Measuring Electrons & Photons

Chris Tully (Princeton)

June 13, 2024 FCC Week, San Francisco, CA

Key/Many Performance Parameters of ECAL

- **Energy** Resolution (Stochastic and Constant Terms)
- **Position** Resolution (x-y local on front face/COG)
- Granularity (Transverse, Longitudinal)
- Angular Resolution/Vector Direction (pointing)
- Dual-Readout Performance (S/C, ECAL+HCAL)
- e/pi (and gamma/K0_L) Separation (delayed EM showering ID)
- Pizero Photon Separation, Brem-Recovery Performance, ...
- Timing Resolution (Stochastic and Constant Terms)
- Noise Floor and Pedestal Stability
- **Dead Material** Effects/Hermiticity
- Dynamic Range and Containment
- Acceptance Resolution (barrel/endcap and endcap/beamline)
- Calibration Performance, Response Stability, Monitoring, ...
 - Alignment Precision, Mechanic Support Photometry, ...

Fundamentals of ECAL Technologies

Technology		EM energy	resolution
· ·		(stochastic term)	(constant term)
Highly granular Si/W based		1517%	1%
Dual readout Fibre (ECAL+HCAL)		11%	<1%
Hybrid crystal (dual readout)		3%	<1%
Highly granular noble liquid based ECAL		8 - 10%	<1%
		1/ ja	
PWO By = 2.0 cm		active	gap (noble liquid) absorber readout electrode
Tim = 2.0 om			
		1st layer	
		no Pb	
		cryostat —	
SI HALIMAN (<u>210 cm</u>	
	10 cm		
			256 cm
			<u>+0 cm</u> <u>10 cm</u>
1			

High-End of Performance Numbers

- 0.1-0.2mm front-face position resolution
- 3%/sqrt(E) stochastic energy term
- <1% on constant term</p>
- <1 mm precision on IP z-vertex position</p>
- <1 mrad angular pointing (photon 3-momentum)</p>
- <100ps timing on all hits above 1 GeV</p>
- e/pi suppression >10⁴
- Upwards of 100 full sampling readings per EM shower for energy, position, angles, time, DR, PID

Do we need all that? And what kinds of trade-offs are available?

Leading Physics Drivers and Studies

Single photon spectra

- Precision Z to v_e coupling (~1%), now at 18%
 - Stochastic term ~3% best, >5% big impact
 - Non-collision EM backgrounds (Cosmics, Beam Halo)
- ▶ Precision LFV, $Z \rightarrow e\mu$, $Z \rightarrow \mu\mu \rightarrow \mu$ "e"(hard Brem in ECAL)
 - Hard Brem rejection/angular resolution/vector direction
- Recoil Mass/Radiative Return and $\tau \rightarrow \mu \gamma$
 - Event Missing Energy/Total Momentum ~0
- Decay/Radiative Photons
 - Pizeros from Jets, heavy flavor, tau-lepton decay
 - Graph theory π^0 preclustering, τ polarization
 - P_{tot}/E_{miss} balancing with multi-photons ($e^+e^- \rightarrow \gamma\gamma(\gamma)$)

EM Resolution and Photon Counting

Improved angular measurements and Ny counting

- Recoil photons (~8% of full \sqrt{s} collision rate)
 - New Physics Searches and Neutrino Counting

Precision QED/Lumi $e^+e^- \rightarrow \gamma \gamma(\gamma), e^+e^- \rightarrow e^+e^-(\gamma)$

- Total Momentum Zero Resolution
 - Forward coverage/alignment

Recoil Analysis – Single Most Important Unbiased Sample of Higgs Boson Decays

► $Z \rightarrow \mu^+ \mu^-$ Recoil ► $Z \rightarrow e^+ e^-$ Recoil

→ Up to ~80% of Electron Resolution Recovery with $3\%/\sqrt{E}$ (Mid-Term) ~22% improvement on Higgs mass from ZH events where the uncert. on mass mean is comparable to H width

W-LKr π^0 Photon Separation

High granularity 3D cells (1cm x 1cm x 2.6 cm)

~5%/sqrt(E) from LKr

Resolving Jets and Photon-Jet mis-assignment

• Improved with Graph theory π^0 pre-clustering

The qqqqqq Channel

Variable	Description	Trend	
E ^{max} jet6	Energy of the most energetic jet from the 6 jet fit.	Signal events should have six rea- sonably equal jets, while many back-	
E ^{min} jet6	Energy of the least energetic jet from the 6 jet fit.	grounds have several high energy jets and several very low energy gluon jets.	
n ^{min} jet6	Minimum number of charge tracks in any of the jets from the 6 jet fit.	Gluon jets and other "reconstruction" jets will have fewer charge tracks than signal jets.	
θ ^{min} jet6	Minimum angle between any two of the six jets.	Gluon-radiation jets will tend to have a relatively small angle with respect to other jets.	
$\log Y_{45}$	Durham Y value where the fit	Т Г	
	jets.	True six jet events should have larger	
$\log Y_{56}$	Durham Y value where the fit	values of the Durham cut values.	
	jets.		

The qqqqlv Channel

The vvqqqq Channel

Variable	Description	Trend
E ^{max} 4j	Energy of the most energetic jet from a fit to four jets.	Signal events tend to have two medium-energy and two low-energy jets, while backgrounds will tend to have higher E ^{max} values and lower E ^{min} values.
E ^{min} _{4j}	Energy of the least energetic jet from a fit to four jets.	
θ_{4j}^{min}	Minimum angle between any two of the four jets.	Gluon jets tend to be emitted at small angles relative to the emitting quark jet.

https://arxiv.org/pdf/hep-ex/0204029.pdf

More Physics Studies Needed

Full Simulation will help tie together trade-offs in tracking, timing layers, ECAL EM, and ECAL+HCAL Jets/taus

Photon 3-momentum measurement with precise submm vertexing and 20-30ps timing resolution will bring measurements from EM showers out of the dark – not requiring assumptions on IP and signal hypotheses to constrain total momentum

ALP-sstrahlung processes

- Boosted pseudo-scalars decaying to photons
 - Rare events need highly resolved event-by-event measurements
- Backgrounds need to be studied for high statistics, systematics-limited searches

More Emphasis on Full Simulation

Key4HEP progressing well

Integrated full detector studies crucial for understanding trade-offs across vertex/tracker/ECAL/ECAL+HCAL/timing layers/muon

Background studies needed to understand how reducing assumptions on the photons/electron momentum reconstruction and PID information impacts physics program

Outlook

More Detector-Level Performance Evaluation (w/TB)

- Bootstrap full event sims with limited volume ECAL setups
 - Provide full set of detector readings from local EM shower
 - Non-collision EM backgrounds (Cosmics, Beam Halo)
- Enable analyses to form new variables and test new PFA
 - LLP semi-neutral displaced vertex pointing
 - High efficiency tagging and separation of photons

Big Opportunities in EM Domain

- Photon 3-Momentum/Vector Direction w/Precision Timing
- Dual-Readout/Multi-Signal ECAL
- High Resolution P_{total} w/ Low Energy Single and Multi-Photon
- More Precision Inputs to Improve PFA & PID Performances