £ 101 architectures (e.g., convolutional layers for spatial patterns or
ME TN ORI e NSub(6) recurrent layers for sequential data) can also offer significant
N £ 200 £ 200 4000 ¥ improvements. We can also adjust hyperparameters such as
S P-CNN < : : ikeli i :
S 103 i 3 -~ 3 Wiy i, Likelihood Ratio for Particles - learning rate, batch size, or the number of neurons in each layer and
E --- Lola g 3 . ROC Curve of Classifier Accuracy on Synthetic Particle Data utilize techniques like grid search or Bayesian optimization to
T —.- EFN £ w0 § - o] i " ROC Curve of Classifier Accuracy on Real Particle Data systematically find the best hyperparameters settings. Finally,
- Y g g7 g 1 L 1 0 1 0 oo o o o s o exploiting ensemble methods that combine the predictions from
c S 20 Og r) = Og p xr 0 Og p xr 1 True Positive Rate (TPR) multiple models using various methods like Random Forests or
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synthetic data. By analyzing residuals, we determined that the generated jet
5000 = data features closely mirrors the statistical properties of real jet data. This
101 - visually confirms that our approximated score function must strongly resemble
e e the true score function for the data, with an error bound of .0001, which allows
w000 us to extend this formalism to the likelihoods. The Heatmaps displayed
- represent the log-likelihood ratios obtained from a diffusion model trained to
2 differentiate between top jets and gluon jets. When evaluating gluon data with
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a gluon model and top data with a top model, we observe a peak at or near zero
o8 in the log-likelihood ratio with probabilities approaching one. Conversely,
when top data is assessed with a gluon model and vice versa, the peaks shift
away from zero, becoming more negative. This indicates a lower probability,
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The image shows the development of hadronic jet tagging through comparison of various machine learning models through their ROC likelihood axis tells us about the model's confidence. Peaks CIPSE to zero on the [1] Uni itv of California. Berkel
curves indicating their ability to distinguish between top quarks and gluons. Accurate identification of the origin of jets is crucial for 400 s00 correct model §lgn1fy strong agreement between the model's output and the 5 LaneFSIty ]é) kall Ogllag ef Le te)y
particle physics experiments, as it helps in the search for new phenomena and precision measurements of standard model parameters. - 200 actual data, while peaks far from zero on the incorrect model affirm that the EB} A?vérence e]f: € eyh. ational La doratl(()ry bout Diffusion Models in Dee Learning. 2022
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