Event Visualization and FCCAnalyses
Cheatsheet

Juraj Smiesko (CERN)
FCC Week
10--14 June 2024
San Francisco, USA

https://home.cern/
https://indico.cern.ch/event/1298458/
https://home.cern/
https://indico.cern.ch/event/1298458/

Overview

Over the years many nice event visualization tools developed

e Tools living in or cooperating with the Key4hep ecosystem:
= CED: OpenGL based, originates in iLCSoft

= ddeve: based on ROOT TEve
= calodisplay: purpose build visualization tool

= Phoenix: an experiment independent web-based event display

» dmX: event data browser

e Push towards web based tool(s), example: JSROOT

https://github.com/iLCSoft/CED
https://github.com/giovannimarchiori/calodisplay
https://github.com/giovannimarchiori/calodisplay
https://hepsoftwarefoundation.org/phoenix/
https://key4hep.github.io/dmx/main/
https://github.com/iLCSoft/CED
https://github.com/giovannimarchiori/calodisplay
https://github.com/giovannimarchiori/calodisplay
https://hepsoftwarefoundation.org/phoenix/
https://key4hep.github.io/dmx/main/

calodisplay

Purpose build TEve based visualization tool

e Developed to debug LAr geometry
e Based on ROOT TEve classes

e Configured with a JSON file
e Supports 2D and 3D views

G. Marchiori

Phoenix

Static web application

= |ndependent of OS graphics stack
s Written in TypeScript/Angular

Developed under HSF

Detector Geometry provided centrally
» DD4hep Compact = ROOT - glITF

Event data provided by user
= EDM4hep = JSON

—

v @ Q (O} o) (& (€] V7]

Event 0

N

Phoenix: Event data preparation

EDM4hep from ROOT file needs to be exported to JSON

1 17:32:48 [jsmiesko@lxplus965 ~]1$% edmdhep2json -h
2 Usage: edmdhep2json [olenfvh] FILEPATH

3 -0/--out-file output file path

4 default: -->

5 -1/--coll- comma separated of collections to be converted
6 -e/--events comma separated of events to be processed

7 -n/--nevents maximal number of events to be processed

8 -f/--frame-name frame name

9 default:

0 -v/--verbose be more verbose

1 -h/-- show this message

PH#IN| @ Qreo

Visualizing FCC events in the browser.

FCC-ee ALLEGRO FCC-ee CLD FCC-ee IDEA
Show the FCC-ee ALLEGRO Show the FCC-ee CLD detector Show the FCC-ee IDEA detector
detector benchmark. benchmark. benchmark.
Show Show Show

FCC-hh Baseline Playground

Show the FCC-hh Baseline

Load your own detector geometry.
detector benchmark. y g y

Show Show

Build with Phoenix.

Report bugs to Phoenix@ECC GitHub repaository.

© 2024 CERN

dmX

Visualizes event data structure
Uses Canvas API (2D graphics)
Collection elements represented as info boxes

ATM: only MCParticle tree

Plan to expand it's capabilities to visualize other EDM4hep
collections (GSoC student)

Pythia 8 | ee & ZH © 240 GeV

Welcome to de
Select EDM4hep JSON: No file selected.

Example input file (right click to save): p8_ee ZH ecm?240.edm4hep.json

[Visualize]

J

Conclusions

Choose your visualization tool accordingly...

o CED, calodisplay, ddeve, ...

= Precise geometry

» Tied to the Key4dhep/linux graphics stack
e Phoenix

s Web based

= Geometry provided by the experiment

o dmX

= No geometry at all
» Full access to event data

FCCAnalyses Cheatsheet

\.

A‘aout 1.(;9"Q 'Ft’/\mewo(/Q

FCCAnalayses is a framework which builds on top of the new
powerful event processing abstraction developed by ROOT,
RDataFrame. It adds other necessary components needed for the
analysis framework. Most notably, the management of the input
samples and a standard library of analyzer functions.

In order to use FCCAnalyses you need to write one or more analysis
scripts, where you design your analysis in the form of a graph
consisting of analyzer functions which define variables you are
interested in.

kébqhep

Key4hep stack comes in two flavors “Release” and “Nightly”. For
the analysis it is recommend to use “Release” as it is retained
indefinitely, “Nightly” releases are deleted after few months.

FCCAnalyses is available in the Key4hep stack by default. To see

. o N] L |

Juraj Smiesko, CERN

ROOT K O fe R

In ROOT RDataFrame you are designing your analysis in a form of

a graph. This computational graph is not executed right away as
you are defining it, rather it is executed only when the result is
actually needed.

y Y
histo |
— ——— X,y |
> - '
4 R Filt Define ‘ -
x>0 z g
\\ y ’ — ‘ // N
- -) \\\;< histo \‘ll
z y
N 4

// d2 is a new data-frame, a transformed version of d
auto d2 = d.Filter("x > @")
.Define("z","x*x + y*y");
// make histograms out of it
guto hz = d2.HistolD("z");
auto hxy = d2.Histo2D({"hxy","hxy",16,-1,1,64,-1,1},"x","y");

o

AV\ALQZQV‘ *#ul/\c,tl'()lmg

In order to be able to define new variables in the dataframe
FCCAnalyses comes with a standard set of analyzer functions.
However, there is still many analyzer functions missing. There are
several options, how to add yours.

Simple analyzers can be defined right in the dataframe .Define ()
statement:

.Define("first_electron pt",
"all electrons pt[0]")

More complex ones can be defined either in the analysis script itsef:

import ROOT
ROOT.gInterpreter.Declare("""
bool myFilter (ROOT: :VecOps::RVec<float> mass) {
for (size t i = 0; i < mass.size(); ++i) {

D) V4 s L= > oo o0 s L= < A oD hY

11

e

all available sub-commands you can run:
fccanalysis -h|

To see what are the available Key4hep stack versions:
'source /cvmfs/sw.hsf.org/key4hep/setup.sh -r

Setup specific version of the stack:
'source /cvmfs/sw.hsf.org/key4hep/setup.sh -r 2024-04-12

Pin your analysis to a specific version of the Key4hep stack:
fccanalysis pin|

See what is the stack version you pin your analysis to:
fccanalysis pin -s

To clear your stack pin do:
fccanalysis pin -c

EOM& hep

In order to be able to properly communicate between various
components of the Key4hep stack one needs a common description
format of the event. EDM4hep datamodel defines optimized set of
collections to describe almost any data in the event. The

FCCAnalyses framework expects input in the EDM4hep format
saved in ROOT file(s).

] EDM4hep DataModel Overview (v0.10)
RawCalcrimeterHit ParticlelD
N
MCReroCalgassan iatiar ‘\\ 5 - ,";""
|| MCRexc M“L‘W<;-Calonmetemlt"di;3_2%‘(c?t /.,»4 ;f’ﬂ
- ///,/ = us sr /Zﬁ,,
o oatid L R
o e b
‘,,/..-;—*f’ - % f Q-
MCRecoPariclete T P ReconstructedParticle
I i
\‘\ I — f’w \“\
5 = K |
i s ppTrackerHit %===—TIAK Vertex
| T ‘,f”» ~TrackerHitPlane
RawTimeSeries | lrackerHit3D .
i o~ TrackerPulse Reconstruction &

Guto hxy = dZ.AistolD({ hxy™, 'y, 16,-1,1,64, - L1, X5 vV).

In order to see more information from the FCCAnalyses framework
which also includes ROOT RDataFrame information you can use
-U or =VV:

fccanalysis -v run analysis_script.py\

Most verbose output you can obtain includes output of the JIT
compiled code:

fccanalysis -vvv run analys'zls_scr'z}pt.py]

When you are designing your analyzer function you can use few
logging macros to output some information:

rdfInfo « "Info message";
rdfDebug « "Debug info";
rdfVerbose « "Verbose information";

Ru man I.l/\ar t L-e A ,\%s/'s

What are the different modes FCCAnalyses can run in?

e Stages
One can split the analysis into several preparatory stages
stagel, stage2, ..., then have final selection in the final stage

and finally generate plots in the plots stage.

e Histmaker
This mode combines all work usually done in the stages and final
into one script, after which one can generate plots.

e NTupleizer
Enables generation of flat NTules with the ability to access
detector geometry (specialized form of the standalone mode).

e Standalone Python/C++
One can benefit from the use of the standard library of analyzer
functions, but needs to manage the samples manually.

if (mas;.at(i) > 80. &% mass.at(i) < 100.)
return true;

¥

return false;

X
nn Il)

or in the separate C++ header file:

ROOT .gInterpreter.Declare(
’#include "my_header.hxx"’

)

Libraries integrated into FCCAnalyses, which can be used in your
analyzer(s):

ROOT ONNX DD4hep
ACTS FastJet Delphes

COmﬁfl’bu{:"lng

Any contribution to the framework is warmly welcome. In any stage
of the development of your analyzer function you can contact us.
Here are few recommendations when designing your analyzer
function(s). As it will be used also by other fellow analyzers we
would like to ensure certain level of quality.

e With your analyzer function design also few tests for it, so its
correctness can be guaranteed over time.

e Write few lines of documentation in the form of a comment
above your function.

e Format your function with the help of clang-format. This
helps with readability of the function and keeps style consistent
across all analyzer functions.

12

TV T eIy

TrackerPulse Reconstruction &

Monte Carlo Raw Data | Digitization Analysis

To list collections contained within a particular file:
‘podio—dump file.edmjhep.root |

Dumping all data contained in a particular event:
‘podio-dump -d -e event_number file.edm4hep.root |

]Mpu‘é Sf\w,uj&_s

FCCAnalyses can ingest local samples as well as centrally produced
pre-generated samples.

In order to see which version of the Key4hep stack was used to
produce Full Sim file one can do:

‘podio—dump -c runs -d file_edmé4hep.root|

To specify locally produced sample to run on use:
fccanalysis run -files-list filel.edmjhep.root |

All centrally produced pre-generated physics samples are listed at:
‘https://fcc-physics-events.cern.ch

What are the available campaigns?
Delphes (Fast Sim) samples are available in spring2021 and
winter2023 samples.

Note: EDM4hep 1.0 coming soon — new campaign will be gene-
rated and will include also Full Sim samples.

THTTCETUTTIY,) DU T TTCCUO tU THNTaTNTaR/ Tt TITe JUTTTPTCO T TaTTauaTT s

FCCAnalyses supports running on your local machine, but also at
the CERN’s HTCondor. To run on HT Condor you can set the
appropriate attribute in your analysis script:

runBatch = True]

Which Key4hep stack was used for the production of the particular
centrally produced sample?

The stack used is shown at top of the page which lists the sample
information.

Ro (Qim}

Note: Before unnecessarily building FCCAnalyses, please try to use
the version of the FCCAnalyses distributed in the Key4hep stack.

To build FCCAnalyses one can use built-in sub-command:
fccanalysis build -j n_threads |

To rebuild whole FCCAnalyses from scratch, run:
fccanalysis build -c|

In case the compilation fails and fccanalysis command is not
available to you, try recovering with:

‘hash -r

If custom version of the FCCAnalyses is required one can use
standard CMake build procedure:

git clone git@github.com:HEP-FCC/FCCAnalyses.git
cd FCCAnalyses

source setup.sh

mkdir build install

cd build

cmake -DCMAKE_INSTALL_PREFIX=install ..

make install

cd ..

fccanalysis run analysis_script.py

aCivoo all dlIdI.YLCI TurcCLIvlio.

e Try to design your function in a way that it is composable with
other analyzer functions.

e |f your analyzer function grows above ~ 30 lines, try to slit it up
into smaller functions.

e Use logging macros to inform users about what is happening
inside your analyzer function.

Docviceantation

Central hub for the FCCAnalyses documentation materials is:
‘https://hep-fcc.github.io/FCCAnalyses/ |

Several FCCAnalyses related tutorials can be found at:
‘https://hep-fcc.github.io/fcc-tutorials/ |

The reference documentation itself is hosted at:
‘https://hep-fcc.github.io/FCCAnalyses/doc/latest/|

Finally, the manual pages can be invoked with:
'man fccanalysis| or [man fccanalysis-subcommand | .

C O "é A C 'E,
FCCAnalyses section in FCCSW forum:
‘https://fccsw—forum.web.cern.ch/c/fccanalysis/

FCCAnalyses Github repository:
'https://github.com/HEP-FCC/FCCAnalyses/

FCC-PED SW Analysis mailing list:
|[FCC-PED-SoftwareAndComputing-Analysis@Qcern.ch|

FCC Week, 10-14 June 2024, San Francisco, USA

13

