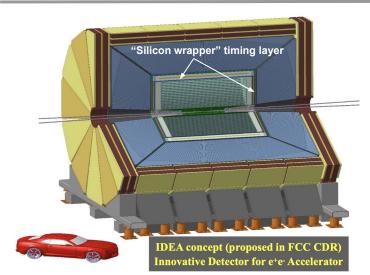
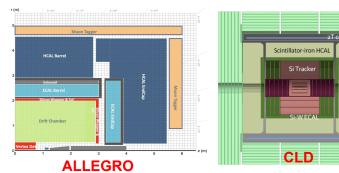
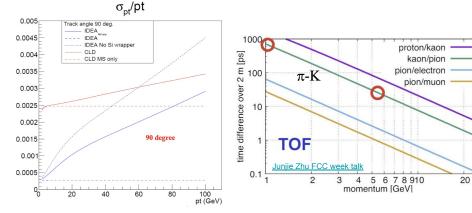

Fast timing possibilities at FCC-ee

Matthew Gignac June 11th 2024

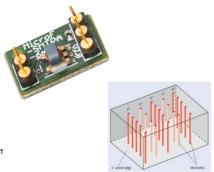

Introduction

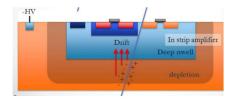

- Topics covered in today's talk:
 - Technologies for 4D tracking
 - LGAD technology
 - AC-LGADs @ EIC
 - Design optimization
 - Front-end readout
 - Monolithic CMOS options

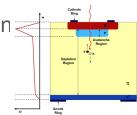

FCC-ee Detector Designs

UC SANTA CRUZ

- Precision silicon layer around the central tracker
 - Improve momentum resolution
 - Extend tracking coverage in the forward/backward region by providing an additional point to particles with few measurements in the drift chamber
 - Provide a time of flight measurement for particle ID
- Covered area ~90 m²
 - Important impact on services
 - Technology suitable for large size production
 - Do not want acceptance holes




30


Technology for 4D tracking

Which technology has sufficient time resolution for 4D tracking

- SiPM (Silicon photomultiplier)
 - But very little radiation hardness and low granularity
- 3D silicon sensors
 - Perpendicular charge collection, ~20-30ps of time resolution, limitations due to dead areas and non-homogeneous field
- Low Gain Avalanche Detectors (LGADs)
 - Intrinsic gain, thin bulk, ~20-30ps of time resolution
 - Charge sharing allows spatial resolution <30 um
- Monolithic CMOS detector
 - \circ Embedded amplification in the design, ~50-100 ps of time resolution \leq
 - \circ Extremely small pixels possible \rightarrow excellent spatial resolution
- In the future: LGAD CMOS? New materials (diamond)?

Technology for 4D tracking

Which technology has sufficient time resolution for 4D tracking

- SiPM (Silicon photomultiplier)
 - But very little radiation hardness and low granularity
- 3D silicon sensors
 - Perpendicular charge collection, ~20-30ps of time resolution limitations due to dead areas and non-homogeneous field
- Low Gain Avalanche Detectors (LGADs)
 - Intrinsic gain, thin bulk, ~20-30ps of time resolution
 - Charge sharing allows spatial resolution <30 um
- Monolithic CMOS detector
 - Embedded amplification in the design, ~50-100 ps of time resolution
 - \circ Extremely small pixels possible \rightarrow excellent spatial resolution
- In the future: LGAD CMOS? New materials (diamond)?

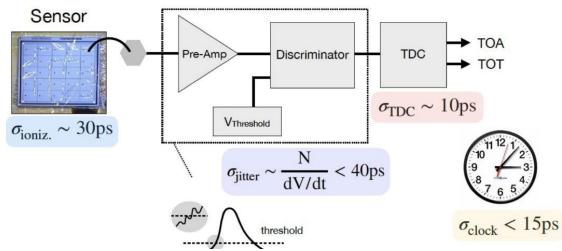

In strip ampl

Image credit: Zhenvu Ye

"Fast timing"

- An integrated detector with excellent temporal resolution requires **many ingredients**:
 - Sensor
 - ASIC
 - Technology, bandwidth
 - Power
 - Detector design
 - Cabling, module design, sensor biasing, noise rejection, etc ...
 - Infrastructure
 - Clock distribution
 - Cooling
 - Data transfer

$$\sigma_t^2 = \sigma_{\text{ionization}}^2 + \sigma_{\text{jitter}}^2 + \sigma_{\text{TDC}}^2 + \sigma_{\text{clock}}^2$$

Several sources of noise when considering a detector system with excellent temporal resolution:

- $\sigma_{\text{ionization}}$: variations in charge depositions \rightarrow impacts amplitude and shape of the signal
- σ_{jitter} : minimized with low noise electronics and maximizing the slew rate (dV/dt) of the signal
- σ_{TDC} : the effect of TDC binning
- σ_{clock} : contributions from clock distribution

$$\sigma_t^2 = \sigma_{\text{ionization}}^2 + \sigma_{\text{jitter}}^2 + \sigma_{\text{TDC}}^2 + \sigma_{\text{clock}}^2$$

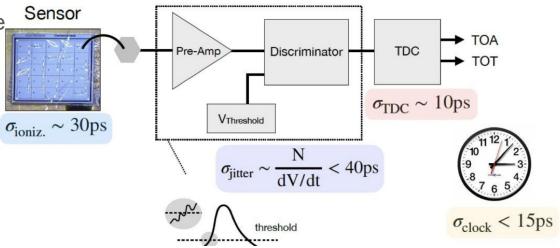
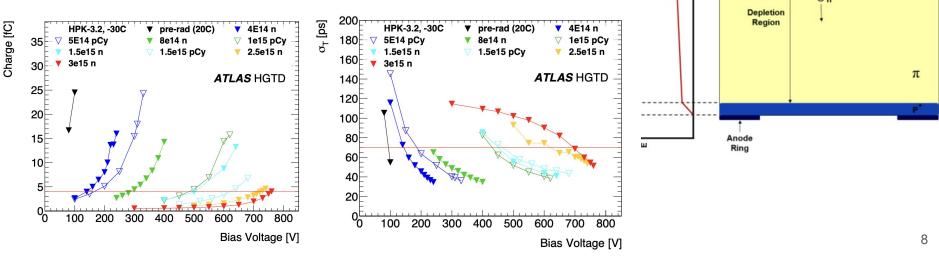
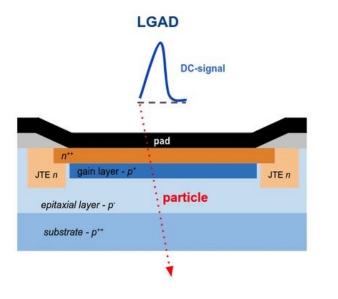



Image credit: Zhenyu Ye

Low Gain Avalanche Detectors

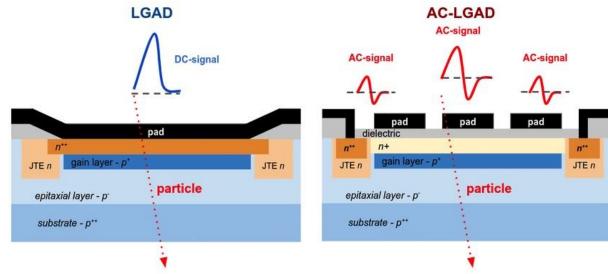
- LGAD: silicon detector with a thin (<5um) and highly doped (~10¹⁶ P++) multiplication layer
- LGADs have intrinsic modest internal gain (10-50)
 - Not in avalanche mode → controlled & tunable gain with externally applied bias voltage
- Excellent timing resolution even for high fluences!

UC SANTA CRUZ


Cathode Ring

> Avalanche Region

×

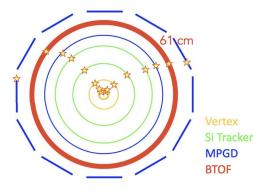

Traditional DC-LGADs

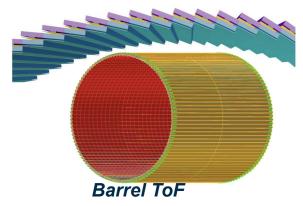
- LGADs have excellent timing resolution, but relatively poor spatial resolution
 - \circ The JTE creates a gap between LGAD pads \rightarrow 100% fill factors cannot be achieved
 - \circ Position resolution is limited to be sqrt(1/12) of the pad size
- For FCC-ee, desire position resolution down to O(10) um level and 100% fill factor
 - Unachievable with traditional DC-LGAD detectors technology

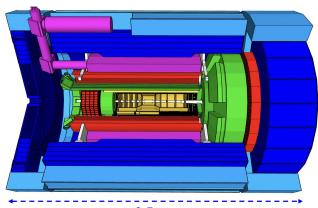
AC-LGAD: Improving spatial resolution

- LGADs have excellent timing resolution, but relatively poor spatial resolution
 - \circ The JTE creates a gap between LGAD pads \rightarrow 100% fill factors cannot be achieved
 - Position resolution is limited to be sqrt(1/12) of the pad size
- For FCC-ee, desire position resolution down to O(10) um level and 100% fill factor
 - Unachievable with traditional DC-LGAD detectors technology

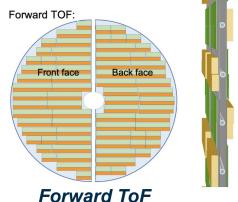
AC-LGAD technology:

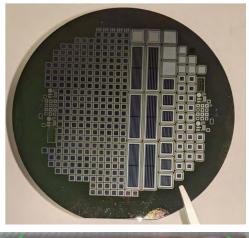

 Replace the segmented n++ layer with a continuous n+ layer


IIC SANTA CRII7


- Electrical signals in the n+ layer are
 AC coupled to the readout
 pads/strips, which are separated
 with a thin dielectric material.
- Charge sharing between strips/pads
 significantly improvements
 spatial resolution and maintains
 temporal resolution!

EIC Silicon Time of Flight Detector

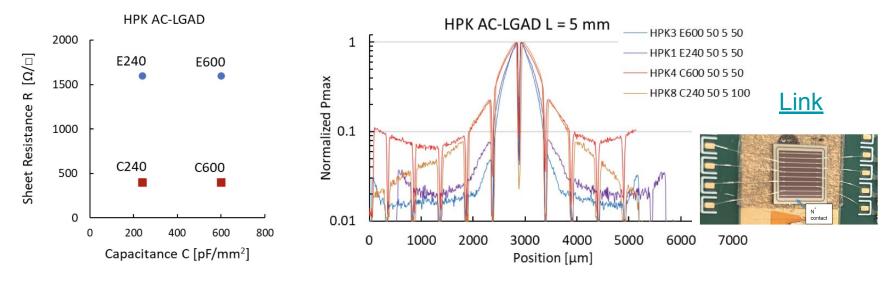

- Electron Ion Collider will include an AC-LGAD time of flight layer: used in tracking and PID
- Single AC-LGAD layer: Barrel (strips) and end-cap (pads) with total area of ~13m²
- Much of the design & challenges being faced for this project directly transferable! But, FCC-ee will be almost an order of magnitude larger...!
- Timing and spatial requirements similar to those that would be needed for FCC-ee

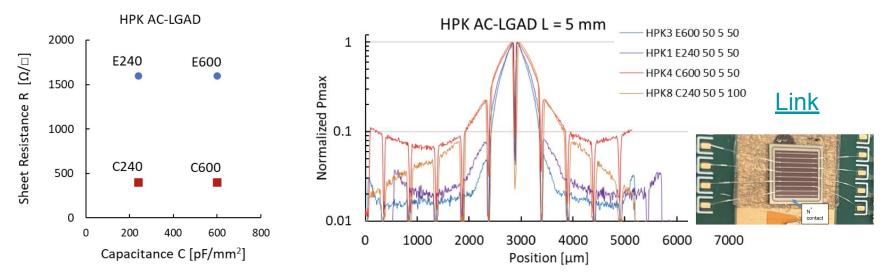

Sensor design optimization

- Strict timing and spatial requirements for all time of flight detectors for ePIC
- Several years of sensor optimization:
 - BNL: quick turnaround time, very useful for R&D
 - **HPK:** commercial vendor for large scale production

Investigating properties:

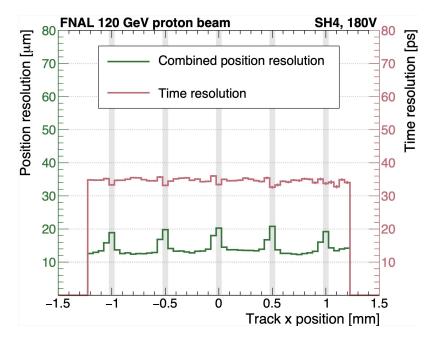
- **n+ layer : very important for charge sharing**
- \circ Strip length/pitch: minimize channel count \rightarrow reduces power consumption
- Sensor thickness: aim to improve timing resolution


	Area (m^2)	Time resolution	Spatial resolution	Material budget
Barrel Time-of-Flight	10	$35 \mathrm{\ ps}$	$30 \ \mu m \ { m in} \ r \cdot \phi$	$0.01 \ X_0$
Forward Time-of-Flight	2.2	$25 \mathrm{\ ps}$	$30 \ \mu m \text{ in } x \text{ and } y$	$0.05 X_0$
B0 Tracker	0.07	$30 \mathrm{\ ps}$	$20 \ \mu m \text{ in } x \text{ and } y$	$0.01 \ X_0$
Roman Pots	0.14	$30 \mathrm{\ ps}$	140 μm in x and y	no strict req.
Off-Momentum Detectors	0.08	$30 \mathrm{\ ps}$	140 μm in x and y	no strict req.


Charge sharing in AC-LGADs

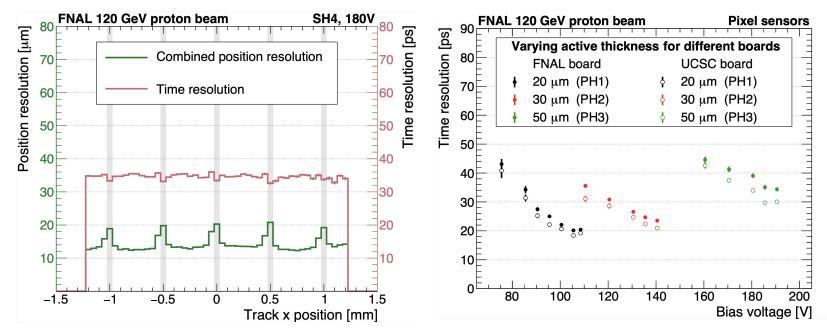
- Charge sharing between neighboring strips is essential for good position resolution
 - However large sharing beyond the next neighbor generates background signals which in general are detrimental to the sensor goal of low occupancy

Charge sharing in AC-LGADs


- Charge sharing between neighboring strips is essential for good position resolution
 - However large sharing beyond the next neighbor generates background signals which in general are detrimental to the sensor goal of low occupancy

 \rightarrow Sensors with large sheet resistance give best performance with next neighbour charge sharing at the 10-15% level

Timing & position resolution


Sensors with different configurations tested with 120 GeV protons @ FNAL

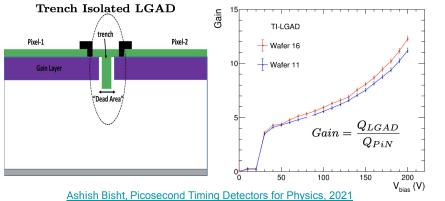
HPK <u>strip sensors</u> with 500 μ m pitch: \rightarrow Simultaneously achieving ~15 um position and ~35 ps timing resolution achieved in one sensor!

Timing & position resolution

Sensors with different configurations tested with 120 GeV protons @ FNAL

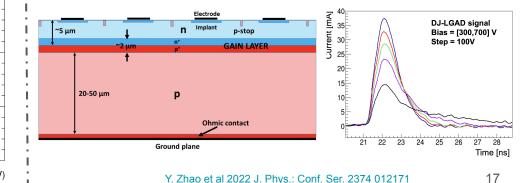
HPK <u>strip sensors</u> with 500 μm pitch:

 \rightarrow Simultaneously achieving ~15 um position and ~35 ps timing resolution achieved in one sensor!


HPK <u>pixel sensors</u> with different thickness: \rightarrow Thinner sensors capable of achieving time resolution down to 20 ps!

Other high granularity LGADs

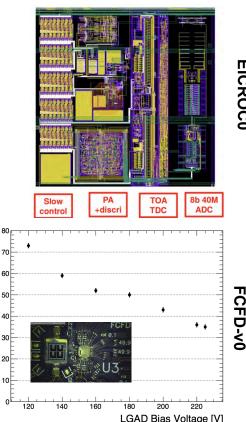
UC SANTA CRUZ


Trench insulated LGADs (TI-LGADs)

- Replace JTE and p-stop of LGADS with a narrow (<1um) & shallow trench of SiO₂
 - Trenches act as a drift/diffusion barrier
 - Dead regions significantly reduced!
- Several advantages over traditional LGADs: smaller gain-loss region, great timing resolution & improved spatial resolution

Deep-Junction LGAD (DJ-LGAD)

- Gain layer is buried, so the top can be segmented as in normal silicon detectors
- First production completed by Cactus material in collaboration with BNL and UCSC
- Promising performance (gain of ~5) and good pad insulation (few um IP gap)
- Similar granularity as regular silicon sensors



EICROCC

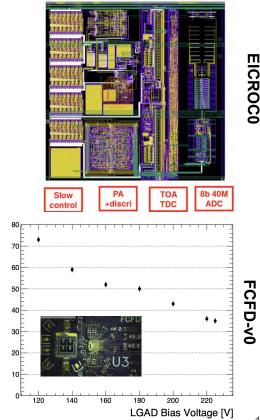
UC SHNIH CKUZ

Several ongoing activities:

- EICROC (Omega/Irfu/AGH)
 - Aspects based on ALTIROC & HGCRoC from HL-LHC upgrades Ο
 - Designed for low sensor capacitance \rightarrow planned to readout 0 forward detectors with pixel sensors and be bump-bondable
- Fermilab Constant Fraction Discriminator (FCFD):
 - Constant fraction discriminator (CFD) to measure signal arrival 0 time \rightarrow robust against amplitude variations of the signal
- High Timing Precision System on Chip (HPSoC)
 - Operate with 10 GSa/s waveform digitization, and use \bigcirc autonomous triggering, feature extraction and multichannel data fusion while providing timing precision <10 ps
- <u>AS-RoC</u> (SiGe, low power), <u>FAST</u> (large dynamic range), ...

Time resolution [ps]

Readout ASIC R&D


19

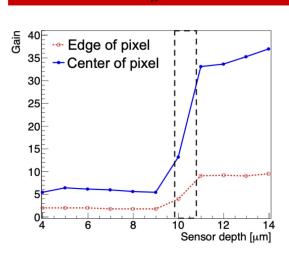
Readout ASIC R&D

Several ongoing activities:

- EICROC (Omega/Irfu/AGH)
 - Aspects based on ALTIROC & HGCRoC from HL-LHC upgrades
 - Designed for low sensor capacitance → planned to readout
 forward detectors with pixel sensors and be bump-bondable
- Fermilab Constant Fraction Discriminator (FCFD):
 - Constant fraction discriminator (CFD) to measure signal arriva time → robust against amplitude variations of the signal
- High Timing Precision System on Chip (<u>HPSoC</u>)
 - Operate with 10 GSa/s waveform digitization, and use
 autonomous triggering, feature extraction and multichannel
 data fusion while providing timing precision <10 ps

→ For FCC-ee, prefer **longest possible strips length (i.e. large input capacitance) to reduce number of readout channels, R&D efforts critical** to achieve desired timing resolution!

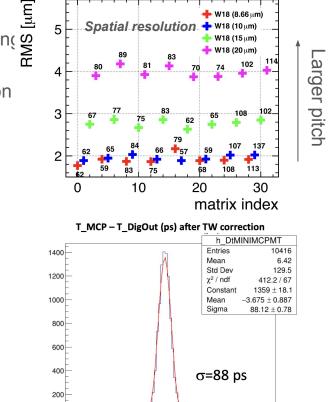
Time resolution [ps]


HV-CMOS LGADs

UC SANTA CRUZ

- Combination of HV-CMOS technology and LGAD technology
- Internal gain by LGAD-like gain layer and embedded amplification
- Several challenges to overcome:
 - LGAD gain layer has high electric field near the surface, not easy to work with CMOS tech in it
 - LGADs mostly produced on 4" and 6" wafers while CMOS foundries work with 8" wafers
- First successful LGAD CMOS: 130 nm SiGe BiCMOS process by IHP microelectronics <u>PicoAD</u>:
 - Exagonal pads, 65 μm
 - \circ About 25 μm depletion
 - \circ ~ Thinned to 60 μm
 - Resolution of about ~ 38 ps,
 - Very small pixels!

Drift region


CMOS Sensors without internal gain

FASTPIX is a **180 nm CMOS monolith project** aiming at combining temporal stamping with excellent position precision

- Lateral doping gradient leads to accelerated charge collection times. Optimization underway
- Very small pixels ~8-20 um \rightarrow impressive spatial resolution!
- Timing resolution ~ 100-200 ps,

MiniCACTUS is a 150 nm CMOS monolith project

- Front-end mostly optimized for 1 mm² pixels with peaking time of 1-2 ns @ 1-2pF
- Resolution of about ~ 90 ps,
- Large pixel, 0.5 x 1 mm²

-500

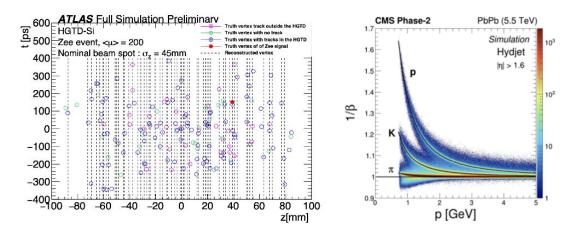
0

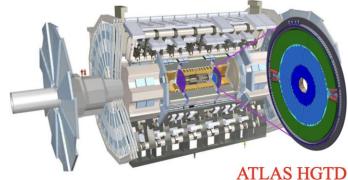
-1000

500

1000

1500

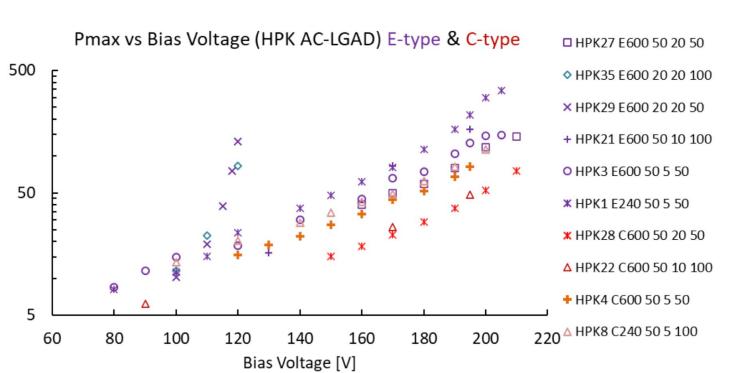

Fast timing detectors are proposed as part of a silicon timing layer at FCC-ee

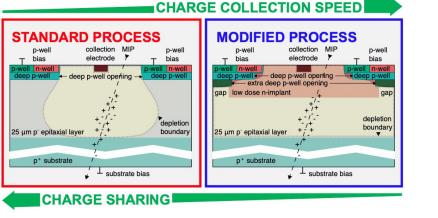

- LGADs are a promising technology for an all silicon wrapper, capable of providing O(10) ps timing resolution and <30um spatial resolution
 - Many experiments (e.g. <u>EIC</u>, <u>PIONEER</u>) in late stages of developing systems that use AC-LGADs → lessons from these experiments useful starting place for FCC-ee!
 - Scaling to FCC will require R&D towards longer strip lengths to reduce channel count, move fabrication to larger wafers to improve yield and reduce costs, etc...
- Fully integrated CMOS systems very promising avenue to explore
 - Capable of extremely small pixels \rightarrow excellent spatial resolution!
 - Very impressive timing resolutions already achieved

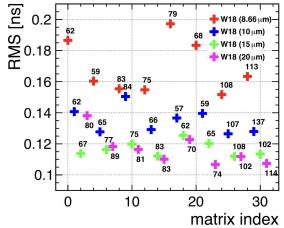
Extra slides

Fast timing @ HL-LHC

- Unprecedented challenges presented by HL-LHC conditions → require innovation and creativity → precision timing!
- ATLAS High-Granularity Timing Detector (HGTD)
 - Sensors pads 1.3 x 1.3 mm²
 - Rise time ~ 500 ps
- Extremely useful in dense environments, PID, ...




Pmax for various HPK sensors


Pmax [mV]

FASTPIX

- Hexagonal pixels large signal-to-noise ratios, high detection efficiency and precise timing
- Minimizing the maximum distance between charge generation and collection is a first step in the optimization for timing uniformity and is realized by the hexagonal arrangement of collection electrodes and the O(10µm) pixel pitch.
 - With the modified process, a uniform low-dose n-type implant is introduced allowing full lateral depletion of the 25 µm epitaxial layer.

