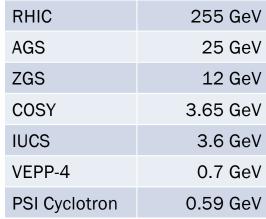
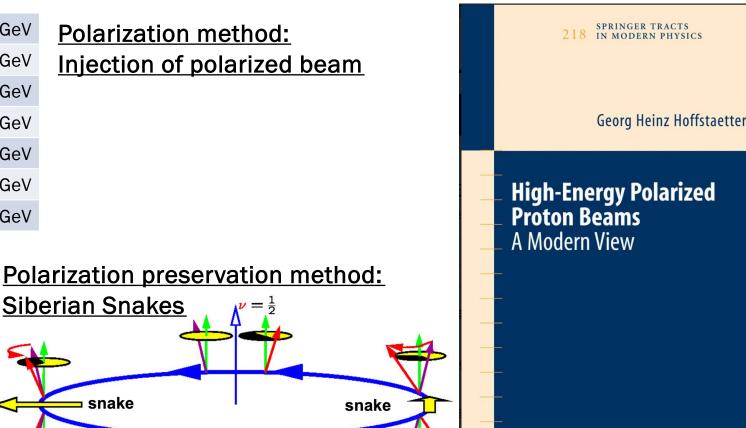


Polarized Electrons at the EIC, and lessons for the FCC


Georg Hoffstaetter de Torquat for Cornell's ELR / EIC Group



Accelerators with proton polarization

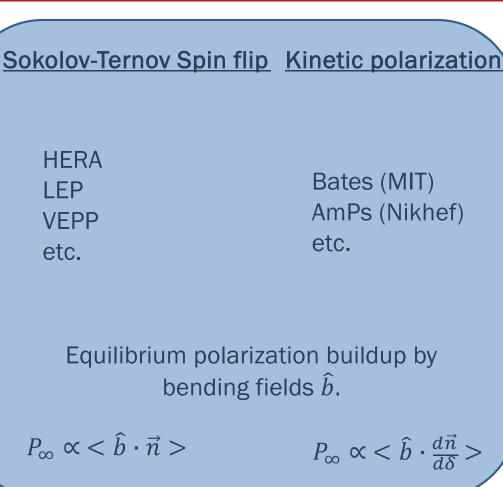
Georg.Hoffstaetter@Cornell.edu

13 June 2024

D Springer

2

Modes of polarizing electrons rings


Polarized injection

Bates (MIT) AmPs (Nikhef) ELSA (Bonn) SLC CEBAF etc.

→ EIC, SuperKEK-B

Time average decaying polarization

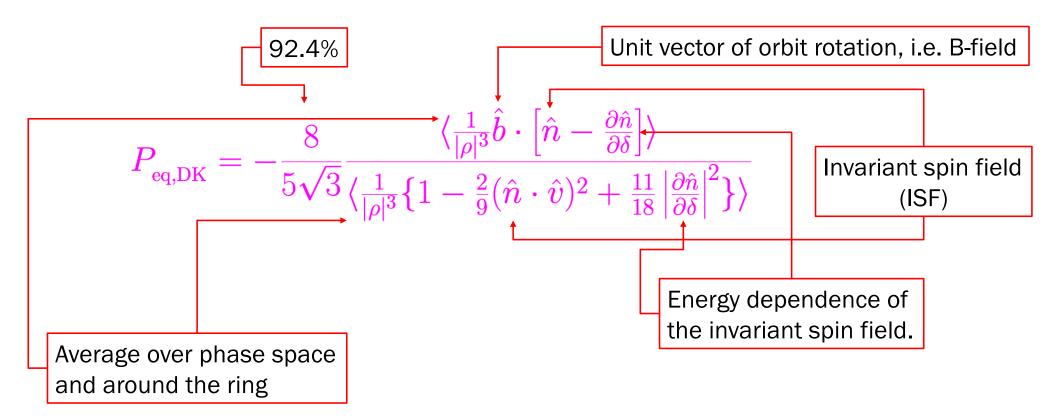
$$< P > \propto P_{\infty} + (P_0 - P_{\infty}) < e^{-t/\tau} >_t$$

Georg.Hoffstaetter@Cornell.edu

Cornell Laborat Accelerator-bas and Education	tory for sed Sciences (CLASSE)	celera	tors wi	th electro	on polari	zation	Brookhaven
VEPP	1970 vert.	80%	0.65 GeV				
ACO	1970 vert.	90%	0.53 GeV				
VEPP-2M	1974 vert.	90%	0.65 GeV				
SPEAR	1975 vert.	90%	2 GeV				
VEPP-3	1976 vert.	80%	3.7 GeV	EIC	long.	<70%>	5 to 18GeV
VEPP-4	1982 vert.	80%	5 GeV	SuperKEK-B	long.		
CESR	1983 vert.	30%	5 GeV	FCC-ee	vert.		
PETRA	1982 vert.	70%	16.5 GeV				
DORIS	1983 vert.	80%	5 GeV				
TRISTAN	1990 vert.	70% (?)	29 GeV				
LEP	1993 vert.	57%	47 GeV				
HERA	1993 vert.	60%	26.7 GeV				
HERA	1994 <mark>long.</mark>	70%	27.5 GeV				
LEP	1999 vert.	7%	60 GeV				
VEPP-4M	1990 vert.	(?)	6 GeV				
VEPP2000	2010 vert.	(?)	1 GeV				

Georg.Hoffstaetter@Cornell.edu

The invariant spin field (ISF)

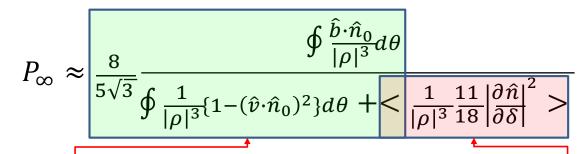

A) Maximum polarization: $P_{lim} = \langle \vec{n}(\vec{z}) \rangle_{Phase space}$ For a large divergence, the average polarization is small, even if the local polarization is 100%. B) $\vec{n}(\vec{z}) \cdot \vec{S}$ is an adiabatic invariance ! The stable polarization of a beam must be parallel to the ISF at every phase space point.

Linearized $\vec{n}(\vec{z})$ can be analytically computed

Georg.Hoffstaetter@Cornell.edu

Brookhaven Cornell Laboratory for Accelerator-based Sciences The Derbenev Kondratenko equilibrium National Laboratory

Where do these terms come from, what do they mean?


 \rightarrow My presentation at the EPOL workshop for FCC & EIC, CERN, 09/22/2022

Georg.Hoffstaetter@Cornell.edu

Computational techniques

Compute on the closed orbit

Needs the invariant spin field $\boldsymbol{\boldsymbol{\varpi}}$

• Linearize the spin-orbit equations of motion in phase space amplitudes.

→ Codes: SLIM / SLICK / BMAD (Presentation by Jacob Asimow – next Tuesday)

• Perturbation theory nonlinear in small phase space amplitudes.

→ SMILE program, did not converge in the past.

- Differential Algebra computation of $\vec{n} \rightarrow$ did not converge in the past, new research
- Stroboscopic averaging of $\vec{n} \rightarrow$ new research.
- Fourier analysis of tracking data to get $\vec{n} \rightarrow$ SODOM program.

Polarization in the ESR of the EIC

Polarization studies have changed many important features of today's ESR

- 10 GeV Lattice Correction of 1IP/2IP Operating Energies
- ESR v5.3: Nonlinear Resonance Identified, Tunes Changed
- ESR v5.6: Partial Longitudinal Spin Match by solenoid polarity change

Observation: ESR v6.1: sometimes has better polarization with errors.

→ The Best Adjustment Groups for ELectron Spin (BAGELS) Method

- Spin Match the ESR (+ saving the 2-IP 18 GeV!)
- 10 Error Seeds: view Knobs to Correct the Spin Match
- Vertical Emittance Creation with minimal impact on polarization
- Global Coupling Compensation with minimal impact on polarization

Methods

- All linear/nonlinear polarization calculations
- Spin matching and optics rematching
- 6D emittance calculations
- Nonlinear Monte Carlo spin tracking with radiation
- Nonlinear tune scans
- Nonlinear calculations of τ_{dep}
- Performing the BAGELS method
- ...

- Map Tracking damped maps generated between each bend center generated by PTC
- **"Bmad" Tracking** element-by-element damped nonlinear maps, radiation points after each element
- PTC Tracking element-by-element symplectic integration, radiation points at each step

→ Come to the Bmad training workshop July 29 – August 2 at Brookhaven National Lab.

Georg.Hoffstaetter@Cornell.edu

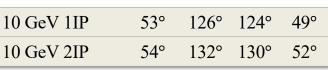
10 GeV Correction of Operating Energies

Bends

 ψ_{14}

45°

N/A


 $\psi_{2,3}$

45°

90°

- To avoid depolarizing spin resonances, we require the spin tune v_s = half integer
- In a perfectly flat ring, $v_s = a\gamma_0$, but not in general!
- Rotates \hat{n}_0 to longitudinal for ~5, ~10, and ~18 GeV
 - Exact energy is chosen for v_s = half integer
- At 5 and 18 GeV, spin precession across rotator = 180°
 - Precession through rotator unchanged if solenoids on/off
 - So $v_s = a\gamma_0$ for 5 and 18 GeV, but NOT 10 GeV!
- For 10 GeV, turning on a rotator will change the spin tune
 - IIP/2IP 10 GeV lattice will have different operating energies!
 - Exact operating energies must be numerically solved using eigenvalues of rotation matrices:

LIP:
$$R_{1IP}(\gamma_0) = R_{arc}(\gamma_0) R_{IR}(\gamma_0) \rightarrow 9.78 \text{ GeV}$$

2IP: $R_{2IP}(\gamma_0) = R_{arc}(\gamma_0) R_{IR}(\gamma_0) R_{IR}(\gamma_0) \rightarrow 10.22 \text{ GeV}$

Solenoids

 $\phi_{2.3}$

0°

90°

 $\phi_{1.4}$

90°

0°

Bend module

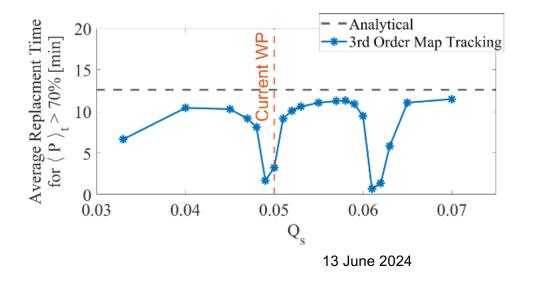
solenoid

5 GeV 1IP/2IP

18 GeV 1IP/2IP

module

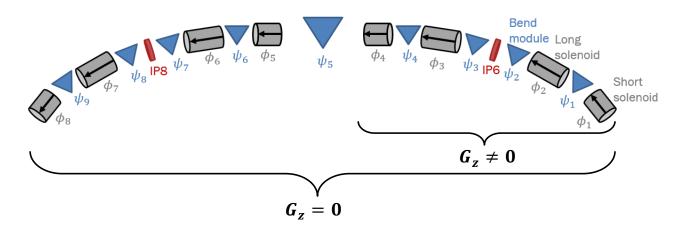
- Corrected the 10 GeV energies, found that different energies (and lattices!) necessary for 10GeV 1IP/2IP
- → Not for the FCC: Is the spin tune really $a\gamma_0$ when during depolarization scans? Does it depend on the orbit or the particle's average amplitude, i.e., the emittance to the requested precision?

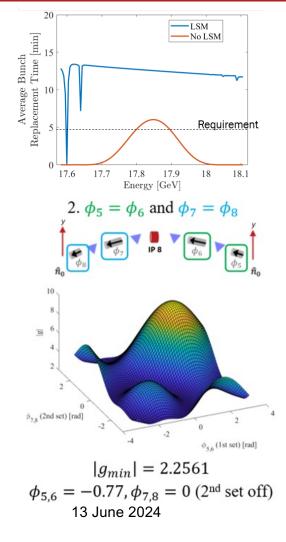

Georg.Hoffstaetter@Cornell.edu

Nonlinear Resonance Identified, Tunes Changed D Brookhaven

ESR v5.3 had better polarization without longitudinal spin match, why?

- 1. Without the LSM, there is zero dispersion in the solenoid modules
- 2. Nonlinear tracking w/ custom element orders (in Bmad) proved blowup caused by 2nd order effects in solenoid module quads!
- 3. Tune scan reveals:
- Tunes (0.12,0.10,0.05) were directly on $Q_y 2Q_s$ resonance.
- This finding required us to change the bare lattice WP to $(Q_x, Q_y) = (0.08, 0.14)$

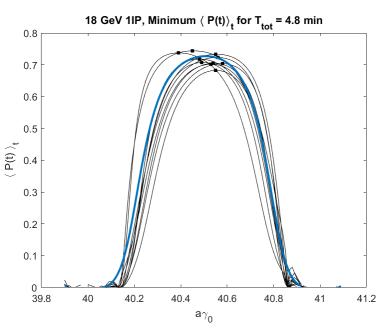

Georg.Hoffstaetter@Cornell.edu


Partial Longitudinal Spin Match

- LSM requires 11 T solenoids and was therefore dropped.
- ESR has 2IRs. The 2nd IR's solenoids to partially LSM !

- Calculated optimal IR-8 solenoid settings for partial LSM
- Implemented in Bmad: $T_{tot} = 6.0 \text{ min} \rightarrow T_{tot} = 6.4 \text{ min}$
- Must find another way to improve the polarization...

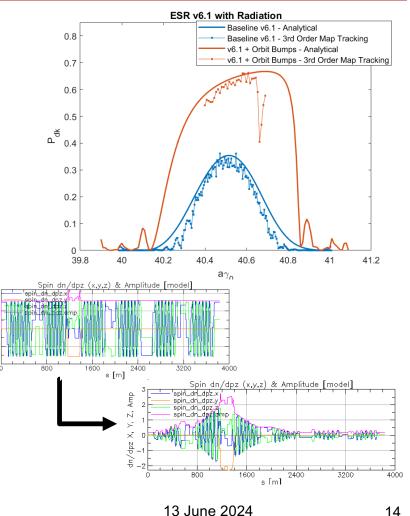
Georg.Hoffstaetter@Cornell.edu


Better Polarization with Errors? Strookhaven

Added RMS errors to the lattice to check polarization robustness for 10 error seeds

RMS error	X (mm)	Y (mm)	Roll (mrad)	dB/B (%)	
Dipoles	0.2	0.2	0.5	0.1	
Quadrupoles	0.2	0.2	0.5	0.1	
Sextupoles	0.2	0.2	0.5	0.2	
High-β dipoles	0.2	0.2	0.5	0.05	
FF quads	0.1	0.1	0.5	0.05	

- Blue = ideal lattice
- Black = one of 10 error seeds
- Polarization better than ideal for some error seeds??
- → This investigation lead the BAGELS method, the Best Adjustment Groups for Electron Spin



The BAGELS Method

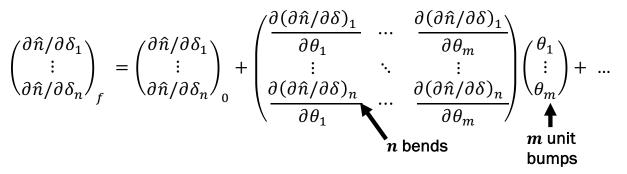
Radiative depolarization rate:

$$\tau_{dep}^{-1} \propto \oint ds \left\langle g^3 \frac{11}{18} \left| \frac{\partial \hat{n}}{\partial \delta} \right|^2 \right\rangle$$

- $\partial \hat{n} / \partial \delta$ is the bad thing!
 - Conventional methods: G-matrices (spin matching), harmonics and tilts of \hat{n}_0 , etc
- Found that vertical closed orbit bumps can individually have small impacts on $\partial \hat{n} / \partial \delta$ globally
- Optimized all π -bumps in arcs 3,5,7,9 for minimum τ_{dep}
 - Turned off sextupoles, then turned on + fixed coupling
- Excellent polarization, with major problems:
 - 1. Such an optimization is impossible in real life
 - 2. How to handle random closed orbit distortions?

Georg.Hoffstaetter@Cornell.edu

Brookhaven

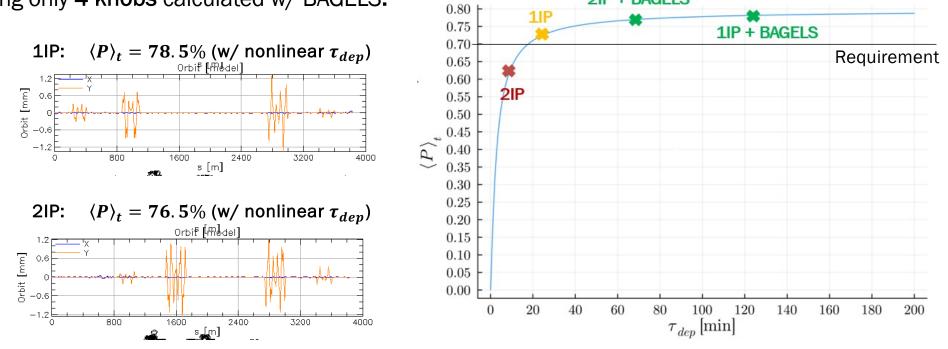

National Laboratory

The BAGELS Method

• Consider how $\partial \hat{n} / \partial \delta$ at *n* bends varies linearly with each *m* "unit" closed orbit bump θ_i in the ring

- We are looking for few orbit knobs that most effectively make $< |\partial \hat{n}/\partial \delta|^2 >$ minimal \rightarrow SVD !
- Instead for non-square matrices, we use singular value decomposition (SVD) to calculate the Best Adjustment Groups for ELectron Spin!
 - "Eigenvectors" with largest "eigenvalues" have maximum impact on $\partial \hat{n} / \partial \delta$
 - "Eigenvectors" with smallest "eigenvalues" have minimum impact on $\partial \hat{n} / \partial \delta$
- Eigenvectors are the knobs/groups define the coil strengths per vertical orbit bump

Georg.Hoffstaetter@Cornell.edu



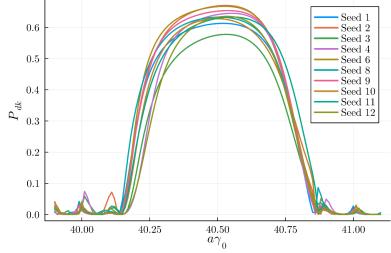
BAGELS: Spin Match the ESR

2IP + BAGELS

Using only 4 knobs calculated w/ BAGELS:

- The BAGELS method allows polarized collisions for the 2-IP lattice
- Achieved highest polarizations observed in nonlinear tracking of ESR, with minimal orbits
 - Exceeding the v5.3 (off resonance), which had a longitudinal spin match

Georg.Hoffstaetter@Cornell.edu

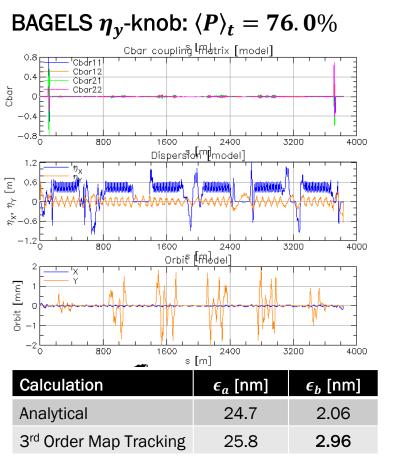

BAGELS: 10 Error Seeds

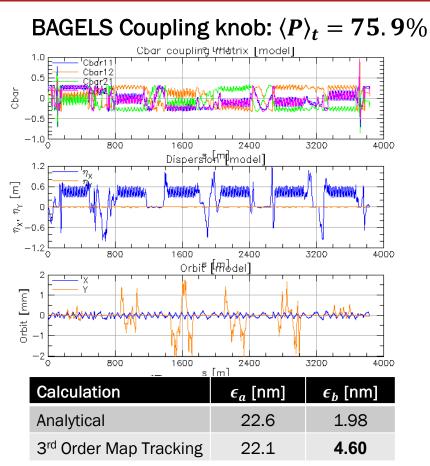
Added RMS errors:

RMS error	X (mm)	Y (mm)	Roll (mrad)	dB/B (%)
Dipoles	0.2	0.2	0.5	0.1
Quadrupoles	0.2	0.2	0.5	0.1
Sextupoles	0.2	0.2	0.5	0.2
High-β dipoles	0.2	0.2	0.5	0.05
FF quads	0.1	0.1	0.5	0.05

After orbit correction, using the BAGELS knobs, the spin match can be fixed:

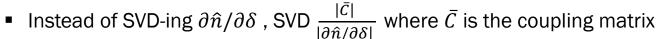
	$P_{dk,max}$ (Linear)		
Lattice	Before	After	
No Errors	35%	67.4%	
Seed 1	33.0%	61.3%	
Seed 2	41.8%	67.0%	
Seed 3	31.2%	57.8%	
Seed 4	34.6%	64.5%	
Seed 6	29.7%	66.8%	
Seed 8	38.3%	63.3%	
Seed 9	41.8%	65.4%	
Seed 10	37.7%	62.8%	
Seed 11	26.6%	63.3%	
Seed 12	35.7%	63.5%	


BAGELS gives a minimal number of knobs to restore polarization with realistic orbit distortions

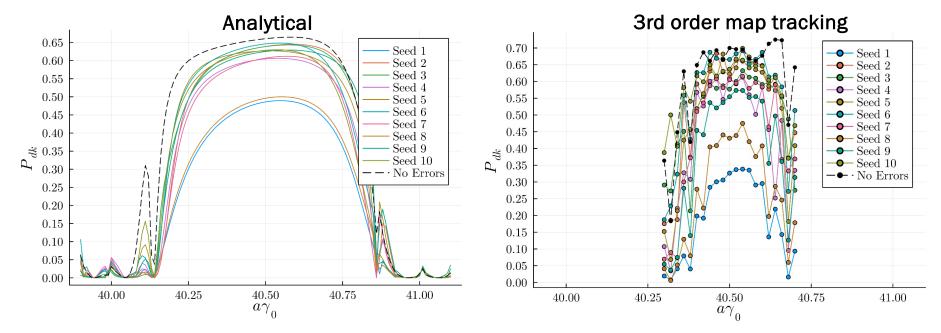

Georg.Hoffstaetter@Cornell.edu

BAGELS: ϵ_{v} -creation

• Polarization requirements exceeded for both cases even with large ϵ_b


Georg.Hoffstaetter@Cornell.edu

13 June 2024


18

BAGELS: Global Decoupling

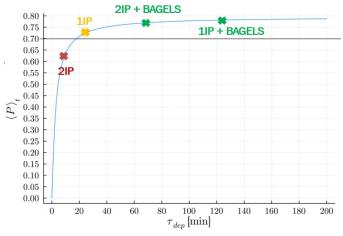
Using only 8 BAGELS global decoupling knobs:

- Coupling sufficiently under control for all error seeds
- Polarization requirements exceeded for all error seeds
- No need to buy skew quads for global coupling compensation!

Georg.Hoffstaetter@Cornell.edu

13 June 2024

Brookhaven


National Laboratory

Conclusions

- ESR will provide polarized electrons at 5, 10, and 18 GeV, both for 1-IP and 2-IP
- 10 GeV energy corrected for half integer spin tune, 1IP and 2IP calculated
- Dangerous nonlinear resonance identified, tunes changed
- Longitudinal spin match not feasible, but...
- The Best Adjustment Groups for Electron Spin (BAGELS) method provides a novel, feasible, minimally-invasive way to minimize radiative depolarization in all scenarios
- 1-IP lattice far exceeds requirements (even > v5.3)
- 2-IP lattice now exceeds requirements (even > v5.3)
- Sufficient ϵ_b created for beam-size matching with polarization exceeding requirements
- 8 global decoupling knobs calculated with minimal effect on polarization (no need to add skew quads!)

Georg.Hoffstaetter@Cornell.edu

Thank you!

Acknowledgements

- Matt Signorelli (Who did most of this work as his PhD project)
- David Sagan
- Desmond Barber
- Vadim Ptitsyn
- Yunhai Cai
- Jorg Kewisch
- Eliana Gianfelice-Wendt
- Daniel Marx
- Christoph Montag
- Yuri Nosochkov
- Steve Tepikian
- And the rest of the EIC-ESR team!