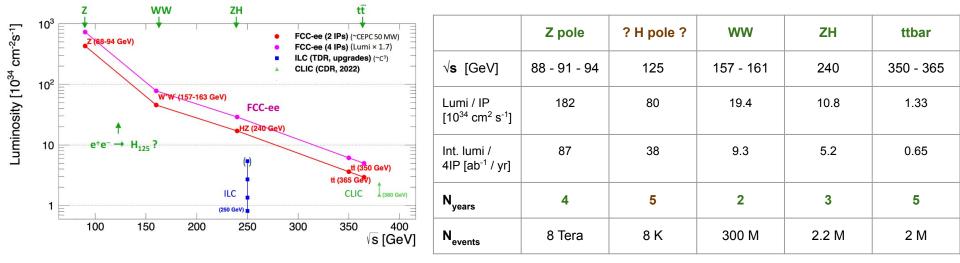


Detector Requirements from Physics

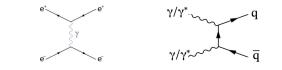

Patrizia Azzi (Padova), Emmanuel Perez (CERN),

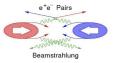
Michele Selvaggi (CERN)

FCC Week - San Francisco June 12th, 2024

A few general considerations

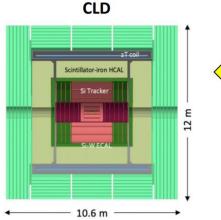
15 (20?) years of operations

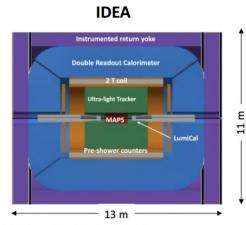


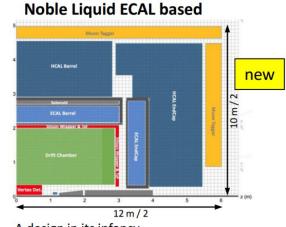

Exquisite luminosity allows for ultimate precision:


- 100K Z bosons / second
 - LEP dataset in 1 minutes
- 10k W boson / hour
- 2k Higgs bosons / day
- 3k tops / day

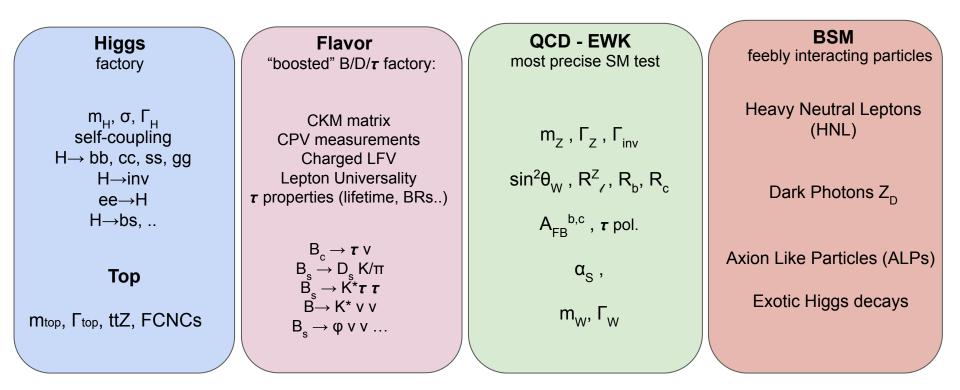
Detector requirements - general considerations


- Requirements for Higgs and above have been studied to some extent by LC:
 - we want a detector that is able to withstand a large dynamic range:
 - in energy (√s = 90 365 GeV)
 - in luminosity (L = $10^{34} 10^{36} \text{ cm}^2/\text{s}$)
- most of the machine induced limitations are imposed by the Z pole run:
 - large collision rates ~ 33 MHz and continuous beams
 - no power pulsing possible
 - large event rates ~ 100 kHz
 - fast detector response / triggerless design challenging (but rewarding)
 - high occupancy in the inner layers/forward region (Bhabha scattering/γγ hadrons)
 - o beamstrahlung
- complex MDI: last focusing quadrupole is ~ 2.2m from the IP
 - magnetic field limited to B = 2T at the Z peak (to avoid disrupting vertical emittance/inst. Lumi via SR)
 - limits the achievable track momentum resolution
 - o "anti"-solenoid
 - limits the acceptance to ~ 100 mrad




Detector Benchmarks

- Well established design
 - ILC -> CLIC detector -> CLD
- Full Si vtx + tracker;
- CALICE-like calorimetry;
- Large coil, muon system
- Engineering still needed for operation with continuous beam (no power pulsing)
 - Cooling of Si-sensors & calorimeters
- Possible detector optimizations
 - σ_p/p, σ_E/E
 - PID (O(10 ps) timing and/or RICH)?



- A bit less established design
 - But still ~15y history
- Si vtx detector; ultra light drift chamber w powerful PID; compact, light coil;
- Monolithic dual readout calorimeter;
 - Possibly augmented by crystal ECAL
- Muon system
- Very active community
 - Prototype designs, test beam campaigns, ...

- A design in its infancy
- Si vtx det., ultra light drift chamber (or Si)
- High granularity Noble Liquid ECAL as core
 - Pb/W+LAr (or denser W+LKr)
- CALICE-like or TileCal-like HCAL;
- Coil inside same cryostat as LAr, outside ECAL
- Muon system.
- Very active Noble Liquid R&D team
 - Readout electrodes, feed-throughs, electronics, light cryostat, ...
 - Software & performance studies

Physics landscape at the FCC-ee

Detector requirements at the FCC-ee

Higgs factory

track momentum resolution (low X_0)

IP/vertex resolution for flavor tagging

PID capabilities for flavor tagging

jet energy/angular resolution (stochastic and noise) and PF **Flavor** "boosted" B/D/**r** factory:

track momentum resolution (low X_0)

IP/vertex resolution

PID capabilities

Photon resolution, pi0 reconstruction QCD - EWK most precise SM test

acceptance/alignment knowledge to 10 µm

luminosity

Momentum resolution

BSM feebly interacting particles

High radial segmentation

Large decay volume

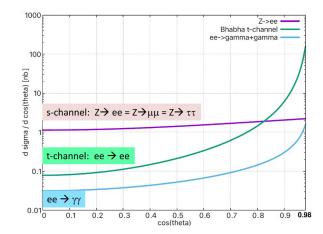
- tracker

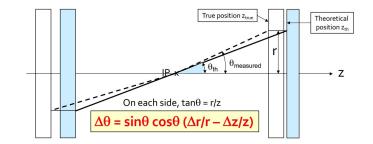
- calorimetry

- muon

impact parameter resolution for large displacement

timing

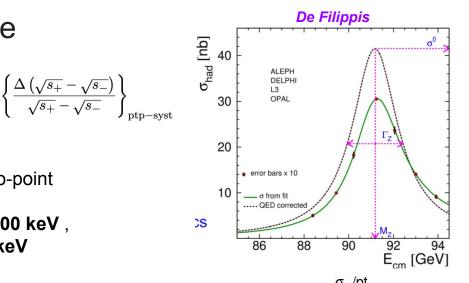

triggerless

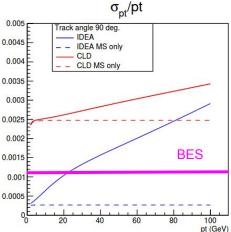

Luminosity/acceptance

0

- Precise knowledge of the **geometrical acceptance** required by
 - R^z, measurement (as limiting systematics)
 - absolute luminosity measurement at Z pole, required by
 - peak Z cross section (σ_0)
- At LEP, via Bhabha scattering at low angle, here we require 10⁻⁵ precision (for point-to-point), 10⁻⁴ being absolute target
 - un-matched by theoretical calculations
 - \circ use $ee \to \imath\imath$ process as an alternative, rarer but cleaner TH
- To match stat. precision (2x10⁻⁵)
 - must know Δθ_{min} ~ 10 µrad
 - equivalent to $\Delta r \sim 30 \ \mu m$, $\Delta z \sim 80 \ \mu m$ at $\theta = 20^{\circ}$ and z = 2.6m
 - challenging design requirement !!

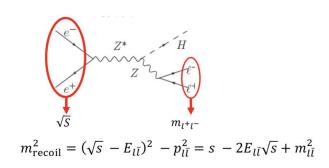
Elvira

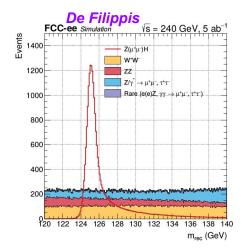


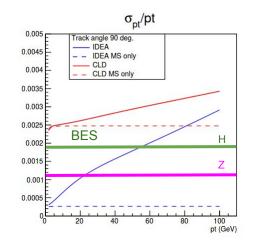


This in-situ calibration technique could be used to determine lumiCal acceptance (with low angle Bhabha, 1.6 µm tolerance needed, for 10⁻⁴ lumi meas.)

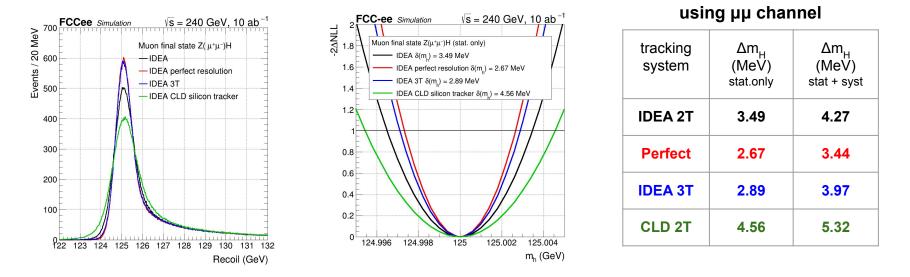
Track Momentum resolution/scale


- Γ_z is extracted from the Z lineshape
- To match stat. prec need syst. unc. ~ 5 keV
- dominant uncertainty on $\Gamma_{_Z}$ (and $A_{_{FB}}{}^{\mu\mu}$) is point-to-point uncertainty on \sqrt{s}
 - can do better than resonant depol. $\delta \sqrt{s} \sim 100 \text{ keV}$,
 - need $\delta \sqrt{s_{ptp}} \sim 10 \text{ keV}$ to achieve $\delta \Gamma_z \sim 5 \text{ keV}$
- scales as $\delta \sqrt{s_{ptp}} \sim \sigma^{trk}_{p} / \sqrt{N^{off-peak}}$
 - \circ ~ 40 keV / day or (4 keV/data taking period)
 - allows for evaluation of biases in real time
 - **δΓ_z ~ 20** (40) **keV** with **IDEA** (CLD)
- requires exquisite **control and stability** of the momentum scale
 - 40 keV / 90 GeV < 1e-6
 - hard with B field probes
 - with J/ψ, D0, Ks ?

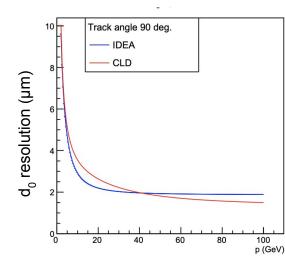


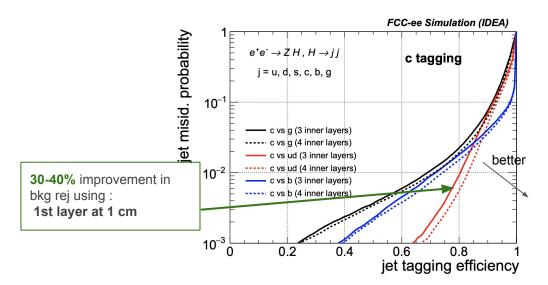

Track Momentum resolution

• Higgs mass and ZH production cross-section can be extracted from the recoil mass distribution

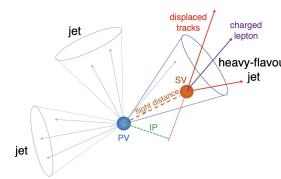

- sensitivity dominated by the Z(μμ) final state
 - superior momentum resolution, driven by tracking
- track momentum resolution limits sensitivity if > beam energy spread (BES = 0.182% at 240 GeV, i.e 222 MeV)
 - multiple-scattering limit < BES
 - for CLD ~ 30% above
 - transparent tracker is key

Track Momentum resolution

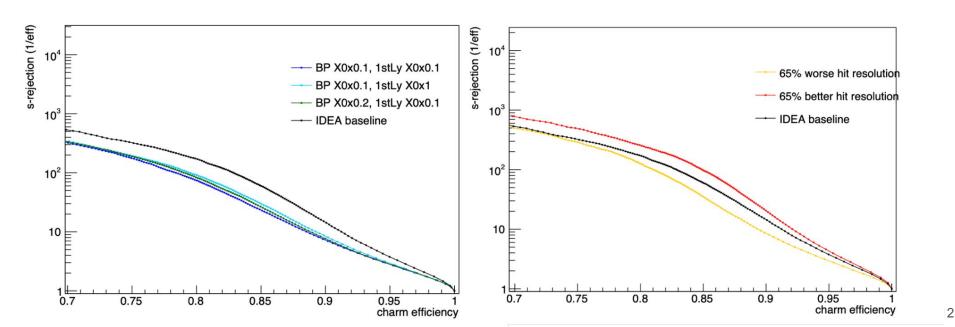

De Filippis



- we want to get down to $\Delta m_{\rm H} \sim \Gamma_{\rm H} \sim 4$ MeV to allow for electron Yukawa at $\sqrt{s} = 125$ GeV
- as expected, tracking resolution highly impacts m_H precision
- light tracker/ high B field highly preferable

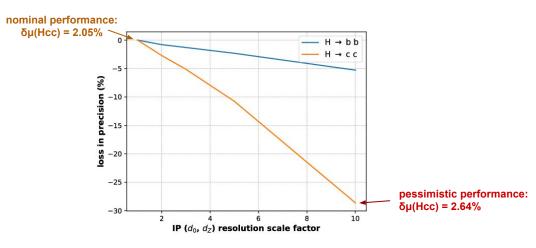

Track impact parameter resolution and vertexing

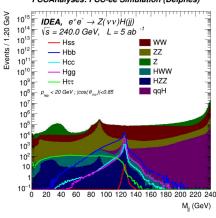
- Impact parameter resolution major driver of jet charm and bottom jet identification
 - \circ B (D) mesons travel a finite decay length 500 (150) μ m
- precise IP determination driven by:
 - single point resolution
 - **radial distance of first tracking layer** from the interaction point (at large momentum)
 - need small radius beam-pipe
 - material budget X/X₀ (at low p)


Sciandra, Rohrig

11

Track impact parameter resolution and vertexing

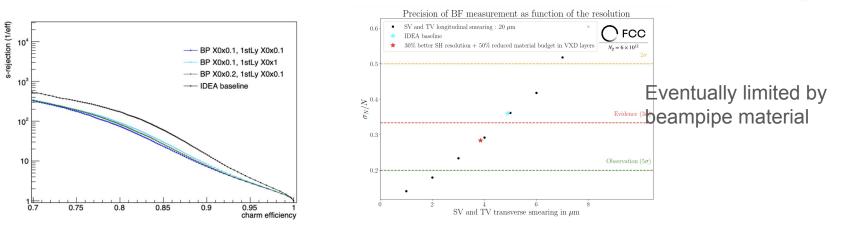

- Crucial role of **single-point resolution** (nominal in Delphes: 3µm with 25x25µm² inner barrel pitch) in rejection of major background for charm
- For large increase of **beam-pipe material budget** the impact of material in first vertex-detector layer is not very significant


Sciandra, Rohrig

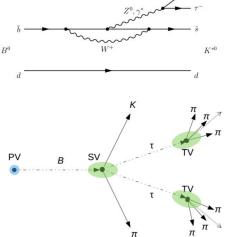
Track impact parameter resolution and vertexing

- BR(H→jj) jj = bb, cc precision rely on excellent displaced track reconstruction
- Z(II vv jj)H(jj)
 - sensitivity driven by Z(vv)H so far
 - large "jet" background from WW, ZZ, Z

worse IP resolution impact $\textbf{H} {\rightarrow} \textbf{cc}$ vs $\textbf{H} {\rightarrow} \textbf{bb}$ due to smaller displacement and smaller S/B

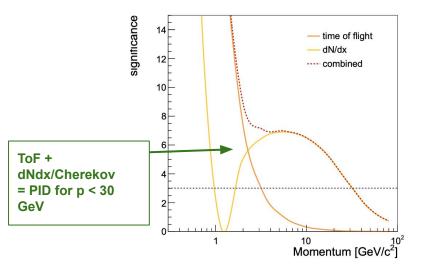


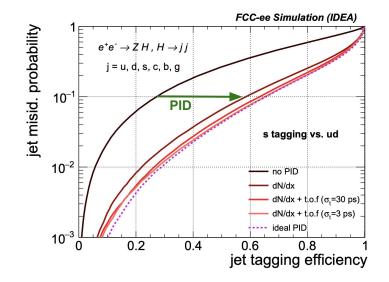
nominal expected precision (%) in vvH channel


H→ bb	H→ c̄c	n→ ss	H→ gg
	1.3 %	85 %	0.65 %
0.15 %	1.3 %	85 %	0.65 %

Track impact parameter resolution and vertexing

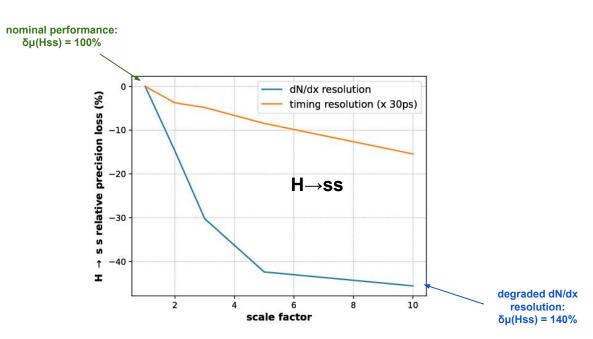
- $B \rightarrow K^* \tau \tau$ important channel to study LFU in b \rightarrow s transitions
 - focusing on 3-prong $\boldsymbol{\tau}$ decays
- very rich signature with :
 - \circ 8 visible particles (1K, 7 π)
 - 1 secondary vertex and tertiary vertices
- very complex analysis: many backgrounds and combinatorics
- $B \rightarrow K^* \tau \tau$ sensitivity driven by **vertex resolution** to make maximal use of kinema constraints





Charged hadron particle identification (K/ π /p discrimination)

- PID crucial ingredient of
 - $\circ \quad \text{ flavor physics measurements: } B_s \to D_s K, \, B \to K^* \, v \, v, \, B_s \to \phi \, v \, v \, \dots$
 - **strange quark** jet identification ($H \rightarrow ss$, V_{ts} , V_{cs} , $H \rightarrow bs$, FCNCs ...)
 - e/π separation at level of 10⁻⁵ required for $\tau \rightarrow e$ (calorimetry)
- Toolbox:
 - High momentum dE/dx (dN/dx) Cherenkov detectors (RICH)
 - Low momentum: **Time of flight** (what about t0?)


Zuo

Charged hadron particle identification (K/ π /p discrimination)

expected precision on BR(H \rightarrow ss) ~100%

with 10 ab⁻¹ (only using vvH channel)

PID performance: dN/dx > timing resolution

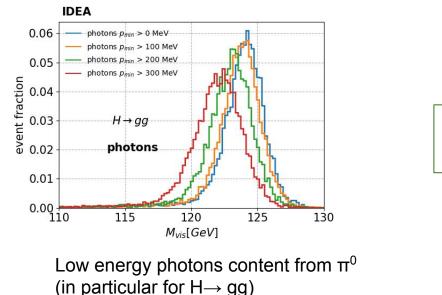
Very good ECAL, no PID 2020-06-06 entries :64149.0 Signal :5599.0 $B_{c} \rightarrow D_{c} K \rightarrow \phi \rho K \rightarrow K K \pi \pi^{0} K$ 2500 --- fit D_sK $\int L = 1ab^{-1}$ --- fit B⁰→D_cK Ecm = 45.6 GeV D_sK 2000 $\cos(\theta_p) < 0.95$ $D_c \pi (\equiv K)$ $fr = 5.366e + 00 \pm 5.1e \cdot 04$ $-m = 2.037e-02 \pm 4.3e-04$ Result $B^0 \rightarrow D_s \pi (\equiv K)$ 1500 + data error PID off 1000 $\frac{\delta p_t}{r^2} = c_0 \oplus \frac{c_1}{p_s \sin(\theta)}$ $c_0 = 2.0e-05$, $c_1 = 1.2e-03$ $\frac{\delta E}{E} = \frac{c_0}{\sqrt{E}} \oplus c_1$ 500 $c_0 = 5.0e-02$, $c_1 = 5.0e-02$ 5.20 5.25 5.30 5.35 5.40 5.45 mBsres removes PID $B_s \rightarrow D_s \pi$ background With "standard" PID entries :4351.786455000043 Signal :2799.5 $B_s \rightarrow D_s K \rightarrow \phi \rho K \rightarrow K K \pi \pi^0 K$ 2020-06-06 200 ---- fit D.K --- fit $B^0 \rightarrow D_c K$ 175 $\int L = 1ab^{-1}$ Ecm = 45.6 GeV D.K $D_{-}\pi(=K)$ $\cos(\theta_n) < 0.95$ $-6t = 5.366e + 00 \pm$ Xtal-like Cal. B⁰→D_eK - fg = 2.028e-02: $\frac{\delta E}{E} = \frac{0.05}{\sqrt{E}} \oplus 0.005$ $B^0 \rightarrow D_s \pi (\equiv K)$ 🕂 data error \$ 100 PID on δpt 75

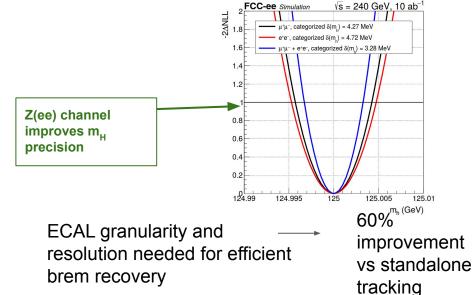
5.35 5.40 5.45

mBsres

 $\frac{\delta E}{E} = \frac{c_0}{\sqrt{E}} \oplus c_1$ $c_0 = 5.0e-02$

5.20 5.25 5.30

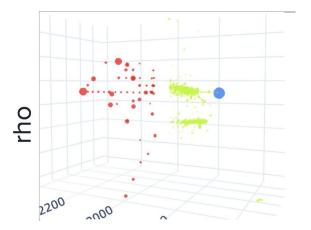

25


 $B_s \rightarrow D_s K$

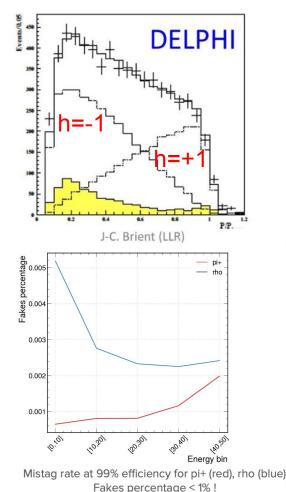
Zuo

ECAL : electron/photon reconstruction

- many flavor physics benchmarks: $B_s \rightarrow D_s K$, $B_0 \rightarrow \pi^0 \pi^0$, $B_s \rightarrow K^* \tau \tau$...
- put stringent requirements on ECAL performance, both **resolution** and **granularity**:
 - soft π^0 ECAL resolution is a must (e.g crystal) AND low X₀ material in front
 - for **boosted** π^0 granularity required (τ decays)
- High momentum prompt photon $H{\rightarrow}$ $\gamma\gamma$, ALPs
- ECAL granularity resolution needed for efficient brem recovery (and low X₀ tracker)



Tullv


Garcia, Chrzaszcz

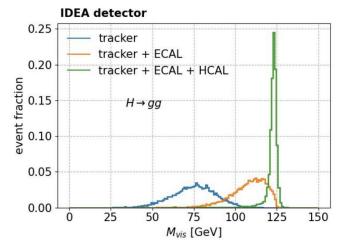
ECAL/HCAL : ρ vs. π^{\pm}

- Tau polarisation measurement relies (partly) in
 - measuring pion energy spectrum $\tau^{\pm} \rightarrow v \pi^{\pm}$
 - $\circ \quad \mbox{modelling } \rho^{\pm} \! \to \! v \; \pi^{\pm} \pi^{0}(\gamma \gamma) \mbox{ contamination in } \pi^{\pm} \mbox{ the sample}$
 - in particular dominant systematics (at LEP)
 γ-ID and **fake γ modeling** in MC

- pure signal π[±] sample with low ρ contamination (and correspondingly low systematics) crucial
- highly granular calorimetry
 - what about DR?

Jet resolution and particle-flow

Consider ee \rightarrow ZH \rightarrow vv j j


$$\sigma^{2}(E_{\text{vis}}) = \sum_{i \in \text{tr}} \sigma_{\text{tr}}^{2}(E_{\text{tr}}^{(i)}) + \sum_{i \in \gamma} \sigma_{\text{ecal}}^{2}(E_{\gamma}^{(i)}) + \sum_{i \in \text{nh}} \sigma_{\text{hcal}}^{2}(E_{\text{nh}}^{(i)})$$

$$65\% \qquad 25\% \qquad 10\%$$

$$\sqrt[25\%]{ \sqrt{\frac{25\%}{\sqrt{\frac{10\%}{\sqrt{10\%}{\sqrt{\frac{10\%}{\sqrt{10\%}{\sqrt{10\%}{\sqrt{10\%}}}}}}}}}}}}}}}}}}}}}$$

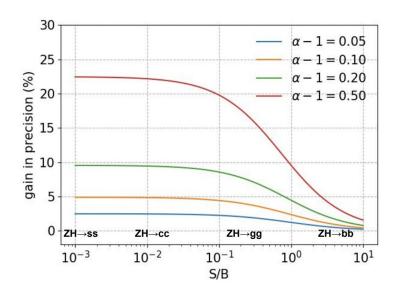
Resolution [GeV]	Crystal Cu/Brass (CMS)	LAr TileCal (ATLAS)	Dual Readout	Dual Readout +Crystal	
S _{ECAL}	5%	10%	10%	5%	
S _{HCAL}	100%	50%	30%	30%	
σ_{ECAL}	0.3 GeV	0.6 GeV	0.6 GeV	0.3 GeV	
$\sigma_{\rm HCAL}$	3.7 GeV	1.8 GeV	1.1 GeV	1.1 GeV	
σ	3.7 GeV	1.9 GeV	1.2 GeV	1.1 GeV	

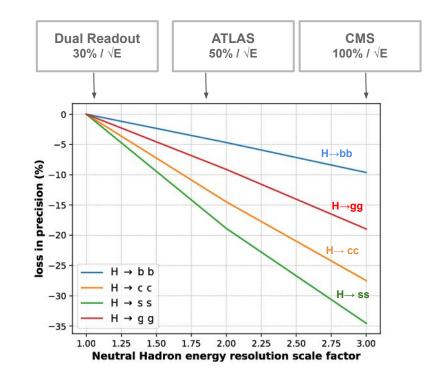
Elvira

with a **perfect Particle-flow** algorithm:

 jet energy energy resolution is dominated by neutral hadron (HCAL) resolution

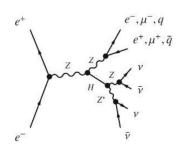
with a realistic Particle-flow algorithm:


• granularity and thresholds matter


Elvira

HCAL and jets -- Higgs hadronic final states

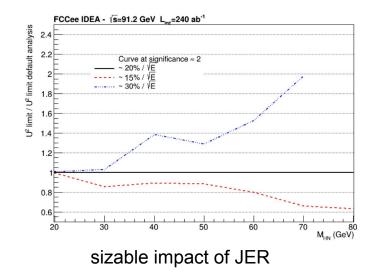
Largest gain from JER expected for S/B << 1:


If relative improvement α , expect $\sqrt{\alpha}$ increase in precision

Observe less degradation than expected, studies will have to be repeated with full simulation

HCAL and jets

Skinnari


 $H{\rightarrow}\ invisible$

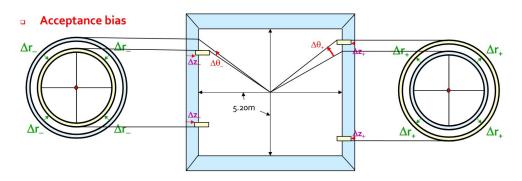
sizable impact of JER on $Z \rightarrow qq$ channel offset by $Z \rightarrow II$ channel at large smearings

 e^+ Z N W^+ $\ell^ e^+$ V_ℓ

 $HNLs \rightarrow \mu qq \text{ prompt final state} \\ reconstruct visible mass$

Summary

- The FCC-ee will provide MANY clean events, given its large luminosity, but
 - high rates
 - \circ complex MDI

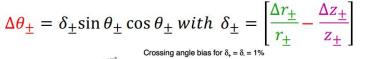

- To fully exploit its physics potential:
 - precise alignment
 - small radius vertex detector for good IP resolution
 - low material
 - precise and granular calorimetry
 - excellent ecal/hadronic calorimetry

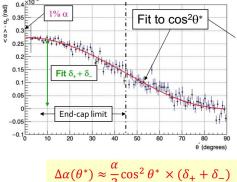
Backup

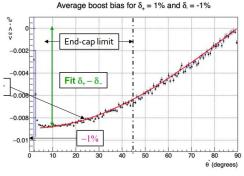
FCC-ee conditions

FCC-ee parameters		Z	ww	ZH	ttbar
√s	GeV	88 - 94	157.2 - 162.5	240	350-365
Inst. Lumi / IP	10 ³⁴ cm ² s ⁻¹	182	19.4	7.3	1.33
Integrated lumi / 4IP	ab ⁻¹ / yr	87	9.3	3.5	0.65
N bunches/beam	-	10 000	880	248	36
bunch spacing	ns	30	340	1 200	8 400
L*	m	2.2	2.2	2.2	2.2
crossing angle	mrad	30	30	30	30
vertex size (x)	μm	5.96	14.7	9.87	27.3
vertex size (y)	nm	23.8	46.5	25.4	48.8
vertex size (z)	mm	0.4	0.97	0.65	1.33
vertex size (t)	ps	36.3	18.9	14.1	6.5
Beam energy spread	%	0.132	0.154	0.185	0.221

Luminosity/acceptance

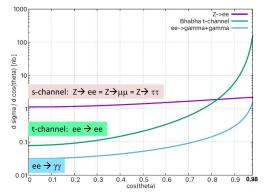


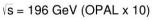

measuring outgoing 4-momenta of photons

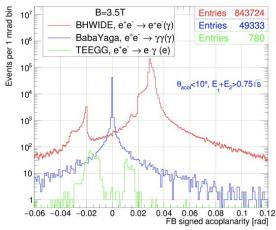

- energy/momentum conservation, allows:
 - solve for the crossing-angle α and the beam energy asymmetry
 ε on an event-by-event basis
 - $\circ~$ extract potential bias from the known dependency of α and $\epsilon~$ with the bias

can measure av. radius and z to $\Delta r \sim 2 \mu m$, $\Delta z \sim 10 \mu m$ \rightarrow x10 better than needed to match stat. Precision (assuming 0.5 mm position resolution for photons)

see P. Janot (wed. tbc)

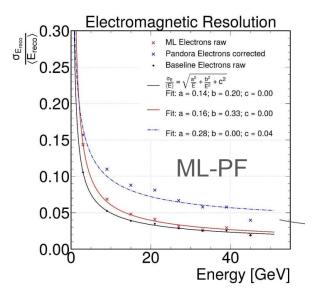

 $\Delta \varepsilon(\theta^*) \approx -\frac{\cos \theta^*}{2} \times (\delta_+ - \delta_-)$

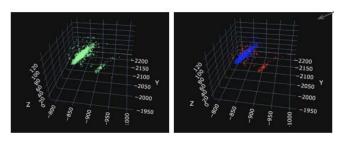

This in-situ calibration technique could be used to determine lumiCal acceptance (with low angle Bhabha, 1.6 μm tolerance needed, for 10⁻⁴ lumi meas.)

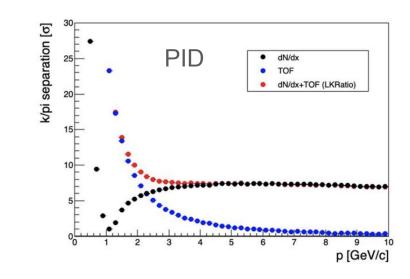

Luminosity/acceptance

- Precise knowledge of the **geometrical acceptance** required by
 - \circ R^Z, measurement (as limiting systematics)
 - absolute luminosity measurement at Z pole, required by
 - peak Z cross section (σ_0)
- At LEP, via Bhabha scattering at low angle, here we require 10⁻⁵ precision (for point-to-point), 10⁻⁴ being absolute target
 - un-matched by theoretical calculations
 - use $ee \rightarrow rr$ process as an alternative, rarer but cleaner
- To match stat. precision (2x10⁻⁵)
 - must know $\Delta \theta_{min} \sim 10 \mu rad \sim \Delta r \sim 30 \mu m$, $\Delta z \sim 80 \mu m$ at $\theta = 20^{\circ}$ and z = 2.6m
 - challenging design requirement !!

 $\textbf{ee} \rightarrow \textbf{ss}$ require excellent bhabha rejection: acoplanarity

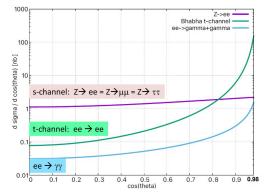


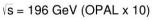


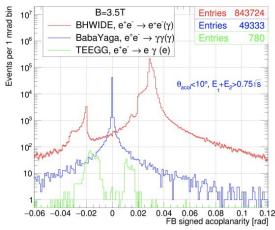


Reconstruction and ID

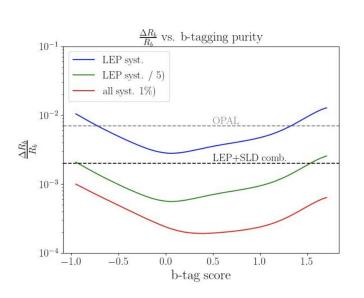
Coccaro, Garcia

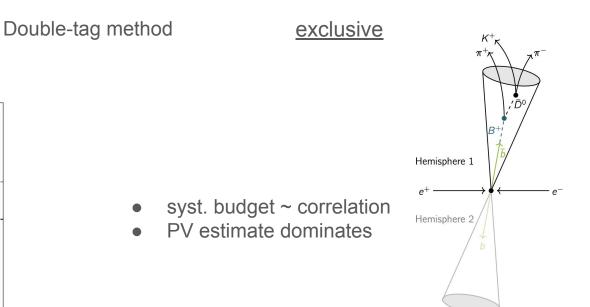



Likelihood K/n discriminant


Luminosity/acceptance

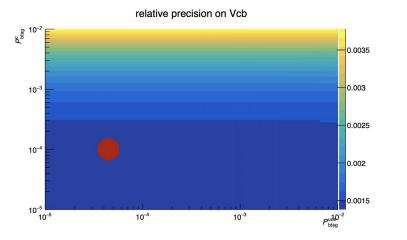
- Precise knowledge of the **geometrical acceptance** required by
 - R^z, measurement (as limiting systematics)
 - absolute luminosity measurement at Z pole, required by
 - peak Z cross section (σ_0)
- At LEP, via Bhabha scattering at low angle, here we require 10⁻⁵ precision (for point-to-point), 10⁻⁴ being absolute target
 - un-matched by theoretical calculations
 - use $ee \rightarrow rr$ process as an alternative, rarer but cleaner
- To match stat. precision (2x10⁻⁵)
 - must know $\Delta \theta_{min} \sim 10 \mu rad \sim \Delta r \sim 30 \mu m$, $\Delta z \sim 80 \mu m$ at $\theta = 20^{\circ}$ and z = 2.6m
 - challenging design requirement !!





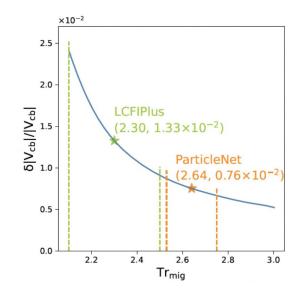
Precision at the Z - Rb

<u>inclusive</u>


- syst. budget ~ correlation
- same hemisphere events dominate

	Luminous region
Current syst. precision	$\sigma^{\text{tot.}}(R_b) = 6.4 \cdot 10^{-4}$
1 % syst. precision	$\sigma^{\text{tot.}}(R_b) = 2.9 \cdot 10^{-5}$

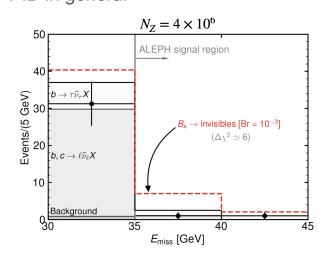
< 10⁻⁴ seems to be within reach, but 1% control on correlation must be proven


Monteil, Ruan

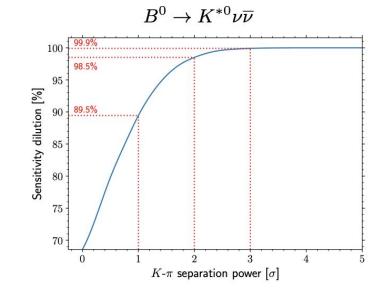
cb

- V_{cb} could be measured with a precision 0.15%
- **10x improvement** w.r.t to current

assessing impact of tagging systematics


		conservative	baseline	optimal
	LCFIPlus	0.071	0.057	0.047
$\nu\nu Hc\bar{c}$	ParticleNet	0.045	0.042	0.038
	$\frac{\text{LCFIPlus}}{\text{ParticleNet}}$	1.58	1.38	1.26
	LCFIPlus	0.0241	0.0133	0.0091
$ V_{cb} $	ParticleNet	0.0086	0.0076	0.0067
	$\frac{\text{LCFIPlus}}{\text{ParticleNet}}$	2.80	1.75	1.36

Flavor


recast of LEP analysis

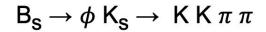
$$\mathrm{BR}(B_s \to \bar{\nu}\nu) < 6 \times 10^{-4}$$

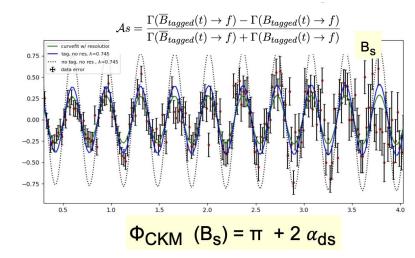
Electron and Muon ID at low momenta PID in general

Mode	N_S	N_B	ϵ^s	$\epsilon^{b\overline{b}}$	$\epsilon^{c\overline{c}}$	$\epsilon^{q\overline{q}}$	S/B	$\sqrt{S+B}/S$
$B^0 \to K^{*0} \nu \overline{\nu}$	$231\mathrm{K}$	$1.27\mathrm{M}$	3.7%	$\mathcal{O}(10^{-7})$	$\mathcal{O}(10^{-9})$	$\mathcal{O}(10^{-9})$	0.17	0.53%
$B^0_s \to \phi \nu \overline{\nu}$	61 K	$0.48\mathrm{M}$	7.4%	$\mathcal{O}(10^{-7})$	$\mathcal{O}(10^{-9})$	$\mathcal{O}(10^{-9})$	0.13	1.20%

PID, PID, PID ...

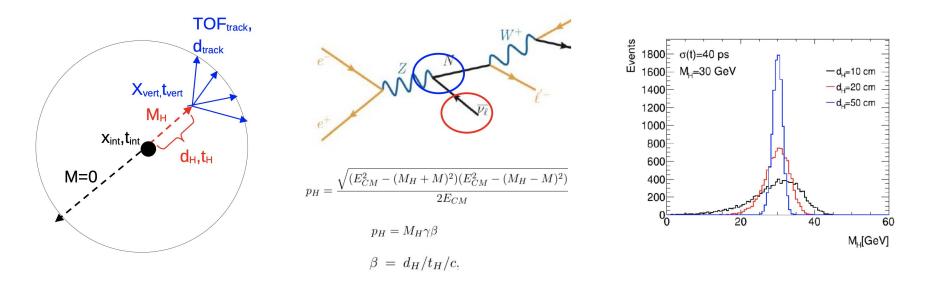
More flavour ..


5σ observation $B^0 \rightarrow K^{*0} \tau \tau$ with 2 µm vertex resolution recision of BF measurement as function of the resolution SV and TV longitudinal smearing : 20 μ m 0.6 FCC IDEA baseline 30% better SH resolution + 50% reduced material budget in VXD layers σ_N/N 0.3 SV and TV transverse smearing in μm


- minimisation of material budget
- beam pipe eventually becomes the asymptotic limitation

A good reconstruction of Ks decays up to large flight distance

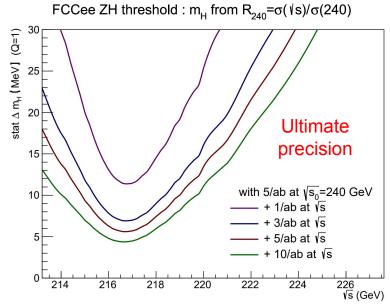
- hence a large tracking volume
- excellent mass and vertex resolutions
- light tracker and highly performant vertex detector
- PID crucial for the Bs


Coccaro, Miralles, Perez

Mass with time-of-flight

Polesello, Valle

- For a timing layer with $\sigma(t)$ a few tens of ps, mass resolution at percent level for long enough path and high enough mass
- Timing resolution dominated by unknown time of primary vertex


Reducing the Systematic Uncertainties

Eysermans

Construct the cross-section ratio using \sqrt{s} = 217 and 240 GeV $R = \frac{\sigma_{\rm ZH} \times \mathcal{B}(\rm Z \to ff) \times \mathcal{B}(\rm H \to X\overline{X})|_{\sqrt{s}=217 \,\rm GeV}}{\sigma_{\rm ZH} \times \mathcal{B}(\rm Z \to f\overline{f}) \times \mathcal{B}(\rm H \to X\overline{X})|_{\sqrt{s}=240 \,\rm GeV}} = \frac{\sigma_{\rm ZH}(\sqrt{s}=217 \,\rm GeV)}{\sigma_{\rm ZH}(\sqrt{s}=240 \,\rm GeV)}$ \rightarrow Experimental and theory uncertainties cancel mostly 15 \rightarrow Sensitivity reached ~ 5 MeV 10 **Uncertainty (MeV)** Run config 5 ab⁻¹ @ 217, 5 ab⁻¹ @ 240 5 MeV 214 216 10 ab⁻¹ @ 240 GeV 3 MeV

Can provide independent measurement of Higgs mass w.r.t. recoil mass method

But need to perform the "real" analysis for realistic numbers

