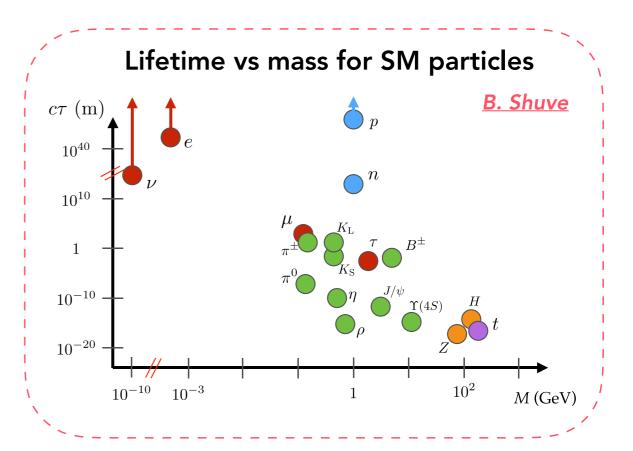
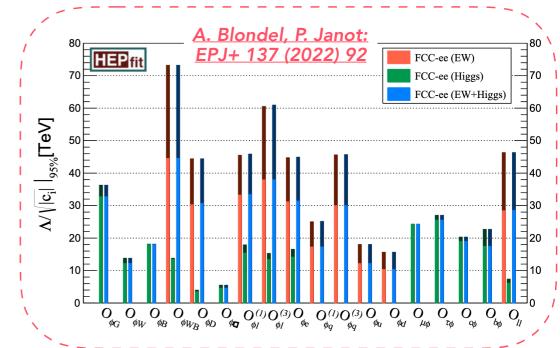

Introduction to Detector Requirements for BSM Physics Program

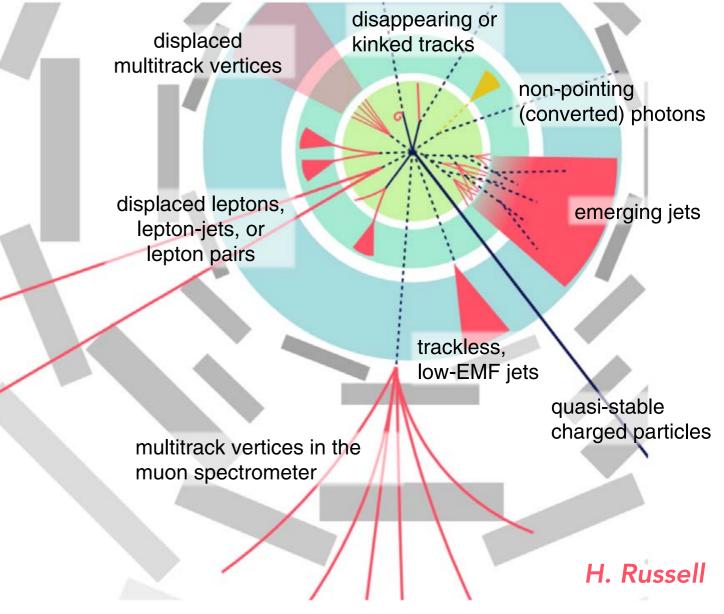


Louise Skinnari (Northeastern University) Future Circular Collider (FCC) Week: San Francisco, June 10-15, 2024

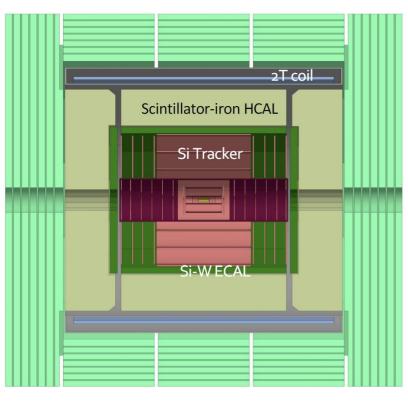

Introduction

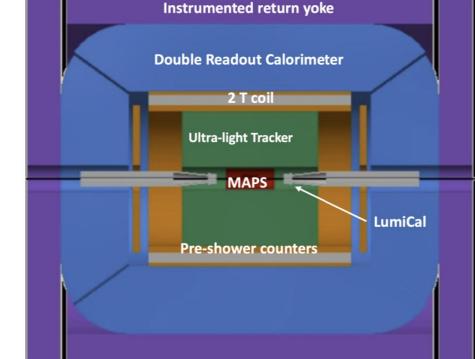
- Clean FCC-ee environment => wide range of beyond-Standard Model (BSM) particle couplings and masses accessible
 - Probe BSM physics indirectly or directly
- Indirect searches: Sensitivity to BSM physics through precise measurements of SM observables
- <u>Direct searches</u>: Experimental signatures vary greatly depending on *lifetime* of new particles, consequently, detector requirements vary greatly
 - Prompt decays
 - Decay in inner tracking detectors
 - Decay in calorimeter / muon systems
 - Escape detection altogether

Indirect probes


- Precise measurements of EW observables: Indirect sensitivity to up to ~70 TeV-scale sector connected to EW/Higgs
- Top sector: Search for FCNCs, sensitivity to Z' bosons from top EW coupling

- Flavor (b/c/tau): Rare decays, LFV searches, tests of LFU
- Associated detector requirements similar to those from corresponding SM measurements, e.g.:
 - Excellent track momentum resolution (low X₀)
 - Vertex resolution & PID capabilities for flavor tagging
 - Particle flow, jet energy/angular resolution for hadronic final states
 - See talks by <u>J. Zhu</u> and <u>M. Selvaggi</u>


Direct BSM searches


- Examples of studied BSM phenomena:
 - + Axion-like Particles (ALPs)
 - Heavy neutral leptons (HNL)
 - + Exotic Higgs boson decays
 - Dark photons (Z_D)
 - + Z'
 - Light SUSY and light scalar scenarios
- Complementarity between prompt/long-lived searches!
- BSM landscape discussed by <u>Z. Demiragli</u>

Detector concepts

CLD

IDEA

Full silicon vertex + strip tracker

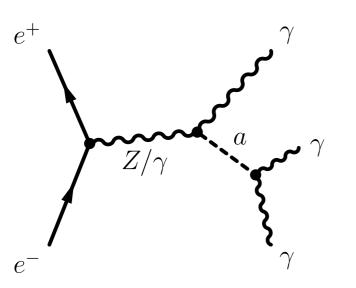
- CALICE-like 3D-imaging highgranular calorimetry with Si-W for ECAL and Sci-iron for HCAL
- Muon system with RPCs
- Coil outside of calorimeters

- Silicon vertex + ultra-light tracker
- Monolithic dual readout calorimeter with Cu-fibers (possibly augmented by dual-readout crystal ECAL)
- Muon system with μ-RWELL
- Coil inside calorimeters

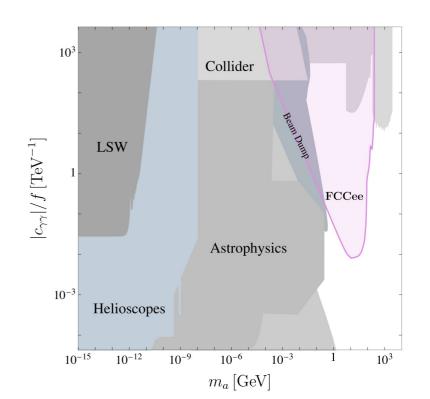
ALLEGRO

- Silicon vertex + ultra-light tracker
- High granularity noble liquid ECAL (LAr or LKr with Pb or W absorbers)
- CALICE-like or TileCal-like HCAL
- Muon system
- Coil outside of ECAL
 J. Zhu

• Studies so far primarily relied on Delphes fast simulation with IDEA card

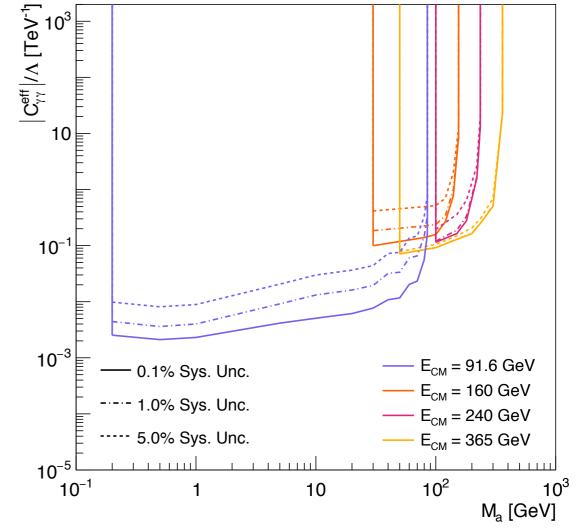

Detector requirements

- Identifying long-lived particles places distinct detector requirements
 - Impact parameter resolution for large displacements
 - Tracking detectors: additional layers / continuous tracking
 - Calorimetry: high radial segmentation, tracking capability
 - Muon detectors: standalone tracking capability
- Large decay lengths implies extended detector volume
- Invisible final states => hermetic detectors
- Triggerless readout
- Precise timing for velocity (mass) estimates
- Next slides highlight select recent work within BSM group to illustrate detector requirements, not a complete overview of all BSM work done!

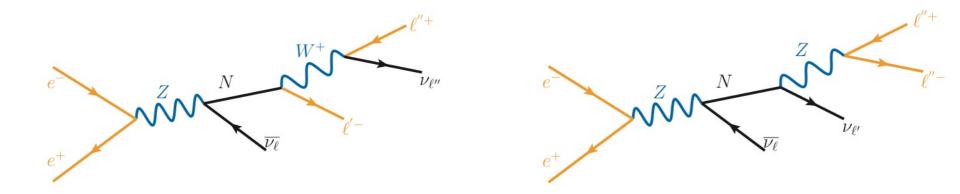

Axion-like particles (ALPs)

- Hypothetical pseudoscalar appearing naturally in many SM extensions; mass and coupling can range over many orders of magnitude
- ALP associated production vs m_a and coupling to vector bosons ($C_{\gamma\gamma}$)
- Particularly relevant at FCC-ee is final state with **three photons**
 - Imposes requirements on ECAL performance
 - Masses ≈5 GeV: Sensitivity dominated by ECAL resolution, require high momentum prompt photons
 Masses ≈5 GeV: Large contribution from position resolution and photon-

photon separation power (granularity)

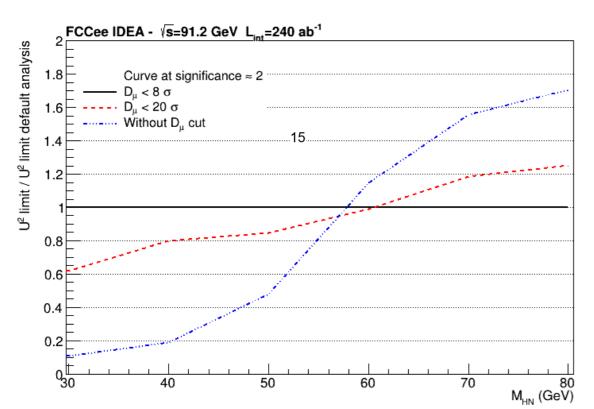


Louise Skinnari (Northeastern University) FCC Week 2024


Axion-like particles

- Analysis considers $m_a = 0.2-360$ GeV at different \sqrt{s} in 3 photon channel
 - Signal/background: MG5 + Pythia8; DELPHES for IDEA fast simulation
 - + Signal discrimination based on $\gamma\gamma$ invariant mass, opening angle and energy of third photon
- Low mass ALPs (<5 GeV) sensitive to effective separation of collimated photons => excellent benchmark for detector optimisation
- Full simulation studies needed to assess sensitivity at low mass / potential for separating the two nearby photons

Heavy neutral leptons (HNLs)


- Dirac or Majorana fermions with sterile neutrino quantum numbers
 - + Promising new physics channel at Z pole
 - Rich set of signatures, both prompt & long-lived

- Analysis: HNL => μjj Require one muon + two jets
 - + High mass / prompt signal
 - Background rejection through constraints on HNL mass and missing energy
 - Requirements on jet energy resolution and vertexing performance
 - + Low mass / displaced signal
 - Background suppression through displaced vertex
 - Requirements on **vertexing** and **timing performance**
 - Signal: MG5 + Pythia8; Delphes for IDEA fast simulation

HNL => µjj

- Using sum of visible four-momenta to select HNL mass and v recoil energy
- Prompt analysis uses selection on muor suppress background (d_{0,μ} < 8σ; σ~5μm)
- Fast simulation with parametric particle ∈
 EM~11%/√(E) ; HAD~30%/√(E) ; 1% const
 - Simplified approach to estimate impact c variation of background when varying ma

Louise Skinnari (Northeastern University) FCC Week 2024

FCCee IDEA - Vs=91.2 GeV Lint=240 ab-1 U² limit / U² limit default analysis Spring2021 2.4 Curve at significance ≈ 2 30% 1.6 1.4 1.2 0.8 0.6 30 20 50 60 40 70 80 M_{HN} (GeV)

ansverse impact parameter to *tracker pointing resolution*

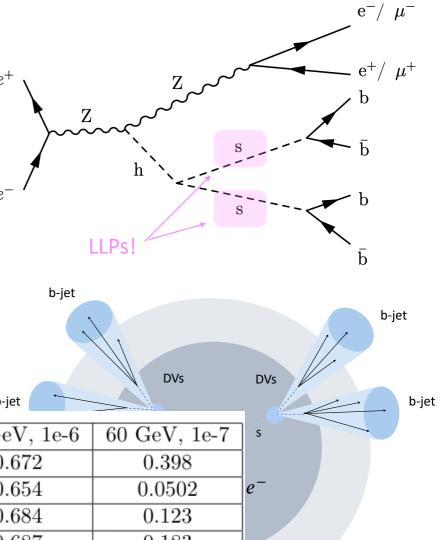
ergy resolution: t term

alorimeter resolution: estimate window vs jet-jet mass resolution

eev/uuv		RE S. Giappici ni Alex JLAR ^{. Paralan} Plus
	COLLI	DEK Karlsruhe Institute of Tech
	ohes with IDFA deter	ctor card
 constructed vertex 	incl. L _{xy} < 2000mm,	d ₀ > 0.55mm
	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} 10^{15} \\ 10^{14} \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	e Simulation (Delphes)
	<pre>_ /sis from dR with ML _ constructed vertex s: FCC-ee Simulation (Delphes) ts, flavor cuts</pre>	COLLI C

Karlsruhe Institute of Technology

Exotic Higgs decays


• Target Zh (240 GeV) run with signal process:

 $e^+e^- \to Zh$ with $Z \to e^+e^\pm e^-/\mu_h^+\mu^-$ and $h \to s s_\mu \to b\bar{b}b\bar{b}h \to s$

- Experimental signature: Reconstructed^eZ⁻bos⁺den
 + displaced vertices from long-lived scalar decays
- Simulation: MadGraph v3.4.1 + Pythia8 +

	• • •				Jet 1		
$N_{DVs} \ge 2$ Efficiencies	20 GeV, 1e-5	20 GeV, 1e-6	20 GeV, 1e-7	60 GeV, 1e-5	60 GeV, 1e-6	60 GeV, 1e-7	S
IDEA	0.091	0.672	0.014	0.0002	0.672	0.398]
CLD (min. hits $= 6$)	0.092	0.109	0.002	0.0002	0.654	0.0502	e^-
CLD (min. hits $= 5$)	0.094	0.293	0.0042	0.0003	0.684	0.123	
CLD (min. hits $= 4$)	0.096	0.441	0.0056	0.0002	0.687	0.183	
		<u> </u>	/	J			

Mean proper							M. Larson, LS
lifetime ст [mm]	3.4	341.7	34167.0	0.9	87.7	8769.1	
$N_{DVs} \ge 2$ Events	20 GeV, 1e-5	20 GeV, 1e-6	20 GeV, 1e-7	60 GeV, 1e-5	60 GeV, 1e-6	60 GeV, 1e-7	
IDEA	5.02	37.09	0.77	0.003	10.97	6.50	Final #
CLD (min. hits $= 6$)	5.08	6.02	0.11	0.003	10.67	0.82	events
CLD (min. hits $= 5$)	5.19	16.17	0.23	0.005	11.16	2.01	selected
CLD (min. hits $= 4$)	5.30	24.34	0.31	0.003	11.21	2.99	

Conclusions

- Understanding the impact of detector design and performance is crucial given the broad range of unconventional signatures and rich phenomenology involved!
- Exciting opportunity to optimize detector designs specifically for longlived particle searches
- Beyond optimizing general purpose detectors for BSM physics, options for targeted detectors and facilities, e.g.:
 - HErmetic CAvern TrackEr (HECATE): <u>M. Chrzaszcz, M. Drewes, J. Hajer, EPJC 81 (2021) 546</u> Proposes additional instrumentation on the cavern walls for large gain in sensitivity for LLPs (4π solid angle coverage for displacements of 20m)
 - + Forward Physics Facility (**FPF**): See talk by <u>S. Trojanowski</u> (Anncey 2024)

Backup

Louise Skinnari (Northeastern University) FCC Week 2024

FCC-ee machine parameters

M. Benedikt et al Chamonix workshop 2024

Parameter	Z	ww	Н (ZH)	ttbar
beam energy [GeV]	45.6	80	120	182.5
beam current [mA]	1270	137	26.7	4.9
number bunches/beam	11200	1780	440	60
bunch intensity [10 ¹¹]	2.14	1.45	1.15	1.55
SR energy loss / turn [GeV]	0.0394	0.374	1.89	10.4
total RF voltage 400/800 MHz [GV]	0.120/0	1.0/0	2.1/0	2.1/9.4
ong. damping time [turns]	1158	215	64	18
horizontal beta* [m]	0.11	0.2	0.24	1.0
vertical beta* [mm]	0.7	1.0	1.0	1.6
horizontal geometric emittance [nm]	0.71	2.17	0.71	1.59
vertical geom. emittance [pm]	1.9	2.2	1.4	1.6
norizontal rms IP spot size [μm]	9	21	13	40
vertical rms IP spot size [nm]	36	47	40	51
beam-beam parameter ξ _x / ξ _y	0.002/0.0973	0.013/0.128	0.010/0.088	0.073/0.134
ms bunch length with SR / BS [mm]	5.6 / 15.5	3.5 / 5.4	3.4 / 4.7	1.8 / 2.2
uminosity per IP [10 ³⁴ cm ⁻² s ⁻¹]	140	20	5.0	1.25
total integrated luminosity / IP / year [ab ⁻¹ /yr]	17	2.4	0.6	0.15
beam lifetime rad Bhabha + BS [min]	15	12	12	11
	4 years 5 x 10 ¹² Z LEP x 10 ⁵	2 years > 10 ⁸ WW LEP x 10 ⁴	3 years 2 x 10 ⁶ H	5 years 2 x 10 ⁶ tt pairs