
Using Generative AI to Explore the Limits of Jet Tagging
Nishank Gite1,2, Benjamin Nachman2, Vinicius Mikuni2

Created with BioRender Poster Builder

ABSTRACT

The precise identification of jets originating from 
high-energy quarks and gluons is paramount for 
advancing our understanding of fundamental 
particles and forces. This study introduces a novel 
deep learning framework designed to probe the 
limits of jet classifier models by using generative 
AI.  State-of-the-art generative models called 
diffusion neural networks are used to create 
synthetic jet data where we simultaneously estimate 
the probability density by solving a differential 
equation. The likelihood ratio built from the 
probability density is the theoretical optimal 
classifier. Our research goal is to explore how close 
state-of-the-art classifier models are to this bound. 
We find that a state of the art transformer model 
performs very well, noting increases in true positive 
rates and decreases in false positive rates, but there 
is still a gap with respect to the optimal classifier. 

MOTIVATIONS

The image shows the development of hadronic jet tagging through comparison of various machine learning models through their ROC 
curves  indicating their ability to distinguish between top quarks and gluons. Accurate identification of the origin of jets is crucial for 
particle physics experiments, as it helps in the search for new phenomena and precision measurements of standard model parameters. 
Previous studies, as depicted by the various models in the table, have made significant advancements in this field, however, the goal of 
this study is not just to add another incremental improvement but to conceptualize the "best" possible classifier. By creating a surrogate 
model that can generate a synthetic likelihood ratio, this study aims to understand the theoretical maximum performance a classifier 
could achieve.

METHODS

Diffusion models are a class of generative models that works in two directions; the forward stochastic differential equation adds noise over time T, mimicking a gradual increase in entropy and 
transforming the initial data into pure noise. The reverse SDE does the opposite; it starts with the noise and applies a log-likelihood score function to guide the noise back to a plausible and coherent 
data structure. Training the model to understand this transition, the reverse process can be used to generate new synthetic samples of jet data by sampling from the noise distribution and then 
'denoising' to create data samples that are indistinguishable from real gluon and top jet events. Given the challenges in computing the likelihood ratio directly from raw data, we leveraged this model, 
applying the "likelihood ratio trick." Through learning the score of the probability density, we perform a monotonic transformation on the model output to approximate the probability density of 
observing some event given the origin jet as either top or gluon, then using this we determined the likelihood ratio, serving as a proxy for the optimal classifier performance.

Our first set of findings validate our diffusion model's capability to generate 
synthetic data. By analyzing residuals, we determined that the generated jet 
data features closely mirrors the statistical properties of real jet data. This 
visually confirms that our approximated score function must strongly resemble 
the true score function for the data, with an error bound of .0001, which allows 
us to extend this formalism to the likelihoods. The Heatmaps displayed 
represent the log-likelihood ratios obtained from a diffusion model trained to 
differentiate between top jets and gluon jets. When evaluating gluon data with 
a gluon model and top data with a top model, we observe a peak at or near zero 
in the log-likelihood ratio with probabilities approaching one. Conversely, 
when top data is assessed with a gluon model and vice versa, the peaks shift 
away from zero, becoming more negative. This indicates a lower probability, 
moving towards zero. The sharpness of the peak and its location on the 
likelihood axis tells us about the model's confidence. Peaks close to zero on the 
correct model signify strong agreement between the model's output and the 
actual data, while peaks far from zero on the incorrect model affirm that the 
model is effectively identifying inconsistencies.

ARCHITECTURE

The architecture is designed to handle the high-dimensional and structured 
data associated with hadronic jet tagging due to several key features:

Masking Layer: The Masking layer ensures that any irrelevant or padding 
data does not affect the model, which is crucial for dealing with variable-
length particle jets.
TimeDistributed Layers: These layers apply a layer to every temporal slice 
of an input, as each particle's data needs to be processed independently 
before being combined, mirroring the physical process of particles in a jet 
contributing independently to the jet's overall characteristics.
LeakyReLU Layers: By having some neurons remain slightly active, it can 
help in learning fine details of non-linear and complex patterns, allowing 
the model to continue learning even if some nodes start outputting negative 
values.
Add Layer: Allows layers to "skip" if they do not contribute towards 
reducing the loss, which helps avoid the Vanishing Gradient Problem.

MultiHead Attention: The model uses MultiHead Attention with 4 
heads, allowing the network to focus on different parts of the particle 
sequence simultaneously, enabling the model to capture complex 
relationships between the particles in a jet.
Layer Normalization and GELU Activation: Normalization stabilizes 
learning and GELU allows the model to capture non-linear 
relationships, which are expected due to the complex nature of jet 
data.
Global Average Pooling 1D: Consolidates information across all 
particles using global average pooling, reducing the feature 
dimension while retaining essential information.
Dense and Output Layers: Combined with dropout this prevents 
overfitting, ending in a single-node output layer with a sigmoid 
activation function for binary classification.

RESULTS

As shown, this is the preliminary ROC curve of the classifier 
trained on synthetic particle data, and we see that the blue curve 
closely approaches the curve derived from the likelihood ratios. 
However, it has not fully converged, indicating that while the 
model captures the essence of the data, refinement is needed to 
enhance accuracy. We concentrate on particle data in this analysis, 
which inherently encompasses broader jet characteristics within its 
feature set. Although these are strong results, we can improve 
performance through various methods. By investigating the impact 
of adding more layers to the neural network we can potentially 
capture more complex relationships in the data. Exploring different 
architectures (e.g., convolutional layers for spatial patterns or 
recurrent layers for sequential data) can also offer significant 
improvements. We can also adjust hyperparameters such as 
learning rate, batch size, or the number of neurons in each layer and 
utilize techniques like grid search or Bayesian optimization to 
systematically find the best hyperparameters settings. Finally, 
exploiting ensemble methods that combine the predictions from 
multiple models using various methods like Random Forests or 
Gradient Boosting can improve overall performance.
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