
Experience with FCC software

Scott Snyder

Brookhaven National Laboratory, Upton, NY, USA

June, 2024
2024 FCC Week

Scott Snyder (BNL) Experience with FCC software June, 2024 1 / 18

Introduction
From Brieuc:

The idea is to give an overview of
the FCC software, highlight what
you found nice and less nice, what
and how things could be improved,
etc.

Largely what I’ve tried to do here.
Focus more on the experience of
using/developing the software rather than
on what it actually does.
From my perspective, of course — your
mileage may vary!

Scott Snyder (BNL) Experience with FCC software June, 2024 2 / 18

Key4hep

Collection of software supporting HEP
experiments, (mostly) targeting studies of
future colliders: FCC, ILC, CEPC, etc.

Relies on Gaudi (framework), dd4hep
(detector description), EDM4hep/podio
(event data model / event persistency).

Provides common components and data
definitions that can be used across
experiments — allows sharing effort.

Not really an integrated system like
CMSSW/Athena. More like a Linux
distribution, aggregating independent
packages with consistent dependencies and
a common toolchain.

Framework:
Gaudi

Scott Snyder (BNL) Experience with FCC software June, 2024 3 / 18

EDM4hep / Podio

Common ‘language’ allowing different
software components to interoperate.

Allows sharing code across experiments.

C++ code generated from data description
language:

edm4hep::Cluster:

Description: "Calorimeter Hit Cluster"

Author: "F.Gaede, DESY"

Members:

- int32_t type //flagword ...

- float energy //energy ...

- float energyError //error ...

- edm4hep::Vector3f position //position ...

- std::array<float,6> positionError //covariance ...

...

Layered design favors composition over
inheritance.

Default backend is ROOT: effectively a flat
tuple. Files can be read without EDM
library.

Scott Snyder (BNL) Experience with FCC software June, 2024 4 / 18

Basic setup
On EL9 (+EL7) machine with cvmfs, set up latest release with:

source /cvmfs/sw.hsf.org/key4hep/setup.sh

Set up a specific release with:

source /cvmfs/sw.hsf.org/key4hep/setup.sh -r 2024-04-12

Set up latest nightly with

source /cvmfs/sw-nightlies.hsf.org/key4hep/setup.sh

Releases are built using spack.
Find logs and CI results from nightlies (good luck finding this in the documentation!):

https://gitlab.cern.ch/key4hep/k4-deploy/-/pipelines

Validation results:

https://key4hep-validation.web.cern.ch/

Scott Snyder (BNL) Experience with FCC software June, 2024 5 / 18

Example jobs
Setup (tested on EL9; EL7 shows crashes in Cling):

source /cvmfs/sw.hsf.org/key4hep/setup.sh -r 2024-04-12

Run Whizard:

git clone -b winter2023 https://github.com/HEP-FCC/FCC-config

Disable Pythia vertex smearing to avoid crash in ddsim

sed -e ’s/MSTP(151)=1;//’ FCC-config/FCCee/Generator/Whizard/v3.0.3/\

wzp6_ee_eeH_HZZ_ecm240.sin > heezz.sin

whizard -e ’n_events=100’ -e ’$sample="heezz"’ heezz.sin

Run fast simulation/reco:

DelphesSTDHEP_EDM4HEP $DELPHES_DIR/cards/delphes_card_CLD.tcl \

FCC-config/FCCee/Delphes/edm4hep_IDEA.tcl heezz-delphes.root heezz.stdhep

Scott Snyder (BNL) Experience with FCC software June, 2024 6 / 18

Example jobs

Full simulation (shown for CLD):

git clone https://github.com/key4hep/CLDConfig

HEAD not compatible with latest release.

(cd CLDConfig; git checkout 56e68fb4)

ddsim --compactFile $LCGEO/FCCee/CLD/compact/CLD_o2_v05/CLD_o2_v05.xml \

--steeringFile CLDConfig/CLDConfig/cld_steer.py --numberOfEvents -1 \

--inputFiles heezz.stdhep --outputFile=heezz.sim.edm4hep.root

Reconstruction (for CLD):

ln -sf CLDConfig/CLDConfig/PandoraSettingsCLD .

Have to specify number of events even if processing the entire file.

k4run --inputFiles=heezz.sim.edm4hep.root --outputBasename=heezz.rec \

--num-events=100 CLDConfig/CLDConfig/CLDReconstruction.py

Scott Snyder (BNL) Experience with FCC software June, 2024 7 / 18

Analysis

Not really the main concern here — but a
few comments nontheless.

fccanalysis script available to ease
making derived tuples from edm4hep files.

class RDFanalysis:

def analysers (df):

return (

df

.Define(’pts’,

’ReconstructedParticle::get_pt (PandoraPFOs)’)

)

def output():

return [’pts’]

Can be run with

fccanalysis run ana.py --output=ana.root \

--files-list=heezz.rec_edm4hep.root

Histograms are meant to be made in a
separate pass. Makes sense for making final
plots for talks, etc. But it’s convenient to
produce rough plots at the same time as
the tuple for debugging. It’s possible to do
this with fccanalysis but not obvious.

Running the same script on Delphes output
fails immediately. Even though both use
the same EDM4hep types, the container
names are different — even before
considerations of actual differences
between fast/full sim.

Available tools are rather low-level and not
comprehensive.

Scott Snyder (BNL) Experience with FCC software June, 2024 8 / 18

Debugging
Can have k4run start a debugger by adding --gdb to the command line:

k4run --inputFiles=heezz.sim.edm4hep.root --outputBasename=heezz.rec \

--num-events=100 --gdb CLDConfig/CLDConfig/CLDReconstruction.py

Debugger will start before most dynamic libraries are loaded, so will probably have to continue
until the library you want is available:

(gdb) catch load DDMarlinPandora

Catchpoint 1 (load)

(gdb) c

Continuing.

...

Catchpoint 1

Inferior loaded .../libDDMarlinPandora.so.0.12.1

(gdb) break DDCaloDigi::processEvent

Breakpoint 2 at 0x7f340e7b1aa0

(gdb) c

Continuing.

...

Breakpoint 2, 0x00007f340e7b1aa0 in DDCaloDigi::processEvent

(EVENT::LCEvent*) ()

But you’ll find:

Releases have no debug symbols
available.

Nightlies have debug symbols, but no
un-optimized builds are available.

In any case, source is not in cvmfs.

So you’ll probably want to rebuild packages
yourself.

Scott Snyder (BNL) Experience with FCC software June, 2024 9 / 18

Rebuilding locally

First, find the proper repository. Some are under https://github.com/key4hep, some under
https://github.com/iLCSoft, some under https://github.com/AIDASoft, some
elsewhere. In case of doubt, clone https://github.com/key4hep/key4hep-spack and look
under packages.

git clone https://github.com/iLCSoft/DDMarlinPandora

Can find the version used by looking in the release. Note that the package you’re interested in
may actually be taken from a release earlier than you’ve set up. Check your environment in
case of doubt.

$ ls /cvmfs/sw.hsf.org/key4hep/releases/2024-03-10/\

x86_64-almalinux9-gcc11.3.1-opt/ddmarlinpandora

0.12.01-p742e5/

$ (cd DDMarlinPandora; git checkout v00-12-01)

Scott Snyder (BNL) Experience with FCC software June, 2024 10 / 18

Rebuilding locally 2
Build package:

mkdir -p build/DDMarlinPandora inst

cd build/DDMarlinPandora

cmake -DCMAKE_BUILD_TYPE=Debug -DCMAKE_INSTALL_PREFIX=../../inst \

../../DDMarlinPandora

make -j6 install

cd ../..

Update environment:

export LD_LIBRARY_PATH=‘pwd‘/inst/lib:‘pwd‘/inst/lib64:$LD_LIBRARY_PATH

export PYTHONPATH=‘pwd‘/inst/python:$PYTHONPATH

export ROOT_INCLUDE_PATH=‘pwd‘/inst/include:$ROOT_INCLUDE_PATH

export CMAKE_PREFIX_PATH=‘pwd‘/inst:$CMAKE_PREFIX_PATH

export PATH=‘pwd‘/inst/bin:$PATH

If your library is listed in $MARLIN_DLL, remove the old entry and add the new one.
Some packages may require additional settings.

Scott Snyder (BNL) Experience with FCC software June, 2024 11 / 18

Rebuilding locally 3

Can build multiple packages as well.
If you’ve set $CMAKE_PREFIX_PATH properly, then they should be able to find each other.
But need to build by hand in the proper dependency order.

Should be possible in principle to use spack to manage builds. Some (complicated)
instructions in the key4hep documentation (but I haven’t tried it):
https://key4hep.github.io/key4hep-doc/index.html

Some packages may have additional quirks. For example, ConformalTracking overrides
settings from $CMAKE_BUILD_TYPE to force compiling with optimization. Need to edit the
cmake file if you want a non-optimized debug build.
Some packages require additional cmake definitions — look in key4hep-spack

Scott Snyder (BNL) Experience with FCC software June, 2024 12 / 18

Gaudi Algorithms

Gaudi Algorithms read and write data from
the event store.

Ideally have no event/conditions data state
and do not modify their inputs.

Can access event data using the
DataHandle class from k4FWCore — but
that has to be a non-const member of the
Algorithm class.

Alternative is to use the Gaudi functional
interface.

Scott Snyder (BNL) Experience with FCC software June, 2024 13 / 18

Gaudi Functional algorithms

#include "Gaudi/Functional/Transformer.h"

#include "GaudiAlg/Transformer.h"

#include "k4FWCore/BaseClass.h"

#include "edm4hep/ClusterCollection.h"

#include "podio/UserDataCollection.h"

class TestAlg

: public Gaudi::Functional::Transformer<podio::UserDataCollection<double> (const edm4hep::ClusterCollection&), BaseClass_t>

{

public:

TestAlg (const std::string& name, ISvcLocator* svcloc)

: Transformer (name, svcloc, KeyValue("input", "PandoraClusters"), KeyValue("energies", "energies2")) {}

podio::UserDataCollection<double>

operator() (const edm4hep::ClusterCollection& clusts) const override {

podio::UserDataCollection<double> energies;

for (const auto& cluster : clusts) {

energies.push_back (cluster.getEnergy() * m_scale);

}

return energies;

}

private:

Gaudi::Property<float> m_scale { this, "scale", 1.1, "Scale factor" };

};

DECLARE_COMPONENT(TestAlg)

Nice for small algorithms — may get awkward for more complicated ones.
Scott Snyder (BNL) Experience with FCC software June, 2024 14 / 18

Marlin and LCIO

Although key4hep uses Gaudi/EDM4hep,
much of the actual code was written for a
different framework + EDM:
Marlin / LCIO.

Marlin Algorithms (Processors) are
wrapped with a generic Gaudi Algorithm
that also converts data between EDM4hep
and LCIO.

Configuration is more awkward:

MyStatusmonitor = MarlinProcessorWrapper("MyStatusmonitor")

MyStatusmonitor.OutputLevel = WARNING

MyStatusmonitor.ProcessorType = "Statusmonitor"

MyStatusmonitor.Parameters = { "HowOften": ["100"] }

versus

MyStatusmonitor = Statusmonitor("MyStatusmonitor",

OutputLevel = WARNING, HowOften=100)

Scott Snyder (BNL) Experience with FCC software June, 2024 15 / 18

Multiple repositories
key4hep code is in many disparate repositories, built with spack. Leads to some issues:

Can sometimes be difficult to even find
the proper repository to look at.

PRs / issues spread over many places.

Not much support for coherently building
multiple packages.

spack might help, but doesn’t really seem like
the proper tool for development. FCCSW
documentation references top-level make file,
but this appears to be obsolete.

Incompatible interface changes are hard.

Pull requests often languish for a long
time, especially in older packages.

CI across multiple packages?

Consider writing additional metadata in built
packages, including repo/tag.

Consider copying source code to released
packages.

Provide top-level cmake code for building
multiple packages.

Some sort of librarian role who can make
changes across all packages in the stack?

Scott Snyder (BNL) Experience with FCC software June, 2024 16 / 18

Summary

FCC software works well for its intended purpose — result of a huge amount of good
work.

▶ Evaluate detector concepts without having to reinvent SW infrastructure.
▶ Common EDM across experiments instrumental in reducing overall effort.
▶ But numerous obstacles for newcomers.
▶ And long history has led to the technical debt of wrappers and conversions.

spack used to automate release builds.
▶ But not much assistance provided for development: debugging and local builds.
▶ Can get away with it as long as people working on the SW are mostly motivated experts.
▶ More attention to this should help to reduce the barriers for new people to contribute.
▶ Build releases with debuggability in mind.
▶ Having the project spread over many repositories increases friction.
▶ Should try to increase responsiveness for pull requests.
▶ Remove reliance on artifacts not part of the key4hep release.

Scott Snyder (BNL) Experience with FCC software June, 2024 17 / 18

Some open tasks
(Largely lifted from Brieuc’s Annecy talk)

Complete full simulation/reconstruction of IDEA/Allegro:

Particle flow performance of CLD with/without ARC detector.

Migrate Marlin/LCIO tools to Gaudi/EDM4hep.

Technical maintenance of existing packages (k4...).

Tau reconstruction.

Central implementation of detector performance evaluation tools.

Full-simulation physics analysis.

Contact SW group if you want to contribute!

Documentation/tutorials

https://hep-fcc.github.io/FCCSW

https://hep-fcc.github.io/fcc-tutorials/main/index.html

https://key4hep.github.io/key4hep-doc/index.html

Scott Snyder (BNL) Experience with FCC software June, 2024 18 / 18

