The EIC Electron Polarimeters and Lessons for the FCC

EIC Electron Polarimeter Map and Requirements

RCS ramps electrons to full energy \rightarrow injects into storage ring

- \rightarrow Storage ring will have "top-off" injection
- → ESR polarimeter will function in counting mode (~ 1 backscattered photon/crossing)
- → RCS polarimeter will function in multi-photon mode (~1000 backscattered photons/crossing)

ESR Compton Requirements:

- \rightarrow Bunch-by-bunch measurement of polarization
- \rightarrow Simultaneous measurement of both P_L and P_T
- → Measurement fast enough to achieve 1% statistics for each bunch
- → Systematics *dP/P* = 1% or better

RCS Compton Requirements:

- ightarrow Polarization averaged over several bunches
- ightarrow Rapid measurement to facilitate accelerator setup
- \rightarrow Modest requirements on absolute precision (~few %)
- ightarrow Transverse polarization measurement only

EIC and FCC-ee comparisons

- EIC Electron Storage Ring
 - -P=75-85% → electrons fully polarized at injection
 - -E = 5, 10, 18 GeV
 - -Beam current = **2.5 A** (5, 10 GeV), 0.26 A (18 GeV)
 - -Bunch spacing = **10 ns** (5,10 GeV), **40 ns** (18 GeV)
- EIC Rapid Cycling Synchrotron
 - Accelerates bunches from 400 MeV to full energy in storage ring (5, 10, 18 GeV)
 - Bunch injection frequency → 2 Hz (76 kHz in ring)
 - -Bunch charge \rightarrow up to 28 nA
 - -Ramping time = 100 ms
- Polarimeter functions
 - High precision absolute polarization measurements for ESR (experiment)
 - Modest precision absolute polarization measurements in RCS (beam tune-up)

- FCC-ee
 - −P=10% to ? → polarization from Sokolov-Ternov effect
 - -E = 45.6, 80, 120, 182.5 GeV
 - -Beam current = **1390**, 147, 29, 5.4 mA
 - -Bunch spacing = 19.6, 163, 994, 3396 ns (colliding bunches), 3 kHz (pilot bunches)

Polarimeter functions

- -Relative polarization of pilot bunches for Resonant Depolarization (RDP) measurement or Free Spin Precession (FSP)
- Monitor longitudinal polarization of colliding bunches → stringent upper limits

Polarization Measurement via Compton Polarimetry

Compton longitudinal and transverse analyzing powers

$$A_{\text{long}} = \frac{2\pi r_o^2 a}{(d\sigma/d\rho)} (1 - \rho(1+a)) \left[1 - \frac{1}{(1 - \rho(1-a))^2} \right]$$

$$A_{\rm T} = \frac{2\pi r_o^2 a}{(d\sigma/d\rho)} \cos \phi \left[\rho (1-a) \frac{\sqrt{4a\rho(1-\rho)}}{(1-\rho(1-a))} \right]$$

Jefferson Lab

4

Generic Compton Polarimeter

Key systems:

- \rightarrow Laser
- \rightarrow Photon and electron detectors

 \rightarrow Dipole

Beam interfaces:

- \rightarrow Vacuum chambers, windows
- \rightarrow Beam diagnostics \rightarrow size, trajectory
- → Background mitigation → collimators, synchrotron absorbers

Mode of operation determines detailed design

- Low intensity at JLab requires high gain Fabry-Perot cavity to increase effective laser power
 - Higher intensities in storage rings allow single-pass laser systems
- Longitudinal measurements can rely on energy-dependent asymmetry (photons)
 - Measurement of scattered electrons requires position sensitive detector
- Transverse measurements **require** measurement of spatial dependence of asymmetry

Polarization Measurement Methods

Actual extraction of polarization can be achieved in a variety of ways:

(counts)

LEFT - RIGHT

1000

500

- 500

-1000

0

Longitudinal

Fit the asymmetry energy spectrum (photons or electrons)

Energy-weighted integral $A = \frac{\Sigma^+ - \Sigma^-}{\Sigma^+ + \Sigma^-}$ Σ^{\pm} = energy deposited for +/- beam helicity

Transverse

Change in average vertical position, $<\Delta Y>$

6

EIC ESR Compton Polarimeter Laser System

Average of 1 backscattered photon/bunch crossing will allow Compton measurements on the ~1 minute time scale → can be achieved with pulsed laser system that provides about 5 W average power at 532 nm

JLab injector laser system

Polarization in vacuum set using "back-reflection" technique

→ Requires remotely insertable mirror (in vacuum)

Proposed laser system based on similar system used in JLab injector and LERF

Gain-switched diode seed laser – variable frequency, few to 10 ps pulses @ 1064 nm

→ Variable frequency allows optimal use at different bunch frequencies (100 MHz vs 25 MHz)

- 2. Fiber amplifier \rightarrow average power 10-20 W
- 3. Optional: Frequency doubling system (LBO or PPLN)
- 4. Insertable in-vacuum mirror for laser polarization setup

Prototype system under development at JLab (C. Gal, D.G., Shukui Zhang JLab)

Laser param.	1 pilot (1.6nC)	1 pilot v2 (1.6nC)	colliding bunches (38nC, at Z)	Collide with ~100	
Repetition rate	3 kHz	3 kHz	30 kHz	phase to sample	
Pulse energy	1 mJ	1 mJ	10x0.5mJ	all bunches in rin	
Pulse duration	5 ns	5 ps	5 ps		
Average power	3 W	3 W	150 W		
Scattering rate	2x10 ⁵ /s	3x10 ⁵ /s	4x10 ⁸ /s	Note: very high rates	
Scattering rate per bunch	2x10 ⁵ /s	3x10 ⁵ /s	4x10 ⁶ /s		

Aurélien Martens (IJCLab Orsay), FCC E-POL meeting, March 6, 2023

Q-switched laser meets requirements for pilot bunches, but mode-locked Yb offers ability to measure both pilot and (a subset of) the colliding bunches

 \rightarrow Mode-locked laser solution is similar to the EIC gain-switched solution \rightarrow gain-switched system may offer more flexibility, no need to change phase to sample all bunches

Key systematic uncertainty is polarization of laser at collision point

- \rightarrow No easy way to measure laser polarization in vacuum
- → Must rely on measurements before and after vacuum windows
- → Mechanical effects, vacuum stresses can impact window birefringence
- → Tests at JLab (Hall C) measured exit line polarization before and after connecting/bolting flanges, while pumping down

Constraining Laser Polarization using back-reflection \rightarrow EIC and FCC?

Propagation of light through the vacuum window to the IP can be described by matrix, $M_E \rightarrow Light$ propagating in opposite direction described by transpose matrix, $(M_E)^T \rightarrow If$ input polarization (ϵ_1) linear, polarization at cavity (ϵ_2) circular only if polarization of reflected light (ϵ_4) linear and orthogonal to input*

Laser polarization at a mirror (inside vacuum) can be set/determined by monitoring the back-reflected light in a single photodiode

- → Used this technique at JLab to constrain laser polarization to ~0.1%
- → FCC will require 0.01% level precision to meet requirements for minimizing P_L

*J. Opt. Soc. Am. A/Vol. 10, No. 10/October 1993

Detectors

- EIC ESR Compton will operate in single-photon mode with short times between bunches
- EIC RCS will operate in multi-photon mode with many backscattered photons between bunch crossing
- In both cases, need to measure position dependent asymmetry to extract transverse polarization

FCC-ee polarimeter will operate in multi-photon mode like RCS, but with bunch separation similar to ESR Compton

Both EIC-RCS and FCC-ee will use some sort of pixel or strip detector, operating in integrating mode → Perhaps common detector technology possible

LEP Transverse Compton Detector

Position Sensitive (strip or pixel) Detectors

- Key requirement for EIC is time response (~10 ns) and segmentation (100-400 μ m)
- → Silicon detectors (e.g. AC-LGADs) can easily meet these requirements and are planned for use in several systems in EIC main detector
- → Compton polarimeter will see much higher event rates than main detector and receive *higher radiation dose*

"The state of the art silicon strip and pixel detectors used at experiments at LHC retain close to 100% detection efficiency for minimum ionizing particles at hadron fluences in excess of 10¹⁵ cm⁻² and ionization doses of 1 MGy. " -Solid State Detectors for High Radiation Environments, Gregor Kramberger

EIC electron detector in storage ring will receive 1 MGy dose in about **1-2 weeks**

- \rightarrow Diamond has higher radiation hardness, adequate time response
- → Used successfully at JLab (Hall C) → improved system under development for use in Hall A and C
- → New "FLAT32" ASIC will allow low noise, high efficiency readout, with very fast time response

Improved Diamond Electron Detector @ JLab \rightarrow EIC

Primary drawback of first JLab diamond detector was trip-to-strip variation in efficiency \rightarrow needed high thresholds to suppress noise

- → Diamond signals were not large, signals propagated to electronics far from detector (outside the vacuum chamber)
- → New diamond detector will have amplifier-discriminator electronics mounted on carrier board → FLAT-32

FLAT-32 development by SenselC

- ightarrow 32 channel version of CALYPSO electronics
- \rightarrow Low noise, fast
- \rightarrow Choice of analog or LVDS output

Testing underway at SenselC

To be deployed in next couple years \rightarrow may already meets EIC needs

JLab Hall C diamond detector

EIC Photon Detectors

- ESR photon detector must measure longitudinal and transverse polarization
- Same timing requirements as electron detector 10 ns spacing
- *P_L* from energy spectrum → need high resolution crystal calorimeter
 - BaF2 or PbWO4? Slow components and radiation hardness an issue
- *P_T* from spatial asymmetry (left-right/up-down)
 - 10 ns bunch spacing → diamond strips (x-y)
 - 100-200 μm strips to allow "self calibration" fit asymmetry and offset
- RCS will primarily measure transverse polarization
 - Larger bunch spacing so can be slower than ESR detectors
 - Like ESR, need 100-200 μm segmentation, operated in integrating/multi-photon mode

Fit to simulated "ideal spectrum" \rightarrow offset allowed to float

Table 3. Detectors:	geometry,	number of	of pixels,	size	of pixels.
---------------------	-----------	-----------	------------	------	------------

Detector	Size $(X \times Y)$	N pix ($X \times Y$)	Pixel size $(X \times Y)$
Photons	$10 \times 10 \text{ mm}$	100×100	$100 \times 100 \ \mu m$
Electrons	$400 \times 4 \text{ mm}$	1600×80	$250 \times 50 \ \mu \mathrm{m}$

Simulations of photon/electron distributions exist: For example, *N. Yu. Muchnoi*, *JINST* 17 (2022) 10, P10014

Expect 40-60 backscattered photons/scattered electrons per laser-beam bunch crossing \rightarrow must operate in integrating/multi-photon mode

Required segmentation requires further study, but easily achievable pitch sizes appear adequate

Photons: MC

- → Less stringent timing requirements → maximum laser repetition rate 30 kHz
- → Similar, radiation hardness issues as EIC? → 400 MHz at $45.6 \frac{\text{GeV}}{3000}$
- → Diamond also preferred for FCC

ESR Compton Beamline Design and Synchrotron Radiation

Rapid Cycling Synchrotron (RCS) Compton Polarimeter

RCS properties

- RCS accelerates electron bunches from 0.4 GeV to full beam energy (5-18 GeV)
- Bunch injection frequency \rightarrow 2 Hz
- Bunch rotation frequency \rightarrow 76 kHz
- Bunch charge \rightarrow up to 28 nA
- Ramping time = 100 ms

Polarimetry challenges

- Analyzing power often depends on beam energy
- Low average current
- Bunch lifetime is short

RCS Compton will operate very differently than ESR Compton

ightarrow Measurement of bunch-by-bunch polarization not practical

→ Measurements will be averaged over several bunches – can tag accelerating bunches to get information on bunches at fixed energy

→ Requires measurement in multiphoton mode (many backscattered photons/electron bunch)

- Despite significant difference in energy regime, several common issues faced by EIC and FCC polarimeters
 - -Beam structure: short times between bunches in some cases
 - -Synchrotron radiation issues
 - -Laser diagnostics
- Use of laser back-reflection (HERA → JLab → EIC) eliminates nearly all uncertainty in determination of laser circular polarization at interaction point
- EIC planning to use diamond detectors in ESR Compton — Fast response (new ASIC), segmentation, radiation hard
- Careful design of ESR Compton region has mitigated synchrotron radiation issues
 - -Even larger issue at FCC due to higher energy
- Not addressed today: beamline diagnostics (beam size, position, direction, intensity) crucial for accurate polarization measurements

EIC Beam Properties and Polarimetry Challenges

EIC will provide unique challenges for electron polarimetry

→ 10 ns between electron/hadron bunches at high luminosity configuration (~40 ns at higher CM configuration)

 \rightarrow Intense beams (0.26 to 2.5 A)

ightarrow Large synchrotron radiation

Requirements:

- \rightarrow Bunch-by-bunch measurement of polarization
- \rightarrow Simultaneous measurement of both P_L and P_T
- → Measurement fast enough to achieve 1% statistics for each bunch
- \rightarrow Systematics *dP/P* = 1% or better

Compton polarimeter will be upstream of upstream of detector IP

At Compton interaction point, electrons have both longitudinal and transverse (horizontal) components

- → Longitudinal polarization measured via asymmetry as a function of backscattered photon/scattered electron energy
- \rightarrow Transverse polarization from left-right asymmetry

Beam energy	PL	P _T	
5 GeV	99.3%	11.8%	
10 GeV	97.3%	23.0%	
18 GeV	91.4%	40.5%	

Polarization Components at Compton (December 2023 lattice)

Beam polarization will be fully longitudinal at detector IP, but accurate measurement of absolute polarization will require *simultaneous* measurement of P_L and P_T at Compton polarimeter

EIC Compton will provide first high precision measurement of P_L and P_T at the same time

EIC and FCC-ee Polarimetry: areas of overlapping interest

- The Electron Ion Collider (EIC) at BNL and FCC-ee will operate in different energy regimes, but face some common issues with respect to electron polarization measurements
- Compton polarimeters are very sensitive to beam properties
 - -Beam size and stability
 - Beam-related backgrounds (synchrotron, Bremsstrahlung, halo-induced)
- Laser technologies and polarization measurement techniques
- Detectors
- Simulations

Polarimeter Simulations

Figure courtesy Ciprian Gal (Miss. State U./JLab)

EIC has GEANT4 simulation of ESR Compton, including Compton event generation, beamline geometry, and detectors → Framework could be easily adapted for other polarimeters → in use for some KEKb related simulations (U. Manitoba)

Has been used for studies of beam-related backgrounds, beam size sensitivity, detector requirements, etc.

Compton polarimetry – lessons from previous devices

- Longitudinal polarimetry
 - Electron detector needs sufficient segmentation to allow self-calibration "on-the-fly"
 - Photon detector integrating technique provides most robust results – perhaps not practical at EIC? → lower the threshold as much as possible
- Transverse polarimetry
 - Remove η -y calibration issue use highly segmented detectors at all times
 - Calorimeter resolution \rightarrow integrate over all energy?
 - Beam size/trajectory important build in sufficient beam diagnostics
- Common to both
 - Birefringence of vacuum windows can impact laser polarization → use back-reflected light (optical reversibility theorems)

