

Measuring jets and mass with precision

V. Daniel Elvira (Fermilab) FCC Week 2024, San Francisco

Outline

- Final states with jets benchmarks in the mid-term report
 - Relevant to hadronic calorimeters
- Detector requirements to measure jets and masses
 - Full detector needed, but focused on calorimeters
- Calorimeter technologies
 - CLD, IDEA, ALLEGRO detector benchmarks
- Results from case studies
 - Higgs hadronic final states, Higgs invisible width, search for heavy neutral leptons
- Next steps
 - Physics software, detector benchmarks, physics performance

<u>Disclaimer</u>: all studies presented here are performed with fast simulation (DELPHI), unless indicated otherwise

Fermilab

Higgs measurements: couplings and width

Dominant Higgs production modes:

Huge statistics, a clean environment, knowledge of the center-of-mass energy and momentum conservation in all three space dimensions \rightarrow outstanding precision for

- Higgs cross sections and couplings to Z, W, and top, bottom, charm quarks
- Higgs total width Γ_{H} , as well as its invisible (H $\rightarrow \nu\nu\nu\nu$) width (dark matter search)

Higgs program requires the measurement of jets, masses and missing momentum with unprecedented precision, as well as efficient jet flavor tagging

Search for heavy neutral leptons

Tera-Z run \rightarrow huge sensitivity gain for feebly-coupled new particles in the 1-91 GeV range

- E.g., heavy neutral leptons (HNL): Production via $e^+e^- \rightarrow Z \rightarrow \nu N$ with long-lived $N \rightarrow \ell q \bar{q}$
 - Limit on the N- v_e mixing extended orders of magnitude, close to seesaw limit

Eur. Phys. J. Special Topics 228, 261-623 (2019) arXiv:1910.11775

- Small beam pipe and clean environment
- SM background suppressed due to displaced vertex of the *N* decay
 - Long lifetimes ~ 3 [cm] / IU²I (M [GeV])⁶ (N-v_e mixing parameter IUI²)
- Final state with missing momentum and jets $\nu\ell q\bar{q}$

Requires outstanding precision for jets, missing momentum, secondary vertices, hadronic shower structure

Physics observables, physics objects, detectors

🛠 Fermilab

Physics observables \Rightarrow reqs. on physics object properties \Rightarrow reqs. on detectors **Precision on hadronic final states** \Rightarrow requirements on the whole detector in the context of **Particle Flow (PFlow)-based reconstruction**

- Containment and hermeticity
 - Instrumentation in full solid angle for high acceptance and missing momentum measurements
 - Tracker thick enough (but low density) for optimal secondary vertex reconstruction (to minimize conversions)
 - Large HCAL material budget to minimize leakage (energy response & resolution, missing momentum)
- Alignment and calibration
 - Relative alignment at the $O(\mu m)$ precision level (particle matching across subdetectors)
 - Excellent single particle calorimeter response linearity (compensation) and resolution for precise calibration
- Tracker and calorimeter granularity
 - Higgs recoil mass resolution limited by BES (0.13-0.16%) and not track momentum resolution
 - High granularity EM calorimeter plays a crucial role in photon ID within jets
 - High granularity HAD calorimeter for neutral hadrons ID, correct assignment of particles to jets, jet substructure for flavor tagging

Calorimetry at FCC-ee: Eur. Phys. J. Plus 136, 1195 (2021)

Single particle, jet, and invariant mass resolution

PFlow optimizes jet energy resolution (JES) by individually reconstructing each particle using the best measurement from each subdetector

 $\overline{\sqrt{E}}$

Energy of charged particles measured best in the tracker, photon energy in the ECAL, and HCAL key to measure neutral hadrons

Single particle calorimeter resolution:

$$\frac{\sigma_E}{E} = \frac{S}{\sqrt{E}} \oplus C$$

: Stochastic term - sampling fluctuations

C : Dead material, non-uniformities

 $\begin{array}{l} \textbf{ee} \rightarrow \textbf{ZH} \rightarrow \textbf{vv} \textbf{j} \textbf{j} & \textbf{Visible (Higgs) invariant mass} \\ \\ \sigma^2(E_{\text{vis}}) = \sum_{i \in \text{tr}} \sigma_{\text{tr}}^2(E_{\text{tr}}^{(i)}) + \sum_{i \in \gamma} \sigma_{\text{ecal}}^2(E_{\gamma}^{(i)}) + \sum_{i \in \text{nh}} \sigma_{\text{hcal}}^2(E_{\text{nh}}^{(i)}) \\ \\ \\ \textbf{Tracks65\%} & \textbf{25\% Photons} & \textbf{10\%} \begin{array}{c} \textbf{Neutral hadrons} \\ \textbf{K}_L^0 \text{ and n} \end{array} \end{array}$

- σ_{Mvis} (and σ_{jet}) dominated by neutral hadron (HCAL) uncertainty for low energy jets (HCAL granularity matters)
- H, WW, ZZ: 3-4% invariant mass resolution needed

Single particle, jet, and invariant mass resolution

🛠 Fermilab

Expected energy resolution for the different technologies: measurements when available, otherwise obtained from (DELPHI) simulation. Those values marked with "?" are estimates since neither measurement nor simulation exists

Detector technology (ECAL & HCAL)		E.m. energy res. stochastic term	E.m. energy res. constant term	ECAL & HCAL had. energy reso- lution (stoch. term for single had.)	ECAL & HCAL had. energy reso- lution (for 50 GeV jets)	Ultimate hadronic energy res. incl. PFlow (for 50 GeV jets)
Highly granular Si/W based ECAL & Scintillator based HCAL		15 – 17 % [<mark>12,20</mark>]	1 % [12,20]	45 - 50% [20,45]	$\approx 6\%$?	4% [20]
Highly granular Noble liquid based ECAL & Scintillator based HCAL		8–10% [24,27,46]	< 1 % [24,27,47]	$\approx 40\%$ [27,28]	$\approx 6\%$?	3-4%?
Dual-readout Fibre calorimeter		11 % [48]	< 1 % [48]	$\approx 30\%$ [48]	4–5% [<mark>49</mark>]	3-4%?
Hybrid crystal and Dual-readout calorimeter		3 % [30]	< 1 % [30]	$\approx 26\%$ [30]	5-6% [30,50]	3-4% [50]
IDEA [48] <u>JINST 15 C06015</u>	CLD [20] LCD-Note-2019-001	Calos for FCC-hh [27] CERN-FCC-PHYS-2019-0003		Crystal Calos for FCs [30] J. Instrum. 15 , P11005–P11005 (2020)		

Traditionally, the physics drivers for the "ultimate" ~3-4% PFlow jet energy resolution

- High efficiency for W/Z/H boson mass separation
- Separation of boosted objects (at higher energies)

Technologies – HG silicon and SiPM-scintillator-tile calorimeters

Active material: silicon diodes (EM section) and Scintillating tiles read by SiPMs (hadronic section)

- First generation: CALICE (R&D for LC), many prototypes (scintillator, silicon, steel, tungsten) CALICE-PUB-2022-003
- Second generation: CMS HGCAL endcap, silicon-tungsten and scintillator-steel sections CERN-LHCC-2017-023
- Future generation (FCC-ee): Calorimeters of CLIC-like detector (CLD) benchmark
 - ECAL: 40 silicon-tungsten layers, 23X₀ deep, silicon area of 4000 m² segmented in 160M cells
 - HCAL: 44 scintillator-steel layers, 5.5 λ_1 deep, silicon area of 8000 m², 9M SiPMs
 - Photon energy resolution ~ 15% (5-100 GeV), 4.5% (50 GeV) and 4% (>100 GeV) with PFlow
 - Hadron resolution ~ 45-50%/ \sqrt{E} (ECAL+HCAL), PFlow jets reaches ~4% at high energy
 - W-Z separation power of 2.5σ for 125 GeV bosons

CLIC-like Detector (CLD) benchmark

Design inherited from ILC (-> CLIC -> FCC-ee) All-silicon vertex and tracking detectors 3D high-granularity calorimeter – CALICE-like Solenoid outside calorimeter (as in CMS) Muon system

CLD: LCD-Note-2019-001

Technologies – dual-readout fibre calorimetry

DREAM/RD52 Collaboration: 20-year-long R&D program on dual-readout (DR) calorimetry

- Independent readout of scintillation and Cerenkov light allows the cancellation of the effects of the fluctuations in the EM fraction of hadronic showers <u>Nucl. Instrum. Meth. A 963, 127–129 (2019)</u>
 - e/h = 1 (compensation) \rightarrow jet energy response linear energy dependence, Gaussian energy distributions
- Calorimeters of IDEA detector benchmark
 - 1-mm-diameter fibres, 1.5–2 mm apart, embedded in copper (iron, lead are options), lateral segmentation at mm level
 - 2 m deep, 7 λ_{I_1} measure position and energy of EM and HAD showers
 - Electron energy resolution ~ $11\%/\sqrt{E+0.8\%}$, reaches 4.5% (50 GeV) and 4% (>100 GeV) with PFlow
 - Hadron resolution ~ $30\%/\sqrt{E}$, PFlow jets reach ~3-4% at high energy
 - Time resolution \sim 100 ps , allowing shower position long. resolution of \sim 5 cm

IDEA detector benchmark

Silicon vertex, ultralight (gas) drift tracker Dual readout fibre calorimeter Solenoid inside calorimeter (as in ATLAS) Muon system

6/13/2024

Technologies – crystal and noble liquid calorimetry

Segmented **crystal calorimeters** achieve new performance benchmarks for precision timing, particle ID, and e/h response compensation through dual readout JINST 15(11), P11005 (2020)

- IDEA modification: EM crystals calorimeter, 20 cm deep (dual readout), added upstream of the DR fibre calorimeter
 - Excellent neutral hadron resolution, $\frac{26\%}{\sqrt{E}} \oplus 2\%$ for crystals combined with DR fibre calorimeter, 3% for low energy photons

High granularity noble liquid calorimetry provides excellent energy resolution, linearity, stability, uniformity, radiation hardness, 4D imaging-ML in combination with PFlow D0: Nucl.Instrum.Meth.A338,185–253(1994) ATLAS: CERN-LHCC-2013-017

- Calorimeter of ALLEGRO detector benchmark:
 - 1536 lead/steel absorbers of 2 mm total thickness, 22 X_0 , granularity of 2.5 mrad x 8.2 mrad
 - Photon resolution ~8.-10%/ \sqrt{E} , hadron resolution ~40%/ \sqrt{E} , PFlow jets reach ~3-4% at high energy

ALLEGRO detector benchmark

Silicon vertex, drift chamber for tracking HG noble liquid ECAL (Pb+LAr or W+LCr) CALICE-like HCAL, muon system Solenoid in cryostat, possible outside ECAL

Reconstruction of Higgs hadronic final states

(Case study 1)

Higgs \rightarrow 2 jets signal ID in HZ events relies on the calorimeter (and vertex detector) performance: Mass resolution of Higgs and recoil system, flavor tagging efficiency

Study to measure impact of variation in neutral hadron resolution by a factor of 2 (3) with respect to the baseline) on $H \rightarrow jet-jet$, with jet = b, c, s, g, with $Z \rightarrow lepton-lepton$

Precision of $H \rightarrow s\bar{s}$ degrades by 20% (35%)

 A bit larger than similar degradation in the number of ionization clusters per unit length (*dN/dx*) – IDEA gas chamber (*dN/dx* provides particle ID)

The effect the Hcc, Hgg, Hbb couplings is smaller

Increases as the s/b decreases

SF=1 (dual readout calorimeter: 30%/VE)

- 2 (ATLAS type-calorimeter: 50%/VE)
- 3 (CMS-type calorimeter: **100%/√E**)

Measurement of the Higgs invisible width

(Case study 2) Higgs to invisible at FCC-ee

The Standard Model process $H \rightarrow vvvv$ has a very small branching fraction of 1.06×10⁻³ (~0.1%)

- Beyond the HL-LHC reach and potentially only observable at the FCC-hh
- Inclusion of a Higgs portal (BSM) predicts decays to dark matter candidates, increasing the Higgs width

Branching fraction measured using $Z \rightarrow ee$, $\mu\mu$, $b\bar{b}, c\bar{c}, q\bar{q}$ to increase stats.

Novel ML-based flavor tagging algorithm (ParticleNetIDEA*) * Phys. Rev. D 101, 056019

SM BF measured with 35% accuracy! (10 ab⁻¹)

Exclusion at the 95% CL of BF < 0.07% or 5σ observation of > 0.18% (adding exotic decays)

130% (80%) uncertainty increase in qq (combined) channel (adding 5% additional Gaussian smearing of hadronic energy)

Search for heavy neutral leptons

(Case study 3)

Sensitivity of the FCC-ee to decay of an HNL

Feebly interacting particles (e.g., Heavy Neutral Leptons)

- Study on a sample of 8x10¹² Z's decaying to $N_{\mu}\bar{\nu}_{\mu} \rightarrow \mu q\bar{q}'\bar{\nu}_{\mu}$
 - 50% BF and covers the 50-90 GeV range
 - The evt. selection cuts on muon, jet, missing p_T to minimize bkgnd. .
 - Discriminant is the HNL visible mass, $M_{HNI} = M_{vis}$.
 - Final selection involves sliding cut on M_{vis}, taking into account the observed mass resolution $\sigma = 18\% \sqrt{m_{\rm HNL}}$

Generated 10k points in parameter space, (mixing= U^2 , M_{HNI}) and (lifetime= $c\tau$, M_{HNI}), at a c-of-m energy of 91.2 GeV

Dependence of the 2σ significance of HNL signal on a variation of the visible mass width resolution: $10-30\%/\sqrt{M_{vis}}$

Minimal effect at low M_{HNL} (Z \rightarrow qq background negligible) Larger at higher M_{HNL} (prompt signal dominates, and the background is higher)

Next steps

• Physics software

- Complete the implementation of Geant4-based full simulation for all detector benchmarks
- Full event reconstruction in full simulation
 - Algorithms for single particle reconstruction, PFlow, physics objects
- Detector benchmarks and physics performance
 - Evaluate precision in detector construction, as well as the impact of alignment on performance
 - Develop data-driven methods to reduce the systematic uncertainties
 - Variations of EM calorimeter parameters for improved pion reconstruction efficiency
 - Important in jet flavor identification for electroweak measurements
 - Better assessment of the need for precise timing measurements LL particles, shower structure
 - Interplay between ECAL-HCAL technologies, materials, granularity (transverse and longitudinal)
 - Mass resolution of color singlets with full simulation and PFlow
 - Impact on, e.g., $H \rightarrow cc$ and searches for heavy neutral leptons
 - Explore a larger variety of physics drivers to set constrains on performance metrics

Backup Slides

6/13/2024

Next steps

Detector R&D

- Engineering procedures for detector assembly and integration
- Study geometries, shapes, sizes, number of layers, granularities, optimize ECAL-HCAL transition
- CALICE TB full HCAL readout, intrinsic time resolution of 1 ns (time/space shower evolution)
 - Study different absorber materials (tungsten), and performance of the combined ECAL+HCAL system
- Adaptation of noble-liquid sampling calorimetry to an FCC-ee experiment (4D imaging, ML, PFlow)
 - An option for passive (active) material is tungsten (liquid krypton)
- Study thin carbon-fibre cryostats for noble-liquid calorimetry and thin solenoid coils
- Study bright, dense crystals, such as LYSO with ultra-fast rise time will be studied and the segmentation optimized for best PFlow performance
- Large number/density of channels in dual-readout fibre calorimeter calls for innovative read-out architecture to allow efficient information extraction
 - Digital SiPMs (dSiPMs) should allow significant simplification of the readout architecture
- Front-end ASICs for energy and time measurements in a common architecture for ECAL & HCAL