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● Most detectors geometries are implemented → focus now on 
reconstruction

Adaptable reconstruction is crucial for a systematic design optimization:
● No need for hand picked parameter tuning, the detector will still 

change many times
● Costly conventional implementation  
● Reduction of person power, increased performance? 

Problems that are similar:
● Calorimeters
● Tracking 
● Combining information from multiple subdetectors
● Images of sea lions

Adaptive reconstruction algorithms are working: Belle II, HGCAL, CMS

ML for very adaptive reconstruction  
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set of hits graph representation Transformer model (GNN 
updating node features) 

Object condensation loss
Clustering algorithm

Input: 
● A set of hits from different sensors (coordinates, type of hit, energy)
● Each hit is one node in the graph O(600) per particle

Output:
● Coordinate in embedding space (3D>)
● Beta (q)
● Use clustering space to build particle candidates

Reconstructed 
objects:

● List of 
particle 
candidates

● Tracks
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Pattern recognition

Energy calibrationGraph regression
e.g. true MC true energy

Graph classification PID



● Vector space + geometric product  
● Encode geometric objects and operations 

(points, planes,lines, rotations, translations, 
reflections)

● Inner product, wedge product, dual (empty to full 
dimensions)

● Equivariance to E(3), but symmetry breaking is 
part of the network  (positional encodings)

SD2
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End-to-end reconstruction approach 
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The particle flow algorithm aims to identify the produced particles in a 
collision through the combination of the information from the 
entire detector and provide best combined energy/momentum 
resolution 

● Main drivers of performance are:
○ Tracking and calo cluster efficiency 
○ Track cluster matching 
○ Resolution 

● Asymptotic PF jet resolution ~ 1-2%, best achieved so far 3-4% 
○ There is room for improvement

● Hoping to achieve higher reconstruction performance: 
cluster merging, arbitration of track vs cluster energy

ML for Particle Flow, a very adaptive reconstruction
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A Example of input data in the CLD detector



● Event generation:
○ Particle gun (10-15/40-50 particles) → ~7/24 k hits 
○ E ∊ [0.5, 50] GeV 
○ p, n, KL, π, e+-, γ
○ FullSim CLD 
○ Truth from gen 
○ Training on 400k events 

● Target of training is:
○  clustering
○ and the energy of the MC particle

Dataset  
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A Example of event from training set



Efficiency (CLD Fullsim): 
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Dataset with jet-like 
40-50 particles

Dataset with jet-like 
10-15 particles

33 GeV
KL

7 GeV
KL

1 GeV
KL

21 GeV n



Results: 
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● The ML model has no energy correction applied
● Baseline is the sum of the hits energy



Results 
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● Model: ML clustering + ML energy correction
● Baseline: Pandora 
● Improved resolution for neutral hadrons

• SHAP point to sum of the hits as relevant 
feature

● Jet resolution is driven by neutral hadron 
(HCAL) resolution

● Charged have similar performance 
• Based on track measurement

● Next steps: p reconstruction, physics events, 
impact on visible mass 



● Investigating Machine Learning based tracking 
for the IDEA detector (in addition to the 
conventional tracking)

● Simulating events with Pythia + ddsim + digi
● No beam background included
● Dataset inputs of DCH:

○ Wire geometry:
■ Layer, superlayer
■ Stereo angle
■ → Coordinates

○ Hit:
■ Distance along the wire
■ Distance to the wire

● Hits from the vertex detector

Pattern recognition for the IDEA Drift Chamber
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Top: Drift 
Chamber  [1] 

Bottom: example 
event from full 

sim



Pattern recognition for the IDEA Drift Chamber 
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● Efficiency: track is matched if 50% of hits belong to the corresponding MC particle 
(Belle II defines it with 5% hit efficiency [1])

● Tracking efficiency shows expected results with the dependence on transverse 
momentum and has to be further evaluated

○ Two imbalance factors: Tracks on different regions (with different geometries) 
are not equally accounted for and this needs to be addressed in the next 
iteration. Number of hits in each region

● Pattern recognition is implemented as a Gaudi algorithm in key4hep

○ The model is ONNX exported

● Model can be easily adapted to changes in the geometry

[1] Bertacchi, V., Bilka, T., 
Braun, N., Casarosa, G., 
Corona, L., Cunliffe, S., ... & 
Zani, L. (2020). Track finding 
at Belle II. arXiv preprint 
arXiv:2003.12466.

Z→qq (q=u,d) 

VTX Curler



Pattern recognition for the IDEA Drift Chamber 
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MLPF
MLPF allows for a detector agnostic calorimeter clustering with similar performance to Pandora 
Next steps:

● Tackling full PF, adding 4-vector reconstruction
● Evaluation on more complex datasets with physics events and jet metrics 

IDEA wire chamber pattern recognition
First pattern recognition version available in key4hep
Next steps:

● Improve the tracking by generating more balanced datasets 
● Resolve left right ambiguity of the DC hits
● Fitting of tracks and parameter estimation for TrackStates 

Thanks to the Key4hep team!

Summary and next steps
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Thank you 

1
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End-to-end approach 
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Input: 
● A set of hits from different 

sensors (coordinates, type 
of hit, energy, A)

● Each one node in the 
graph O(600) per particle

- Each object 1 
condensation point (CP)

- Repulsive +Attractive 
potentials for each CP

CP

Output:
● Coordinate in 

embedding space 
(3D>)

● Beta (q)
● Use clustering 

space to build 
showers

+ GNN



Results: 
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Neutral hadrons [0,6] GeV Sum hits

P
andora 

M
L 

● The ML model has no energy correction applied



Clustering Color Singlets
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● FCC-ee would serve as a Higgs factory, 
electroweak and top at highest luminosities

○ Measure Higgs particle properties 
and interactions in challenging decay modes

● Identification of color-neutral resonances relies 
on clustering final state into jets

● Calorimetry is expected to be much improved 
at future e+e− colliders, so that the 2-jet 
invariant mass resolution will be dominated not 
by detector resolution but rather by 
mis-clustering [1] (A)

● Jets are not well defined but color connection 
is physical, this may help improve the mass 
estimation for color singlets (H,Z,W) and 
remove more background 

A Comparison of clustering performance vs ideal reconstruction

B Example of miss clustering



Clustering Color Singlets
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Loss in performance can be due to:

● Miss matching of jets pairs
● Miss clustering of soft particles leading to 

degraded resolution

Possible solutions:

● Parameter tuning (BAO)
● Optimize distance metrics?: piecewise 

continuous function, hard optimization problem
● End-to-end approach

A Mismatching of jets pairs

H Z

H

H



Clustering Color Singlets
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● GNN - Node classification (instantiation) problem, 
permutation invariant and equivariant

● Arch: FC - Graph Transformer [1]
● Results:

○ Similar performance to classical approach 
○ Baselines:

■ Chi-squared
χ2 = 1⁄σH(M1/2-MH)2 + 1⁄σz (M2/1-MZ)2

■ Z only
χ2 = (M1/2-MZ)2

● Wiring is important, using information about the ordering 
(tree structure) performance can be improved

A. Mass distributions of signal


