

heinrichhertzstiftung

Vertexing requirements from (flavour) physics

FCC week 2024 — San Francisco

Lars Röhrig^{1,2}, Kevin Kröninger¹, Romain Madar², Stéphane Monteil² 12/06/2024

¹Department of Physics – TU Dortmund University ²Laboratoire de Physique de Clermont – Université Clermont-Auvergne

Disclaimer: this presentation has been prepared in accordance with the FCC PED Flavour group conveners

Introduction I

- Z pole offers unrivalled precision and a variety of possibilities for EWPO & flavour physics (+ synergies!)
- + About 15 times more $B^{0,+}$ mesons compared to Belle II
- + *b*-quark boost $\langle \beta \gamma \rangle pprox$ 6 allows for ultra-clean selection
- $\rightarrow\,$ Unique flavour-physics environment: combining the best of two worlds

	Belle	LHC(b)	FCC-ee	XX X. 14	
All hadron species		\checkmark	\checkmark		the tot
Boost		\checkmark	\checkmark		*
High production σ		\checkmark			
Negligible trigger losses	\checkmark		\checkmark		
Low backgrounds	\checkmark		\checkmark		
Initial energy constraint	\checkmark		(\checkmark)	Palla	LHCb

Introduction II

- Flavour physics defines variety of detector requirements: vertexing, tracking, calorimetry, particle-ID
- \rightarrow Vertexing requirements defined by modes with **missing momentum** ($\nu(\text{'s}))$ in the final state
 - Of highest interest are modes with τ leptons: heaviest lepton $\rightarrow 3^{rd}$ gen. couplings exp. less well known
 - Here: detector requirements from $b \to s\tau^+\tau^-$, $b \to s\nu\bar{\nu}$, timing + interplay of (EWPO \otimes flavours)

Introduction II

- Flavour physics defines variety of detector requirements: vertexing, tracking, calorimetry, particle-ID
- \rightarrow Vertexing requirements defined by modes with **missing momentum** ($\nu(\text{'s}))$ in the final state
 - Of highest interest are modes with au leptons: heaviest lepton $\rightarrow 3^{rd}$ gen. couplings exp. less well known
 - Here: detector requirements from $b \to s\tau^+\tau^-$, $b \to s\nu\bar{\nu}$, timing + interplay of (EWPO \otimes flavours)

Not to be forgotten: $\sim 3 \cdot 10^8$ WW pairs to access $|V_{cb}|$ and $|V_{cs}|$ of the **CKM matrix**

Vertex requirements: setting the stage with $b ightarrow s au^+ au^-$

- **EW penguin transitions** of *b* quark in the SM very rare \rightarrow good laboratory to stress the SM
- Third generation transitions in $B^0 \rightarrow K^* \tau^+ \tau^-$ couplings experimentally less well known
- ightarrow Feasibility depends on neutrino reconstruction \checkmark ightarrow depends on **vertex precision**

© T. Miralles & S. Monteil Ref.

S٧

Vertex requirements: setting the stage with $b ightarrow s au^+ au^-$

- **EW penguin transitions** of *b* quark in the SM very rare \rightarrow good laboratory to stress the SM
- Third generation transitions in $|B^0 \to K^* \tau^+ \tau^-|$ couplings experimentally less well known
- $\rightarrow\,$ Feasibility depends on neutrino reconstruction $\checkmark\,$ $\rightarrow\,$ depends on $vertex\,\, precision$

© T. Miralles & S. Monteil Ref.

Vertex requirements: $b \rightarrow s \nu \bar{\nu}$

- Effective-operator coupling to 3rd generation **poorer constrained**, e.g. in ν_{τ}
- $\rightarrow B^0 \rightarrow K^* \nu \bar{\nu}$ experimentally cleaner than $B^0 \rightarrow K^* \tau^+ \tau^-$ (+ theoretically immune to *c*-quark loops)
- Particle-ID ($2\sigma \ K/\pi$ separation) + SV resolution ($\mathcal{O}(10^{-1} \text{ mm})$) not limiting! ... but

 \rightarrow Systematic uncertainties significant if no improvement on *b*-fragmentation functions

© Y. Amhis et. al [2309.11353]

Vertex requirements from and for $R_{D^{(*)}}$

- $R_{D^{(*)}} = \frac{Br(\bar{B} \to \bar{D}^{(*)} \tau^+ \nu_{\tau})}{Br(\bar{B} \to \bar{D}^{(*)} \ell^+ \nu_{\ell})}$ recently raised 3.2 σ combined LFU discrepancy with SM prediction
- $\rightarrow \boxed{B_c^+ \rightarrow [2\pi^+\pi^-\bar{\nu}_\tau]_{\tau^+}\nu_\tau} \text{ same quark-level process, but theoretically simpler + clean probe for } |V_{cb}|$

Vertex requirements from and for $R_{D^{(*)}}$

- $R_{D^{(*)}} = \frac{Br(\bar{B} \to \bar{D}^{(*)} \tau^+ \nu_{\tau})}{Br(\bar{B} \to \bar{D}^{(*)} \ell^+ \nu_{\ell})}$ recently raised 3.2 σ combined LFU discrepancy with SM prediction
- $\rightarrow |B_c^+ \rightarrow [2\pi^+\pi^-\bar{\nu}_{\tau}]_{\tau^+}\nu_{\tau}|$ same **quark-level process**, but theoretically simpler + clean probe for $|V_{cb}|$
- Large missing momentum at Z pole: overcomes $\sqrt{s} \otimes \text{pile-up} (\text{LHCb}) + \beta_c^{*} (\text{Belle})$ limitations

• So far: vertex MC-seeded, but imperfection (\rightarrow background inflation) has negligible impact on Br & $|V_{ub}| \rightarrow$ However: $|V_{cb}|$ only possible with improvement on hadronisation fraction $f(\bar{b} \rightarrow B_c^+)$

© X. Zuo et. al [2305.02998]

Vertex requirements from decay time

Probes of the CP sector of the SM from $B_s \rightarrow D_s^- K^+$ time-dependent CP asymmetry

© R. Aleksan et. al [2107.02002]

Vertex requirements from decay time

- Probes of the CP sector of the SM from $B_s \rightarrow D_s^- K^+$ time-dependent CP asymmetry
- Experimental precision relies on wrong-tagging efficiency of initial flavour (b or \bar{b}), $\sigma_{syst.}$ sources:
- $\rightarrow\,$ PV and $\mathit{B_s}$ decay-vertex position
 - Fully charged: O(20 μm)
 - Including neutrals in $B_s \rightarrow [K^+K^-]_{\phi}K_{\rm S}$: $\mathcal{O}(70\,\mu{\rm m})$
- $\rightarrow\,$ IDEA baseline sufficient to derive CKM phase Φ_s with 0.5 % precision at SM level

© R. Aleksan et. al [2107.02002]

A word on synergies and next steps

EWPO meets flavour: Excl. b-hadron reconstruction explored for $R_b \rightarrow$ ultra-pure tagger $\geq 99.8\%$

A word on synergies and next steps

- EWPO meets flavour: Excl. b-hadron reconstruction explored for $R_b \rightarrow$ ultra-pure tagger $\geq 99.8\%$
- Hemisphere correlation ΔC_b main source of $\sigma_{syst.}$ from **PV determination**, options:
 - 1. PV vertex determination would need precision improvement
 - 2. Overcome PV bias by selecting tracks outside the luminous region

A word on synergies and next steps: R_c

• Application to R_c with c-meson decays, main hurdle: b-quark contamination ε_c^b from $X_b \to X_c h$:

$$R_c = rac{(f_{ ext{single-tagged}} - 2R_b oldsymbol{arepsilon}_c^b)^2}{4(f_{ ext{double-tagged}} - (oldsymbol{arepsilon}_c^b)^2 R_b)}$$

 \rightarrow WIP: measure ε_c^b to $\mathcal{O}(10^{-5})$ level + improved impact parameter resolution might help discrimination

• So far: $\sigma_{\text{stat.}} = \mathcal{O}(10^{-5})$, $\sigma_{\text{syst.}}$ again the name of the game! (to be evaluated)

© A. Gonzales & S. Monteil

Conclusions

- Z pole and WW threshold at FCC-ee: the place to continue the flavour-physics programme (boost + high-stat)
- Flavour-physics programme asks for the most demanding vertexing requirements
- $\rightarrow b \rightarrow s \tau^+ \tau^-$ defines them: evidence with $\mathcal{O}(5 \,\mu\text{m})$
 - If enough statistics could be gathered, angular analyses could be possible
 - CP violation studies with π^0 modes appealing \Rightarrow requires an EM calorimeter with $\lesssim O(0.03)/\sqrt{E}$
- $\rightarrow\,$ Next limitation: statistical precision!