

FLUKA studies for the FCC-ee MDI

FCC

Alessandro Frasca, Kevin André, Manuela Boscolo, Helmut Burkhardt, Daniele Calzolari, Andrea Ciarma, Barbara Humann, Anton Lechner, Giuseppe Lerner FCC week 2024, 12 June 2024 <u>alessandro.frasca@cern.ch</u>

Introduction

In the FCC-ee interaction regions machine equipment exposed to several radiation sources

→ FLUKA studies to estimate the relevant quantities (power deposition, radiation levels) and contribute to equipment design

Outline

- FLUKA model of FCC-ee experimental insertion
 - geometry
 - sources
- overview of tunnel radiation levels (beamstrahlung+synchrotron radiation+radiative Bhabha)
- impact of radiative Bhabha on FFQs
 - total power absorbed (to be evacuated by cryogenic system)
 - peak energy deposition in SC coils (quench risk and cumulative damage to insulator)

Previous talks

- <u>FCC week 2023</u>, London (Jun 5 9, 2023)
- FCC-ee MDI & IR mockup workshop, Frascati (Nov 16-17, 2023)
- <u>7th FCC Physics workshop</u>, Annecy (Jan 29 Feb 2, 2024)
- FCC-ee MDI meeting #52, CERN (Mar 11, 2024)
- 6th FCC-ee Radiation and Shielding Meeting, CERN (Apr 24, 2024)

FLUKA geometry of the FCC-ee IR (right of IP)

Optics lattice v22

FCC

- concrete tunnel surrounded by soil
- copper beam pipe (35mm radius)
- CuCrZr SR absorbers (no additional shielding)
- dipoles and quadrupoles (including magnetic fields)
- conical copper extraction line
- beamstrahlung dump and shielding`

Sources

FCC

Beamstrahlung photons

- photons emitted in the EM field of the counter-rotating bunch at the IP
- intense photon flux (nominally 370kW @Z-pole, 77kW @ttbar)
 o dedicated dump (see talk by <u>M. Calviani</u>)
- sampled from distributions generated with GUINEA-PIG++ by A. Ciarma

Synchrotron radiation

- photons emitted by beam particles when bent by the magnets
- SR from the beam incoming to the IP neglected (1kW in 500m)
- SR from the outgoing beam much more intense (**164kW** in 500m)
- generated run-time by FLUKA when transporting beam particles along the magnets

Radiative Bhabha electrons

- electrons scattered in radiative Bhabha at the IP and radiating one or more photons (up to 100% of their energy)
- off-momentum electrons outgoing from the IP with significant angle
 o lost downstream
- sampled from distributions generated with BBREM and GUINEA-PIG++ by A. Ciarma

Overview of tunnel radiation levels

FCC

Annual TID in the tunnel from BS, SR, and RBB

Impact of radiative Bhabha on FFQs

FLUKA model of final focus

Geometry:

○ FCC

- dummy model of central chamber
- dummy model of FFQs on the outgoing beamline (1-cm thick in equivalent material)

FFQ equivalent material:

- density = 3.367gcm⁻³
- volume fractions
 - **AI** 0.6540582
 - NbTi 0.0619107
 - **Cu** 0.1176303
 - Paraffin 0.0977433
 - Kapton 0.0686575

FCC

Radiative Bhabha distributions

BBBrem : radiative Bhabha event generator (CM of scattering particles)

- cut in maximum distance between interacting particles \rightarrow minimum momentum transfer
 - 1 σ_y cut: minimum distance to account for the realistic <u>electric field screening</u> caused by bunch particles (experience at LEP from measurements of beam lifetime, see <u>paper by H. Burkhardt</u>)
- cut in minimum energy carried by the emitted photon \rightarrow maximum energy of scattered electron
 - **50%** energy cut (electrons up to 22.8 GeV and 91.25 GeV) to study impact on FFQs (see <u>MDI</u> <u>talk</u> for a full analysis of Bhabha loss distribution)

GUINEA-PIG++: particle in cell software for beam-beam effects to apply the boost to generated e-:

asymmetric beam-beam effects (see <u>talk by D. Shatilov</u>) → asymmetric losses on FFQs

Power deposition in FFQ superconducting coils

simulated distributions 1 σ_v cut, 50% energy cut

- **Z pole** σ*ε=18.2 mb, L=1.82E+36 s⁻¹cm⁻²
- ttbar σ*ε=19.2 mb, L=1.33E+34 s⁻¹cm⁻²

FCC

TOTAL POWER DEPOSITED

	Z pole	ttbar	
QC1R1	0.30 W	3.4 mW	
QC1R2	1.54 W	20.4 mW	
QC1R3	2.00 W	29.7 mW	
QC2R1	0.20 W	1.9 mW	
QC2R2	0.04 W	1.8 mW	

High gradients in energy deposition distribution

 \rightarrow high local peak power density and maximum Total lonizing Dose (TID)

Power deposition in FFQ superconducting coils

simulated distributions 1 σ_v cut, 50% energy cut

- **Z pole** σ*ε=18.2 mb, L=1.82E+36 s⁻¹cm⁻²
- ttbar σ*ε=19.2 mb, L=1.33E+34 s⁻¹cm⁻²

FCC

TOTAL POWER DEPOSITED

	Z pole	ttbar	
QC1R1	0.30 W	3.4 mW	
QC1R2	1.54 W	20.4 mW	
QC1R3	2.00 W	29.7 mW	
QC2R1	0.20 W	1.9 mW	
QC2R2	0.04 W	1.8 mW	

Annual dose computed assuming 10⁷ s of operation per year at the reference instantaneous luminosity

Shielding needed in an area already with tight space constraints!

Electron impact angle analysis

Radiative Bhabha electrons impacting at small angles:

- higher effective shielding thickness t_{eff} = t*1/cosθ
- 1/cosθ >>10

FCC

- radiation showers see >>10x shielding thickness
- few mm of W (X_0 = 0.35 cm) shielding can be effective
- limiting factor: Molière radius (~size of energy deposition cone)→0.93 cm for tungsten

Conceptual shielding studied: 0.25 cm, 0.5 cm and 1 cm thick layer of tungsten around QC1 → impact on magnet design (greater aperture needed)

Shielding effectiveness

○ FCC

TOTAL POWER DEPOSITED

	0 cm	0.25 cm	0.5 cm	1 cm
W1	—	0.44 W	0.57 W	0.67 W
QC1R1	0.30 W	0.07 W	0.03 W	0.01 W
W2	-	2.19 W	2.85 W	3.34 W
QC1R2	1.54 W	0.34 W	0.14 W	0.05 W
W3	_	2.75 W	3.59 W	4.22 W
QC1R3	2.00W	0.44 W	0.19 W	0.07 W

Considerations on tungsten shielding

What would be a reasonable dose limit?

- at LHC inner triplet quadrupoles limited to **30 MGy** (crossing inversion at ATLAS to overcome the design target of 300 fb⁻¹)
- → preliminary indication is that 5 mm shielding is necessary mainly because of TID

5 mm of tungsten ensures

FCC

- peak dose: 3 MGy/y
- peak power density deposition: 1 mW/cm3
- asymmetric design can be considered

iterations with magnet design experts shall follow on this evidence (results already anticipated to John Seeman)

Summary and prospects

Beamstrahlung dump

FCC

• input is being provided for thermomechanical and radiation protection studies (see previous talks and <u>talk by M. Calviani</u>)

Synchrotron radiation

• studies will follow to further reduce the tunnel radiation levels with additional shielding

FFQs power and dose study

- computed contribution from radiative Bhabha electrons (main contribution)
- 0.5cm-thick tungsten shielding would ensure safe values of peak power deposition and TID
- missing additional contributions (not yet studied): incoherent pair production, Z→qq, beam gas scattering, and possibly others to be quantified

Next topic to be approached

• radiation load to the detector, starting from establishing what are the key radiation sources

Thank you for your attention!

○ FCC

Power deposition in tungsten shielding

