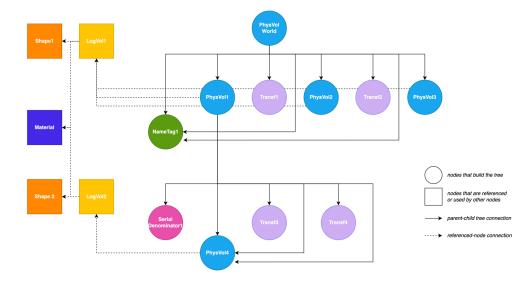

The GeoModel Toolkit for Detector Description

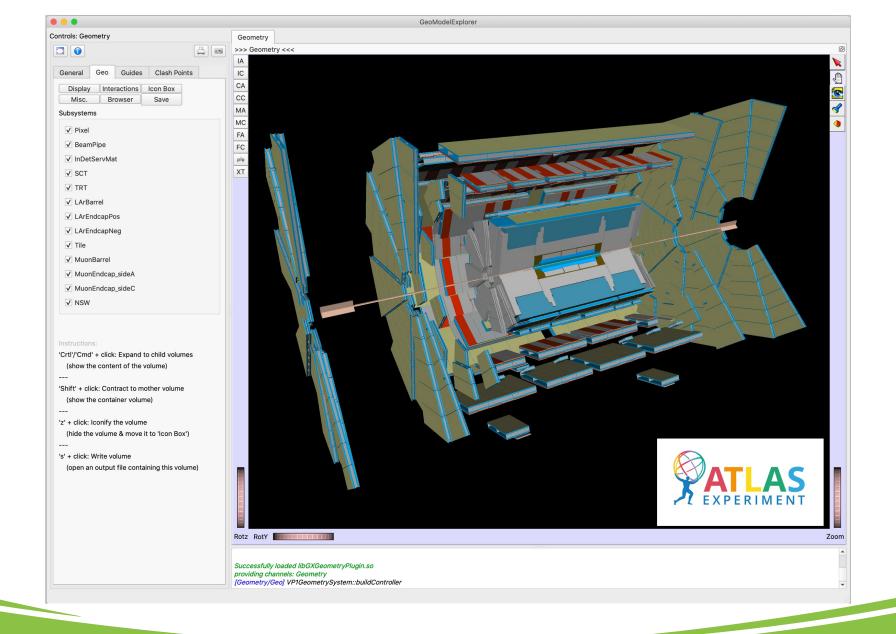
M Bandieramonte, R M Bianchi, J Boudreau, J Junggeburth, N Styles, E Tcherniaev, S Todorova, V Tsulaia

FCC Week, San Francisco, USA June 12, 2024

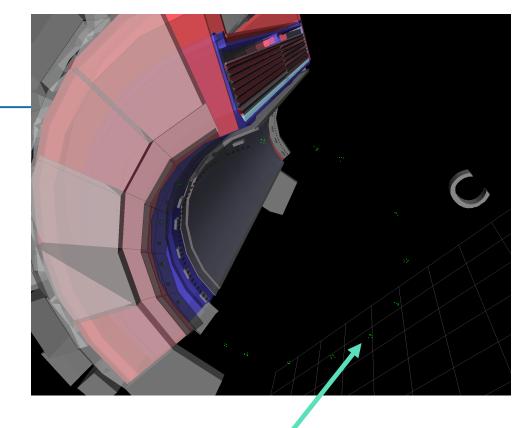


Introduction

- GeoModel is a toolkit for describing geometries of large and complex detector systems with minimal memory footprint
- GeoModel has been used by the ATLAS experiment since 2004
 - Battle tested for almost 20 years in ATLAS
 - Single source of the ATLAS geometry description
 - Part of every ATLAS job running main production workloads (Simulation, Digitization, Reconstruction). Billions of events processed
- Initially being part of the ATLAS offline software repository, in 2019 GeoModel was repackaged as an independent, experiment-agnostic API
- Dependencies are light
 - SQLite, Eigen, XercesC, JSON for the core part
 - *Qt, SoQt, Coin* for visualization


Kernel Library

- The Kernel allows for building detector geometry as a directed, acyclic graph of nodes
- Various-purpose geometrical primitives:
 - Volumes (physical and logical)
 - Solids (simple, Boolean, BREP, tessellated)
 - **Identifiers** (string, int)
 - Transformations (Regular and Alignable)
 - Elements and Materials
- Memory-saving techniques:
 - **Shared instances** of nodes in the graph. **Parameterized** volumes (*Serial Transformer*)
- Tools for building detector-specific readout geometry (Full Physical Volume)
- Tools for applying alignment corrections (Alignable Transformation)
- <u>Coming soon</u>: alignable virtual surfaces co-existing with the actual geometry for tracking (e.g., with ACTS)


Miscellaneous

- Defining detector geometry
 - XML. Native GeoModel format (*GeoModelXML*). GDML-to-GeoModel convertor
 - Custom C++ code with either hardwired or external input parameters
- Exchanging persistent geometries between applications
 - SQLite files. GeoModelIO mechanism for writing out to and reading from SQLite databases
 - ATLAS is planning to use GeoModel SQLite files for managing "frozen" geometry layouts
 - GDML. For reading GeoModel geometry in Geant4 applications
- Applying alignment corrections
 - A special variant of the GeoModel transform object *GeoAlignableTransform* allows for applying deltas on top of the already constructed transform
 - The mechanism supports *having multiple sets of alignment corrections in flight* in multi-threaded applications

Tool Suite

- Visualization: Open Inventor Interaction Style
 - Drill down to any level of geometry
 - Cutaway views
 - Save portions of the detector for further studies
- Standalone detector simulation: FullSimLight (Geant4-based)
 - In-memory converter from GeoModel to Geant4 *Geo2G4*
 - Plugin architecture for extensions
- Command-line utilities (some examples)
 - Concatenator. Combines geometries of several detector subsystems into one
 - Clash detector. Based on Geant4. Allows for co-displaying clash points and the geometry
 - Converter to/from GDML
 - Mass calculator supporting regular and Boolean solids
 - Geantino Scan tool

Final remarks

- This presentation just scratched the surface. For more information ...
- Check out our documentation https://cern.ch/geomodel
 - Needs to be updated with recent developments ...
- Try the code at https://gitlab.cern.ch/GeoModelDev/GeoModel
 - It can be compiled on Linux and macOS platforms with minimal third-party dependencies
 - Distribution kits are also built for Ubuntu and macOS
- Contact the developers: <u>geomodel-core-team@cern.ch</u>
- Come to see our poster tomorrow!
- We would be happy to organize a hands-on tutorial for all interested developers from the FCC software community to demonstrate the capabilities of our toolkit