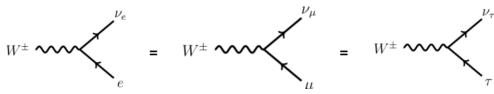


DETECTOR REQUIREMENTS FOR τ PHYSICS @ FCC

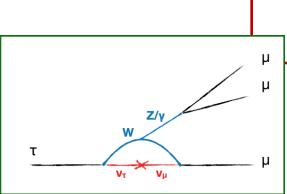
gratefully acknowledging the contributions of the FCC Infrastructure and Operation WG and sub-WGs, all FCC study teams and the collaborating partners.

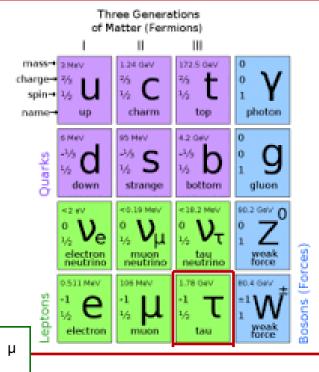
Table of contents

- 1. Lifetime measurement
- 2. τ mass measurement
- 3. $\tau \rightarrow \mu \nu \nu$ branching fraction measurement
- 4. Lepton universality
- 5. Lepton Flavour Violation decays.


Based on:

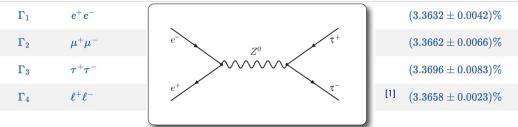
- A. Lusiani, "Detector requirements from Tau Physics", FCC Week 2023
- A. Lusiani, "Tau Lifetime measurement at FCC-ee(Z)", 6th FCC Physics Workshop Kraków,
- A. Lusiani, "LFV and LFU in tau decays", CEPC Workshop

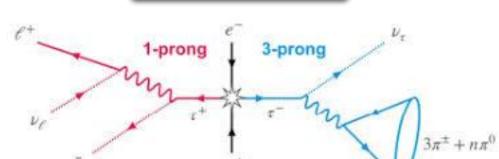



Why τ are interesting?

- Heaviest known lepton in SM!
- Test of lepton universality
- Only lepton that can decay hadronically
- Test of lepton universality:

- Probing Lepton Flavour Violation
- τ lifetime measurements.




FCC – a τ factory!

- FCC will accumulate $N_z = 2 \cdot 10^{12} Z$ decays!
- DELPHI measurement of τ_{τ} was done using $N_z(DELPHI) = 5.7 \times 10^6 Z$ decays.

hadrons	$(69.911 \pm 0.056)\%$
$(u \overline{u} + c \overline{c})/2$	$(11.6 \pm 0.6)\%$
$(d\overline{d} + s\overline{s} + b\overline{b})/3$	$(15.6 \pm 0.4)\%$
$c \overline{c}$	$(12.03\pm0.21)\%$
$b \ \overline{b}$	$(15.12 \pm 0.05)\%$

- There are 2 canonical signatures of τ pairs:
- 1-3 prong and 3-3 prong topologies.DELPHI used both of them, while Belle used 3-3 only.
- $\sigma^{stat}(\tau_{\tau}(DELPHI) = 2.4 fs$

FCCee performance

assumed baseline FCC-ee detector performance

track momentum

$$\frac{\sigma_p}{p} = 0.02 \cdot 10^{-3} \cdot p_T(\text{GeV}) \oplus 1 \cdot 10^{-3}$$

track impact parameter

$$\sigma_{d_0} = \frac{15\,\mu\mathrm{m}}{\sin^{3/2} heta} \oplus 5\,\mu\mathrm{m}$$

electromagnetic energy

$$rac{\sigma_{E_{\gamma}}}{E_{\gamma}} = rac{15\%}{E_{\gamma}} \oplus 1\%$$

electromagnetic energy xy position

$$\sigma_{\gamma, \times y} = \frac{6\,\mathsf{mm}}{E(\mathsf{GeV})} \oplus 2\,\mathsf{mm}$$

Lifetime of τ lepton

 $N_{1-3} = 15427$ $N_{3-3} = 2101$

Let's calculate the statistical uncertainty from DELPHI under 3-3 prong hypothesis:

$$\sigma(\tau_{\tau}, 3-3) = 2.4 \,\text{fs} \cdot \sqrt{\frac{N_{1-3} + 2 \cdot N_{3-3}}{2 \cdot N_{3-3}}} \simeq 5.19 \,\text{fs}$$

$$\sigma(\tau_{\tau}, 3-3) \,[\text{ppm}] = \sigma(\tau_{\tau}, 3-3) / \tau_{\tau} \cdot 1 \cdot 10^6 \,\text{ppm} \simeq 18000 \,\text{ppm} ,$$

The impact parameter resolution: $\langle d_0 \rangle = 70 \mu m$, while the resolution: $\sigma \langle d_0 \rangle = 42 \mu m$

Consistent with DELPHI tracking+beamspot resolution

Assuming the resolution in FCC $\sigma < d_0 > \ll 42 \mu m$ we can scale down the stat. error:

$$\sigma(\tau_{\tau}, 3-3, \text{FCC})[\text{ppm}] = \sigma(\tau_{\tau}, 3-3) [\text{ppm}] \cdot \frac{\tau_{\tau}}{\sigma(\tau_{\tau}, 3-3, 1 \text{ ev})} \cdot \sqrt{\frac{N_Z(\text{DELPHI 2004})}{N_Z(\text{FCC})}}$$
$$\simeq 15.0 [\text{ppm}] ,$$

Lifetime of τ lepton – systematics...

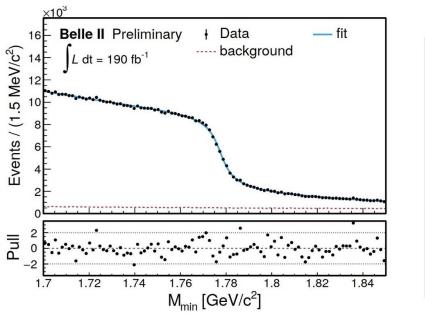
- Luminosity correlated systematics:
 - Background subtraction
 - Reconstruction bias <
 - Vertex alignment.
- Luminosity unrelated systematics:
 - Detector length scale 1
 - Average τ energy
 - Radiative energy loss
 - τ mass

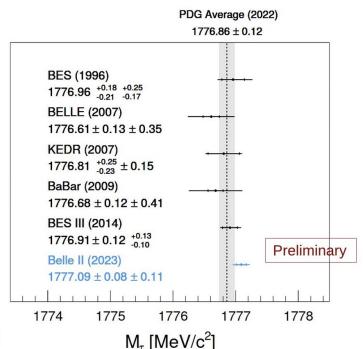
Calibration of simulation with data events Prompt decays Data events

In LEP 100ppm. No data can tell us about the overall size of the detector. Use interferometry to achieve 1 μm over a meter doi: 10.23919/MIPRO55190.2022.9803636 Overall possible to reduce this to 5ppm @ FCCee.

$$\tau_{\tau} = \frac{\lambda_{\tau}}{\beta \gamma} = \frac{\lambda_{\tau} m_{\tau}}{\sqrt{E_{\tau}^2 - m_{\tau}^2}} = \frac{\lambda_{\tau} m_{\tau}}{\sqrt{(E_{\text{beam}} - E_{\text{rad}})^2 - m_{\tau}^2}}$$

- The beam energy @ FCCee we will know with 1ppm precision.
- E_{rad} is estimated with MC simulation. @LEP 350 ppm. FCC assuming x30 improvement to reach 11.5 ppm.
- m_{τ} is measured by external experiments. Currently 68 ppm. Belle II will reach 50 ppm. Tau-charm factory: 9 ppm.


Lifetime of τ lepton – systematics...


	DELPHI 2004 [fs]	DELPHI 2004 [ppm]	$\begin{array}{c} \text{FCC-ee(Z)} \\ 210\text{ab}^{-1} \\ \text{[ppm]} \end{array}$	
statistical uncertainty	5.2	18000	15.0	
luminosity-dependent systematics	1.3	4500	3.9	
- background	0.2			
- reconstruction bias	0.8			
- vertex detector alignment	1.0			
luminosity-independent systematics				Detector
- detector length scale	=	100	5.0	Accelerator
- average tau energy		_	1.0	
- radiative energy loss	0.1	350	11.5	Theory
- tau mass	-	68	9.0	External Experiment
total systematics			15.9	
total uncertainty			21.5	

NEW for Moriond!

World's most precise measurement

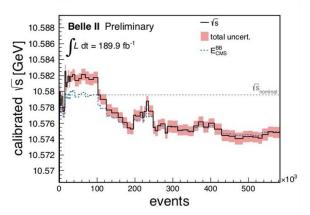
• World's most precise measurement of $m_{ au}=1777.09\pm0.08_{ ext{stat}}\pm0.11_{ ext{sys}}\; ext{MeV}/c^2$

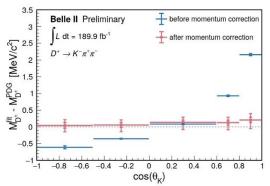
Proof of high precision capability of Belle II!

NEW for Moriond!

T mass: precision challenge

• Excellent control of systematic uncertainties thanks to precise understanding of beam energies and tracking: $M_{\min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 - E_{3\pi}^*)(E_{3\pi}^* - P_{3\pi}^*)} \le M_{\tau}$

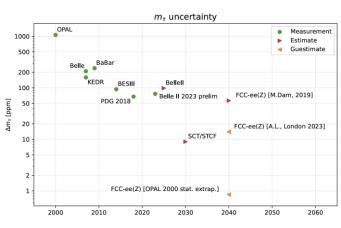

Source	Uncertainty $[\text{MeV}/c^2]$
Knowledge of the colliding beams:	
Beam energy correction	0.07
Boost vector	≤ 0.01
Reconstruction of charged particles:	
Charged particle momentum correction	0.06
Detector misalignment	0.03
Fitting procedure:	
Estimator bias	0.03
Choice of the fit function	0.02
Mass dependence of the bias	≤ 0.01
Imperfections of the simulation:	
Detector material budget	0.03
Modeling of ISR and FSR	0.02
Momentum resolution	≤ 0.01
Neutral particle reconstruction efficiency	≤ 0.01
Tracking efficiency correction	≤ 0.01
Trigger efficiency	≤ 0.01
Background processes	≤ 0.01
Total	0.11


Beam energy calibration

with B-meson hadronic decays method and Y(4S) lineshape measurement to get √s

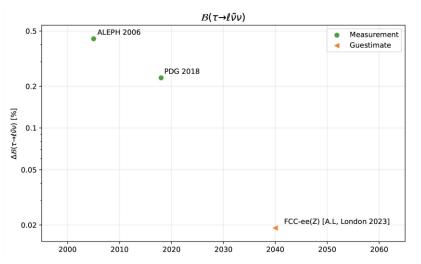
Momentum scale factor

cures the bias due to imperfect B-eld: extract corrections dependent on $cos\theta_{track}$ by comparing $D^0 - K\pi$ mass peak w.r.t PDG mass.



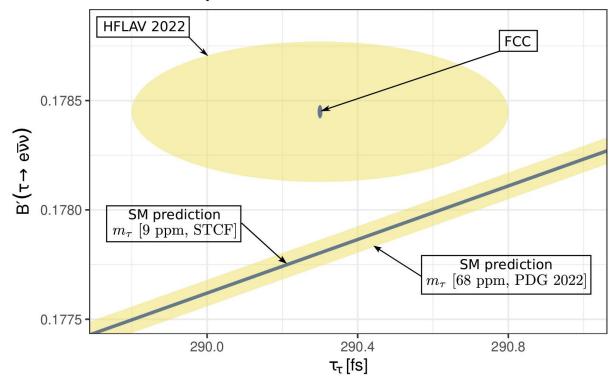
τ mass measurement

- BelleII statistical uncertainty is 45ppm with 190 fb^{-1} corresponding to 175M τ pairs.
- FCC-ee statistical uncertainty with 8 10^{12} Z, $2.7 \cdot 10^{11}$ τ pairs would be 1.1ppm!!!
 - Neglecting surely better FCC-ee efficiency
- Belle II dominant systematics expected very reduced at FCC-ee.
 - Beam energy (1ppm @ FCC-ee)
 - Track momentum scale (2ppm calibration may be possible at FCC-ee with J/ψ)
- Alignment systematics can be expected to scale with statistics.
- Limiting systematics from empirical fit function 0.05MeV or 28ppm.
- May expect to reduce this limiting systematic uncertainty to ½ of 14ppm @ FCC-ee
- Guestimate FCC-ee tau mass precision at 14ppm



$\tau \rightarrow l\nu\nu$ leptonic branching fraction

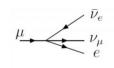
- ALEPH 2006 measurement precision: 4400ppm=[4000(stat.)+1900(syst.)]ppm (average of the two similar electron and muon decays branching fractions)
 - Complex simultaneous measurement of 12 τ branching fractions
 - Many systematic uncertainties, nonreliable extrapolations to FCC-ee statistics
 - Several systematics related to photon and $\pi^0 \to \gamma \gamma$ reconstruction
 - FCC-ee extrapolated statistical precision: 4.5ppm
 - Systematic: 190ppm

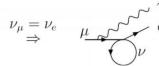


12

Lepton universality

Canonical Tau Lepton Universality test HFLAV 2022 in yellow, FCC estimates in blue

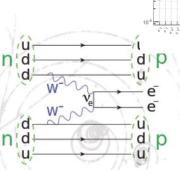


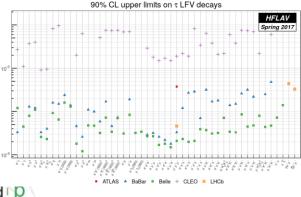

LFV in τ decays

Lepton Flavour Violation(LFV):

After μ^- was discovered it was natural to think of it as an excited e^- .

- Expected: $B(\mu \to e\gamma) \approx 10^{-4}$
- Unless another ν , in intermediate vector boson loop, cancels.


I.I.Rabi:

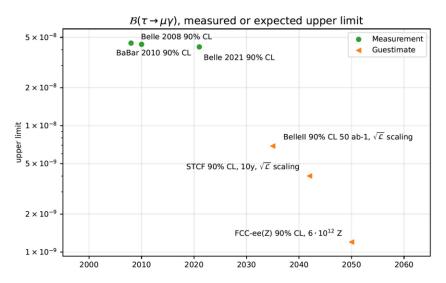

"Who ordered that?"

- Up to this day charged LFV is being searched for in various decay modes.
- LFV was already found in neutrino sector (oscillations).

Lepton Number Violation (LNV)

- Even with LFV, lepton number can be a conserved quantity.
- Many NP models predict it violation(Majorana neutrinos)
- Searched in so called Neutrinoless double β decays.

Credit to R. Bernstein


Search for $\tau \rightarrow \mu \gamma$ decay

- Detector resolutions better or equal to parameters in M.Dam simulation
- photon energy resolution:

$$\frac{\sigma E(\gamma)}{E(\gamma)} \le \frac{15\%}{E(\gamma)} + 1\%$$

Photon x,y position:

$$\frac{\sigma(x, y(\gamma))}{x, y(\gamma)} \le \frac{6}{E(\gamma)} + 2\%$$

$$\mathcal{B}(\tau \to \mu \gamma) < 2.0 \cdot 10^{-9} \cdot \frac{qN \left[1 - \frac{1 - 90\%}{2}\right]}{2} \cdot \frac{\sqrt{3 \cdot 10^{12}}}{\sqrt{6 \cdot 10^{12}}} \simeq 1.2 \cdot 10^{-9}$$
 at 90% CL,

Conclusions

FCCee will provide huge samples of heavy flavour particles and very favorable experimental conditions to perform τ

Physics measurements

Detector improvements:

assumed baseline FCC-ee detector performance				
track momentum	$\frac{\sigma_p}{p} = 0.02 \cdot 10^{-3} \cdot p_T(\text{GeV}) \oplus 1 \cdot 10^{-3}$			
track impact parameter	$\sigma_{d_0} = rac{15\mu\mathrm{m}}{\sin^{3/2} heta} \oplus 5\mu\mathrm{m}$			
electromagnetic energy	$rac{\sigma_{E_{\gamma}}}{E_{\gamma}} = rac{15\%}{E_{\gamma}} \oplus 1\%$			
electromagnetic energy xy position	$\sigma_{oldsymbol{\gamma}, imes y} = rac{ extsf{6} mm}{ extsf{E}(GeV)} \oplus 2 mm$			

Sufficient to perform most interesting τ measurements!

Thank you for your attention.