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Introduction UG SHNTH GRUI

https:/fccweek2024.web.cern.ch

e Topics covered in today’s talk:

o Technologies for 4D tracking
LGAD technology
AC-LGADs @ EIC
Design optimization
Front-end readout
Monolithic CMOS options
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FCC-ee Detector Designs UG SHNTH GRI

e Precision silicon layer around the central tracker
o Improve momentum resolution
o Extend tracking coverage in the forward/backward
region by providing an additional point to particles with
few measurements in the drift chamber
o Provide a time of flight measurement for particle ID
e Covered area ~90 m?
o Important impact on services
o Technology suitable for large size production
o Do not want acceptance holes
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https://indico.cern.ch/event/1298458/contributions/5975666/attachments/2874286/5033190/DetectorRequirements_Zhu.pdf

Technology for 4D tracking UG SANTH GRUZ

Which technology has sufficient time resolution for 4D tracking

SiPM (Silicon photomultiplier)
But very little radiation hardness and low granularity

([ J
O
e 3D silicon sensors
o Perpendicular charge collection, ~20-30ps of time resolution,
limitations due to dead areas and non-homogeneous field
e Low Gain Avalanche Detectors (LGADs)
o Intrinsic gain, thin bulk, ~20-30ps of time resolution
o Charge sharing allows spatial resolution <30 um
e Monolithic CMOS detector _
o Embedded amplification in the design, ~50-100 ps of time resolution =={
Extremely small pixels possible — excellent spatial resolution \ - v

@)
In the future: LGAD CMOS? New materials (diamond)?



Technology for 4D tracking UG SANTH GRUZ

Which technology has sufficient time resolution for 4D tracking

Low Gain Avalanche Detectors (LGADs)
Intrinsic gain, thin bulk, ~20-30ps of time resolution
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o Charge sharing allows spatial resolution <30 um
e Monolithic CMOS detector _
o Embedded amplification in the design, ~50-100 ps of time resolution =={
Extremely small pixels possible — excellent spatial resolution \ - v
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“Fast timing” UG SHNTH GRUI

e An integrated detector with excellent 2
temporal resolution requires many O = Gionization T O Jltter K GTDC T8 lock
ingredients:
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“Fast timing” UG SHNTH GRUI

Several sources of noise when

2

considering a detector system with O; = Ginivation T O; Jmer H O'TDC + & lock
excellent temporal resolution:
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Low Gain Avalanche Detectors UG SHNTH GRUI

e LGAD: silicon detector with a thin (<5um) and highly
doped (~10'® P++) multiplication layer

e LGADs have intrinsic modest internal gain (10-50) x
o Not in avalanche mode — controlled & tunable gain
with externally applied bias voltage Avalanche
. . . . Region
e Excellent timing resolution even for high fluences! ,th
Deple_tion "
T HeKa2, 308 Y prevaa(200) v aktan ] B 200 THRK32 306V revad 200) | ¥ aEtan | Ragton
35F vV 5E14 pCy v 8el4n vV 1el5pCy § "~ 180F V 5E14 pCy v 8el4n V 1e15pCy A
F ~ 1.5e15n 1.5e15 pCy 25e15n 4 © T 1.5e15n 1.5e15 pCy 25e15n
30F Vv 3e15n ] 1605 v 3el5n R
E ATLASHGTD 1 140 ATLAS HGTD 7‘
> E 120F = Jp— k
1 o ] =8 - ———
15 - = 801 % 3 = Anode
E / ] c i ng
10- "y = “v“ \7\% ™y
50 " E 40t~ Yvy : E
] = ] 200 E
%700 200 300 400 500 600 700 800 %0 " 700 200 300 400 500 600 700 800

Bias Voltage [V] Bias Voltage [V] 8



Traditional DC-LGADs IC SANTR GRIIZ

e LGADs have excellent timing resolution, but relatively poor spatial resolution
o The JTE creates a gap between LGAD pads — 100% fill factors cannot be achieved
o Position resolution is limited to be sqrt(1/12) of the pad size

e For FCC-ee, desire position resolution down to O(10) um level and 100% fill factor
o Unachievable with traditional DC-LGAD detectors technology

LGAD
/tc-signal

JTEn . JTEn

epitaxial layer - p particle

= = p— — =



AC-LGAD: Improving spatial resolution UI] SHNTH EHUZ

AC-signal
e Replace the segmented n++ layer
DC-signal AC-signal AC-signal . .
i with a continuous n+ layer
gr= [\/- Electrical signals in the n+ layer are

| AC coupled to the readout
1@3@_@! m m r p_ _

n+ pads/strips, which are separated

JTEN . JTEn . JTEn with a thin dielectric material.
spitaxial layer= "-,_ particle epliatallayerap: -,. particle e Charge sharing between strips/pads
st ol pt : significantly improvements
- : spatial resolution and maintains
v v temporal resolution!
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EIC Silicon Time of Flight Detector [ SANTA CRUL

Electron lon Collider will include an AC-LGAD time
of flight layer: used in tracking and PID

Single AC-LGAD layer: Barrel (strips) and end-cap
(pads) with total area of ~13m?

Much of the design & challenges being faced for this
project directly transferable! But, FCC-ee will be
almost an order of magnitude larger...!

Timing and spatial requirements similar to those that
would be needed for FCC-ee

Forward ToF



Sensor design optimization

UG SHNTH GRUZ

e Strict timing and spatial requirements for all time
of flight detectors for ePIC

e Several years of sensor optimization:
o BNL: quick turnaround time, very useful for R&D
o HPK: commercial vendor for large scale production
e Investigating properties:
o n+ layer : very important for charge sharing
o  Strip length/pitch: minimize channel count — reduces

power consumption
o Sensor thickness: aim to improve timing resolution

Area (m?) | Time resolution | Spatial resolution || Material budget
Barrel Time-of-Flight 10 35 ps 0puminr- ¢ 0.01 Xo
Forward Time-of-Flight 2.2 25 ps 30 ym in z and y 0.05 X,
BO Tracker 0.07 30 ps 20 ym in  and y 0.01 X,
Roman Pots 0.14 30 ps 140 pm in z and y no strict req.
Off-Momentum Detectors 0.08 30 ps 140 pm in z and y no strict req.




Charge sharing in AC-LGADs

UG SHNTH GRUZ

e Charge sharing between neighboring strips is essential for good position resolution
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However large sharing beyond the next neighbor generates background signals which in
general are detrimental to the sensor goal of low occupancy
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https://www.sciencedirect.com/science/article/pii/S0168900224004042?dgcid=coauthor

Charge sharing in AC-LGADs UG SHNTH GRUL

e Charge sharing between neighboring strips is essential for good position resolution
o However large sharing beyond the next neighbor generates background signals which in
general are detrimental to the sensor goal of low occupancy
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— Sensors with large sheet resistance give best performance
with next neighbour charge sharing at the 10-15% level
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Timing & position resolution

UG SHNTH GRUZ

Position resolution [um]

Sensors with different configurations tested with 120 GeV protons @ FNAL
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HPK strip sensors with 500 ym pitch:

— Simultaneously achieving ~15 um position and ~35 ps

timing resolution achieved in one sensor!
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Timing & position resolution

UG SHNTH GRUZ

Position resolution [um]

Sensors with different configurations tested with 120 GeV protons @ FNAL

FNAL 120 GeV proton beam SH4, 180V
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HPK strip sensors with 500 ym pitch:
— Simultaneously achieving ~15 um position and ~35 ps
timing resolution achieved in one sensor!
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HPK pixel sensors with different thickness:
— Thinner sensors capable of achieving time
resolution down to 20 ps!

16



Other high granularity LGADs UG SANTA GRUL

Trench insulated LGADs (TI-LGADs)
e Replace JTE and p-stop of LGADS with a
narrow (<1um) & shallow trench of SiO,
o Trenches act as a drift/diffusion barrier
o Dead regions significantly reduced!

e Several advantages over traditional LGADs: e Promising performance (gain of ~5) and good
smaller gain-loss region, great timing pad insulation (few um IP gap)

|
I Deep-Junction LGAD (DJ-LGAD)
|
i
|
|
i
I
|
resolution & improved spatial resolution ; e Similar granularity as regular silicon sensors
|
i
|
|
I
i
|
i
i
i

e Gain layer is buried, so the top can be
segmented as in normal silicon detectors

e First production completed by Cactus material in
collaboration with BNL and UCSC

Trench Isolated LGAD
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https://indico.cern.ch/event/861104/contributions/4514658/
https://iopscience.iop.org/article/10.1088/1742-6596/2374/1/012171

Readout ASIC R&D

Several ongoing activities:
e EICROC (Omegal/lrfu/AGH)

o Aspects based on ALTIROC & HGCRoC from HL-LHC upgrades

o Designed for low sensor capacitance — planned to readout
forward detectors with pixel sensors and be bump-bondable

e Fermilab Constant Fraction Discriminator (FCED):

o Constant fraction discriminator (CFD) to measure signal arrival

time — robust against amplitude variations of the signal
e High Timing Precision System on Chip (HPSoC)

o Operate with 10 GSa/s waveform digitization, and use
autonomous triggering, feature extraction and multichannel
data fusion while providing timing precision <10 ps

e AS-RoC (SiGe, low power), FAST (large dynamic range), ...
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https://arxiv.org/pdf/2306.07387
https://iopscience.iop.org/article/10.1088/1748-0221/18/02/C02016
https://iopscience.iop.org/article/10.1088/1748-0221/19/04/C04002
https://arxiv.org/abs/2402.01517

Readout ASIC R&D

UG SHNTH GRUZ

— For FCC-ee, prefer longest possible strips length (i.e. large
input capacitance) to reduce number of readout channels,
R&D efforts critical to achieve desired timing resolution!
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https://arxiv.org/pdf/2306.07387
https://iopscience.iop.org/article/10.1088/1748-0221/18/02/C02016
https://iopscience.iop.org/article/10.1088/1748-0221/19/04/C04002
https://arxiv.org/abs/2402.01517

HV-CMOS LGADs

UG SHNTH GRUZ

Combination of HV-CMOS technology and LGAD technology
Internal gain by LGAD-like gain layer and embedded amplification
Several challenges to overcome:
o LGAD gain layer has high electric field near the surface, not
easy to work with CMOS tech in it
o LGADs mostly produced on 4” and 6” wafers while CMOS
foundries work with 8” wafers
First successful LGAD CMOS: 130 nm SiGe BiCMOS process by
IHP microelectronics PicoAD:
Exagonal pads, 65 ym
About 25 um depletion
Thinned to 60 um
Resolution of about ~ 38 ps,
Very small pixels!

o O O O O
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https://iopscience.iop.org/article/10.1088/1748-0221/17/10/P10032

CMOS Sensors without internal gain

UG SHNTH GRUZ

FASTPIX is a 180 nm CMOS monolith project aiming at combining
temporal stamping with excellent position precision
e Lateral doping gradient leads to accelerated charge collection
times. Optimization underway
e Very small pixels ~8-20 um — impressive spatial resolution!
e Timing resolution ~ 100-200 ps,

MiniCACTUS is a 150 nm CMOS monolith project
e Front-end mostly optimized for 1 mm? pixels with
peaking time of 1-2 ns @ 1-2pF
Resolution of about ~ 90 ps,
e Large pixel, 0.5 x 1 mm?
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https://www.sciencedirect.com/science/article/pii/S0168900223006319

Conclusions UG SHNTH GRUI

Fast timing detectors are proposed as part of a silicon timing layer at FCC-ee
e LGADs are a promising technology for an all silicon wrapper, capable of
providing O(10) ps timing resolution and <30um spatial resolution
o Many experiments (e.g. EIC, PIONEER) in late stages of developing systems that
use AC-LGADs — lessons from these experiments useful starting place for
FCC-ee!
o Scaling to FCC will require R&D towards longer strip lengths to reduce channel
count, move fabrication to larger wafers to improve yield and reduce costs, etc...
e Fully integrated CMOS systems very promising avenue to explore
o Capable of extremely small pixels — excellent spatial resolution!
o Very impressive timing resolutions already achieved
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https://arxiv.org/abs/1212.1701
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Extra slides



Fast timing @ HL-LHC UG SHNTH GRUL

e Unprecedented challenges presented by HL-LHC conditions — require
innovation and creativity — precision timing!
e ATLAS High-Granularity Timing Detector (HGTD)

o Sensors pads 1.3 x 1.3 mm?
o Rise time ~ 500 ps

e Extremely useful in dense environments, PID, ...
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Pmax for various HPK sensors

UG SHNTH GRUZ

Pmax [mV]
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FASTPIX UG SHNTH GRUI

Hexagonal pixels — large signal-to-noise ratios, high detection efficiency and precise timing
Minimizing the maximum distance between charge generation and collection is a first step in
the optimization for timing uniformity and is realized by the hexagonal arrangement of
collection electrodes and the O(10um) pixel pitch.
o  With the modified process, a uniform low-dose n-type implant is introduced allowing full
lateral depletion of the 25 um epitaxial layer.
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