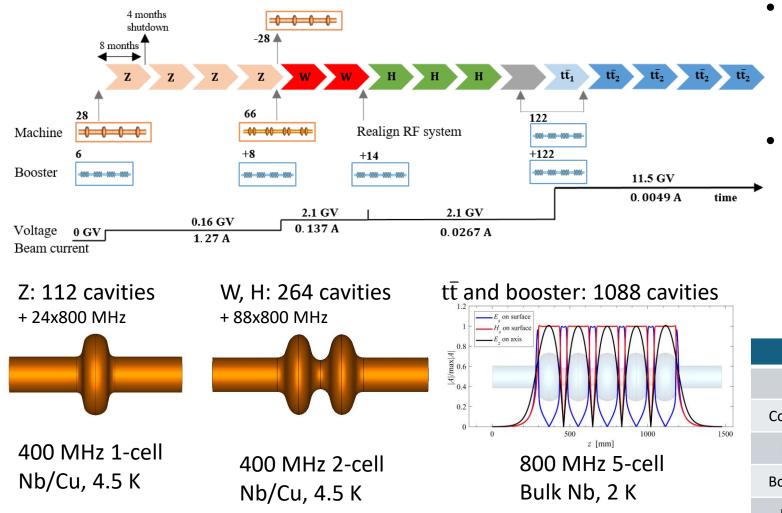


FCC SRF Roadmap

Frank Gerigk, CERN


With material from JP. Burnet (ATS-DO), S. Gorgi Zadeh, F. Peauger, V. Parma, O. Brunner, E. Montesinos, W. Venturini, D. Smekens, M. Therasse, A. Macpherson, I. Syratchev (SY-RF), M. Garlasche, S. Barrière (EN-MME), T. Koettig (TE-CRG), G. Rosaz (TE-VSC), T. Raubenheimer (SLAC), and many more

FCC week, 10 - 14 June 2024, San Francisco

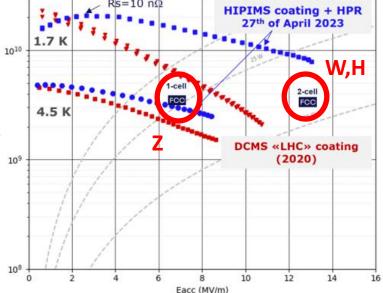
Content

- RF baseline
- SRF R&D
- Efficient RF power sources
- RF R&D roadmap

FCC-ee SRF system baseline (see F. Peauger)


- **Baseline**: Starting with 1-cell for Z to reduce HOM power load: but 1-cell modules need to be removed for W and replaced by 2-cell modules.
- **Under study**: i) starting with 2-cell 400 MHz using increased HOM damping & transverse feedback, ii) using 6-cell 800 MHz instead of 5cell

	Z	W	н	tī
Energy [GeV]	45.6	80	120	182.5
Collider beam current [mA]	1270	137	26.7	4.9
RF Voltage collider [GV]	0.08	1.0	2.1	2.1/9.4
Booster beam current [mA]	0.13	0.014	0.003	0.0005
RF Voltage booster [GV]	0.06	0.4	2	11


SRF R&D

Challenging SRF baseline parameters (see C. Pereira Carlos, K. McGee)

- Current bare cavity goal:
 - $Q_0 = 3.3 \times 10^9$ at $E_{\rm acc} = 13.2$ MV/m for 2-cell 400 MHz Nb/Cu
 - $Q_0 = 3.8 \times 10^{10}$ at $E_{\rm acc} = 24.5$ MV/m for 5-cell 800 MHz Nb
- Surface preparation:
 - 400 MHz Nb/Cu: HiPIMS has shown promising results on several 8 1.3 GHz single-cell cavities¹. First attempt on 400 MHz LHC type cavity has been performed
 - **800 MHz bulk Nb**: 30 MV/m with Q_0 in the range of $2 3 \times 10^{10}$ at 2.0 K in Jlab². R&D and collaboration with FNAL/Cornell to achieve $Q_0 = 3.8 \times 10^{10}$ or higher.
- Cavity manufacturing: enhance copper substrates by e.g. creating seamless cavities using innovative methods such as bulk machining, electroforming, or hydroforming technologies

2. <u>S. Posen, "R&D towards an 800 MHz cryomodule", FCC Week</u> 2023, London, UK

Performance Targets

20-Apr-23	Bare cavity in vertical test stand		Jacketed cavity with HOM couplers in vertical test stand		Cryomodule (with FPC) in horizontal test stand		Operation in the machine	
	Eacc (MV/m)	Q0	Eacc (MV/m)	Q0	Eacc (MV/m)	Q0	Eacc (MV/m)	Q0
1-cell 400 MHz	6.9	3.3E+09	6.6	3.15E+09	6.3	3.0E+09	5.7	2.7E+09
2-cell 400 MHz	13.2	3.3E+09	12.6	3.15E+09	12	3.0E+09	10.8	2.7E+09
5-cell 800 MHz	24.5	3.8E+10	23.3	3.64E+10	22.2	3.5E+10	20.0	3.0E+10

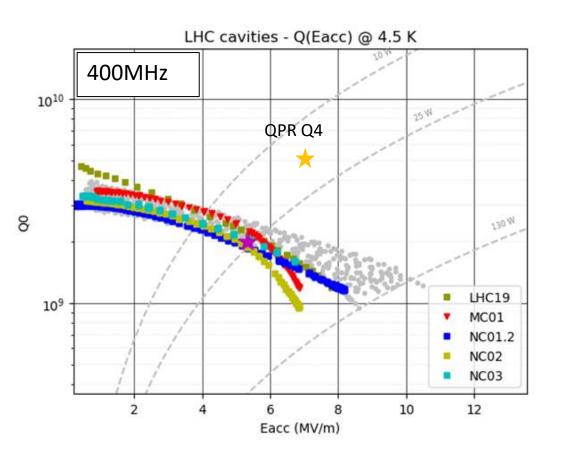
Frank Gerigk, FCC week 2024, San Francisco

Going beyond the baseline: (see M. Liepe) Nb₃Sn for 400 & 800 MHz, rationale and first steps

- Nb3Sn on bulk Nb (thermal diffusion of tin in Nb cavity, mostly at US-labs) state of the art:
 - 1.3 GHz cavities reaching high Q at 4.5 K (comparable with Nb at 2 K)
 - Accelerating field limited so far <25 MV/m (potential of 100 MV/m): may come from insufficient thermal stabilization of weaker superconducting spots
- Using copper substrates promises to overcome the field limit, but comes with several challenges:
 - Process temperatures limited by substrate
 - Differential thermal expansion, stress, disorder
 - Copper interdiffusion, need of buffer layers
- Active collaborations: Univ. of Geneva, Univ. of Wien, CEA, FNAL, JLAB, Cornell, INFN, Univ. of Hamburg
- 1st phase of CERN study, based on DC magneton sputtering on small samples is documented in (1)
- 2nd phase with High Power Impulse Magnetron Sputtering (HIPIMS) is starting.

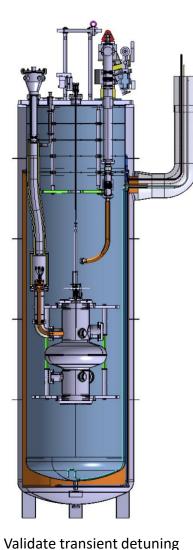
(1) Development of sputtered Nb₃Sn films on copper substrates for superconducting radiofrequency applications (E A Ilyina et al, <u>Superconductor</u> <u>Science and Technology</u>, <u>Volume 32</u>, <u>Number 3</u>

From samples to cavities


In 2023, a Nb₃Sn QPR sample reached surface resistance at 400, 800 and 1200 MHz at 4.2 K better than Nb/Cu.

Next step: scaling to cavity size

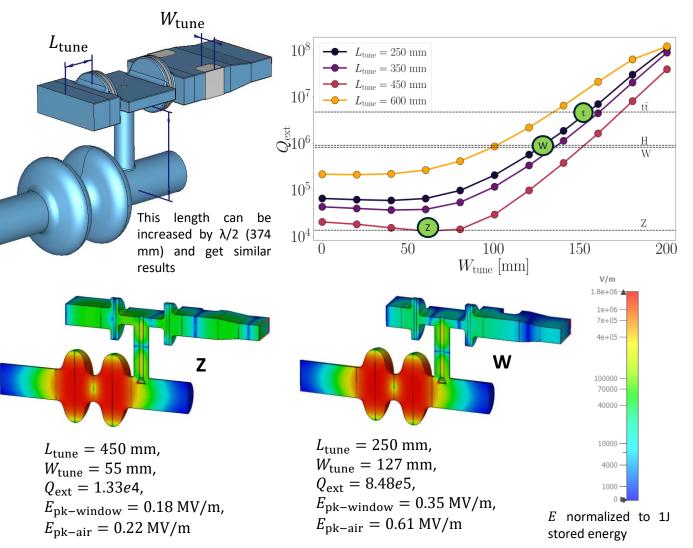
Challenges:

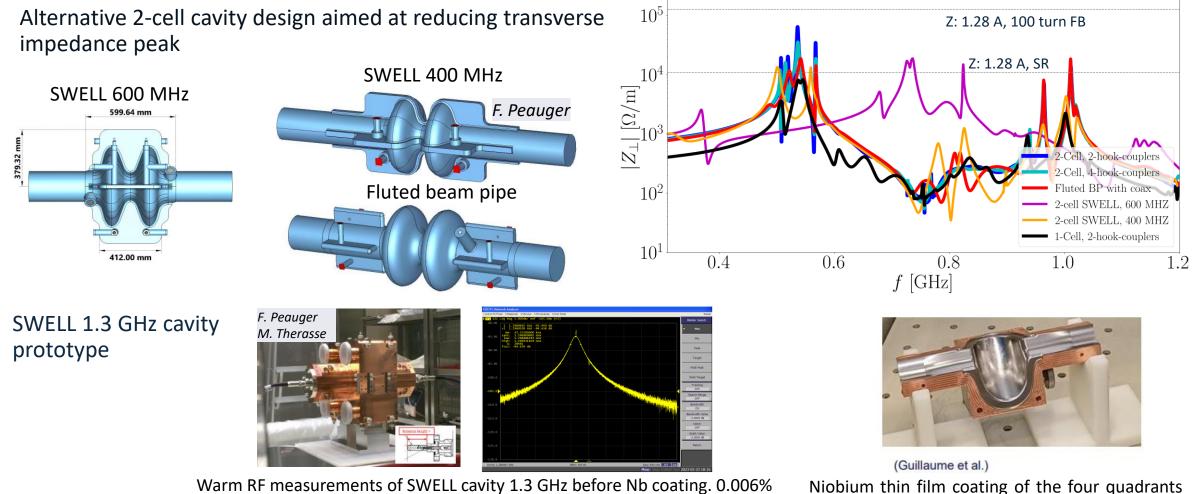

- Cavity mechanical design (support of annealed copper, tunability)
- Coating system design (cavity support and turning system, heating, multiple cathodes, target cooling, etc.)

A working group has been set up to create a long-term (10 – 20 year) roadmap to develop Nb3Sn for SRF cavities.

Further SRF R&D topics

- SRF cavity manufacturing (seamless cavities), thin film coating techniques, novel cooling methods (to reduce Heinventory).
- Sample tests and magnetic flux trapping studies on coatings, multi-layers.
- Routine **optical inspection** of all cavities.
- Non-mechanical tuning with **ferroelectric fast reactive tuner** (Fe-FRT) with Euclid Techlabs, HZB & JLAB.

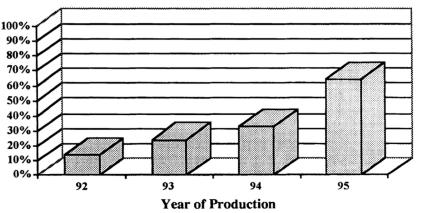

Quasi-dry cooling


compensation for LHC with Fast Reactive eamless cavities via bulk machining as reference Tuner cavities

New adjustable power coupler concept

- Two windows (LINAC4-like) are placed outside the cryomodule → integration challenge after cryostating
- A more robust and easier-to-cool down window design → easier to cover all four working points
- Providing ~1 MW in CW operation with variable coupling for Z, W, H, ttbar.
- HOM power see: F. Peauger & I. Karpov
- Prototyping starting.

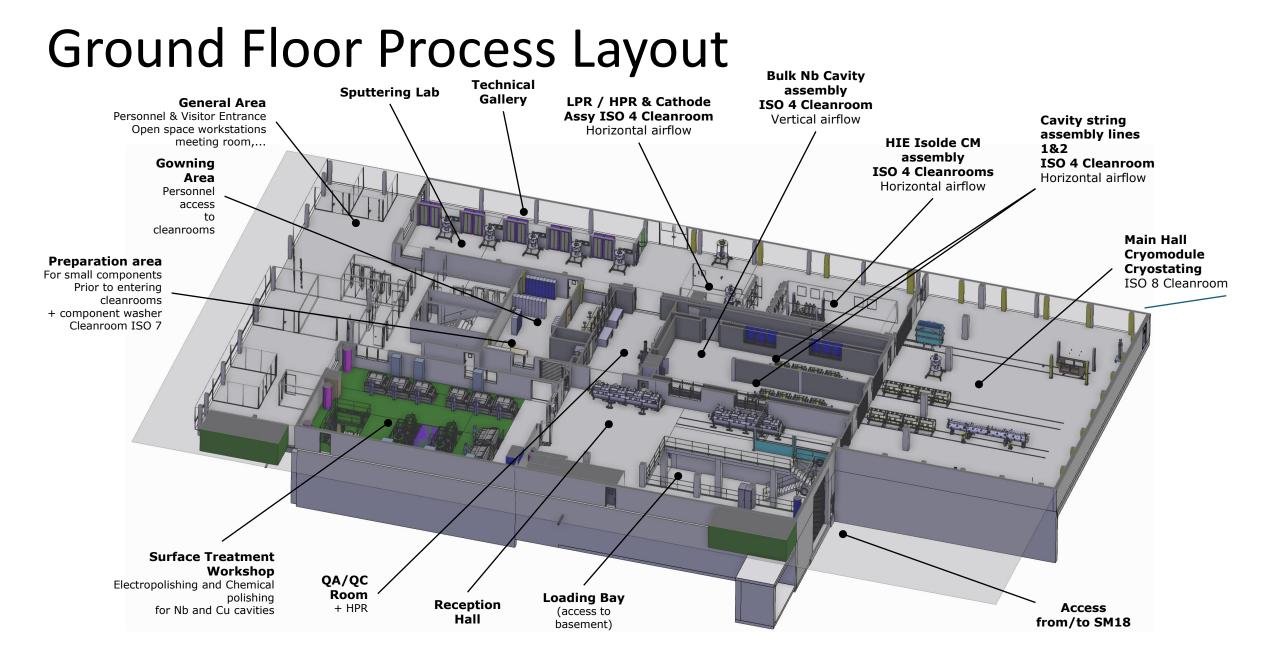
Alternative cavity designs


Warm RF measurements of SWELL cavity 1.3 GHz before Nb coating. 0.006% error in f (-78kHz) and 0.1% error in Q_0

and surface treatment in progress

New SRF infrastructure at CERN: SA18

Unique facility for thin film (and bulk) SRF R&D


- Chemistry, high-pressure water rinsing, cavity coating, clean room assembly, cryo-module assembly in one building.
- Better environmental and process control.
- Maximum throughput for rapid improvement (possible throughput at max staffing: ~ 1 cavity/w , 6-9 CM/y).
- Delivery foreseen for end of end of 2028 to start installing SRF process infrastructure (1 1.5 years).
- Increasing coating success rate. Today with LHC spares: 25%.

LEP first coating success rate

Frank Gerigk, FCC week 2024, San Francisco

Efficient RF power sources

Energy savings: RF power generation

Storage ring

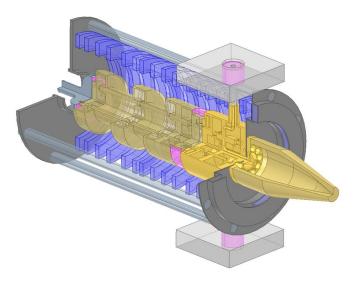
Radiofrequency systems are the biggest loads

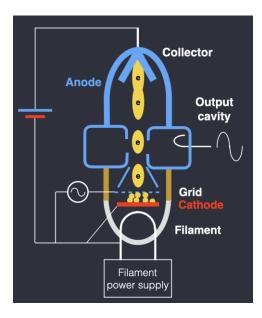
- Power demand for RF Storage ring Z, W, H
- P_{RF} = 100MW
- $P_{EL} = 100 \eta klystron \eta modulator / \eta distribution$
- P_{EL}= 100 (0.8 / 0.9 / 0.95 = 146MW
- Booster: P_{ELav} = P_{EL} * booster duty cycle = 1.7MW
- With 55% efficiency, the RF power demand would be 212MW,
- 66MW reduction expected: 300GWh/y of energy saving

Beam Energy (GeV)	45.6	80	120	182.5
PRF (MW)	100	100	100	100
Klystron efficiency	0.8	0.8	0.8	0.8
PRF EL (MW)	146	146	146	146
Booster	Z	W	Н	TT
Beam Energy (GeV)	45.6	80	120	182.5
PRFb (MW)	7.5	7.5	7.5	7.5
Klystron efficiency	0.7	0.7	0.7	0.7
Booster duty cycle	0.15	0.15	0.15	0.15
PRFb EL (MW)	2	2	2	2

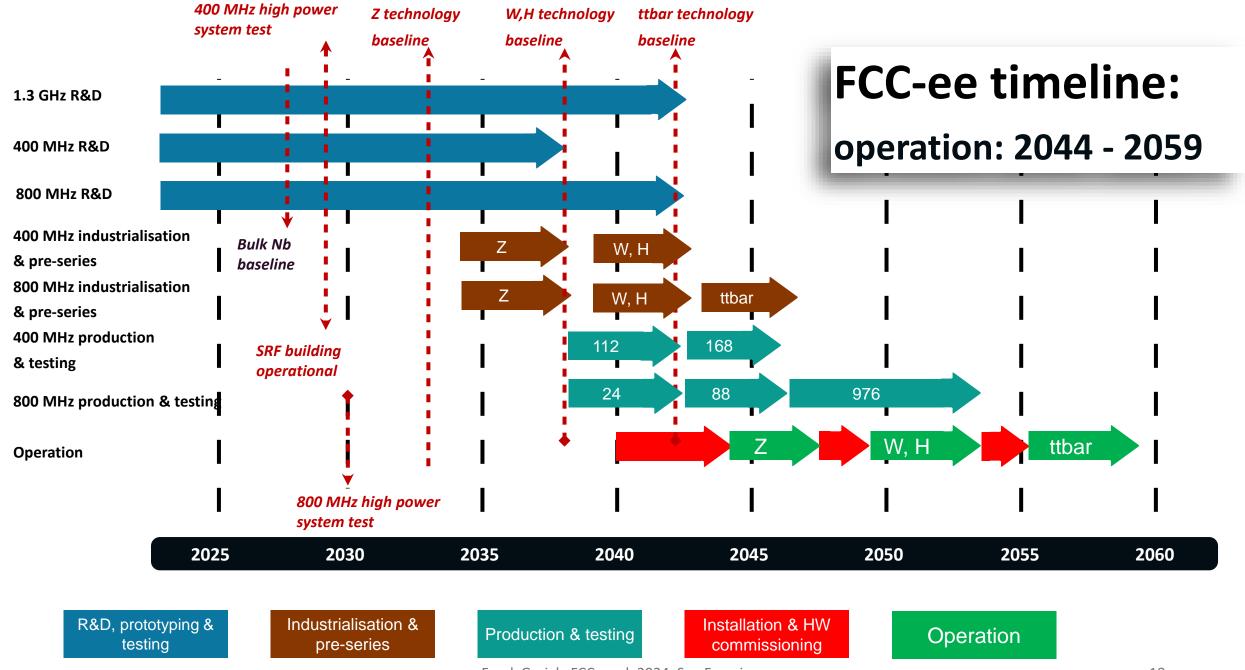
Ζ

W

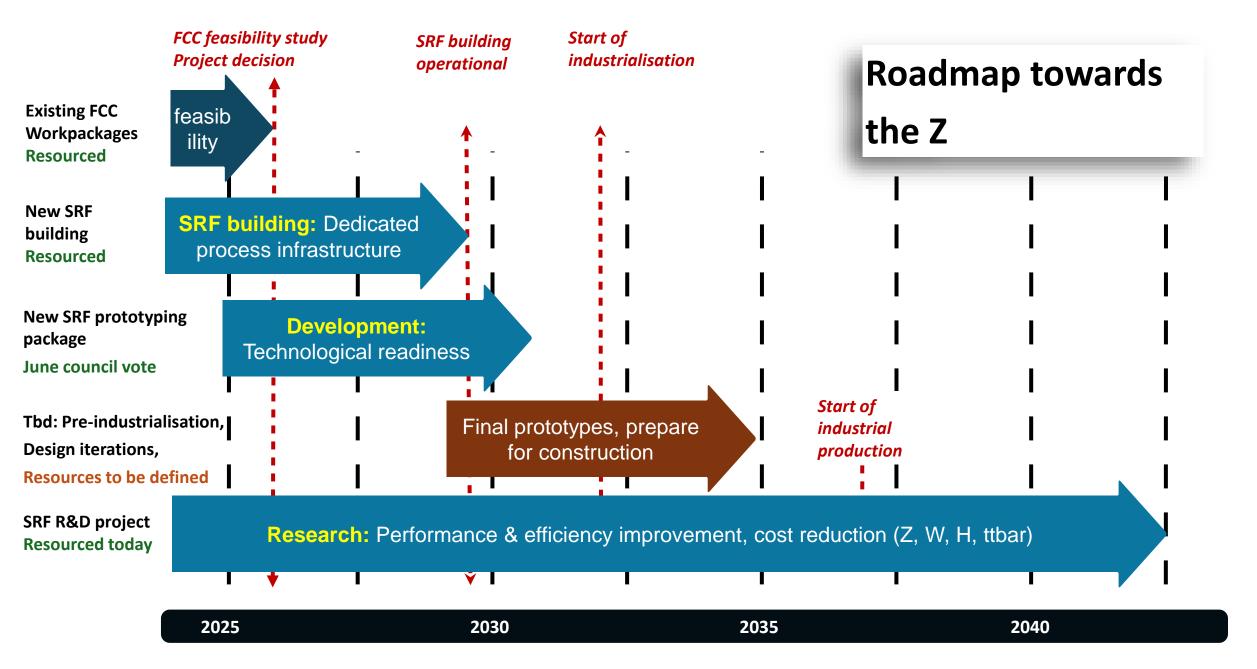

Η


Assumption of 80% efficiency, not existing today!

TT


Efficient RF power (see F. Pauger)

- **400 MHz:** Development of 2-stage high-efficiency klystron with industry.
- 800 MHz, Z, W, H: Low average power consumption in the booster (~2 MW vs. 150 MW in storage ring) and high efficiency of existing IOTs (~70%): focus on lowering capital investment rather than increase of efficiency.
- Development of a cost-efficient IOT based RF system combining several tubes to cover the 800 MHz power needs (60 - 250 kW) for Z, H, W. (Thales collaboration)
- ttbar (with 800 MHz in the storage ring) merits the development of a new high-efficiency system (MB-2-stage IOT, klystron, or solid state).



RF R&D roadmap


Planned prototyping effort to prepare for FCC (or other future accelerators), Council vote in June

#	Deliverable	2025	2026	2027	2028	2029	2030	2031
1	2x 400 MHz 1-cell	manufacturing	recoating, VT2 & 3,	He tank, VT4				
		coating, VT1	He tank					
2	4x 400 MHz 2-cell	N N	fabrication	coating, VT1, re-coat,	re-coat, VT3, He-	VT4		
				VT2	tank			
3	4x 400 MHz 2-cell				design update	coating, VT1, re-coat,	re-coat, VT3, He-	VT4
						VT2	tank	
4	400 MHz HE klystron/ 800	design	design/fabrication	fabrication, test	test stand prep. &	test and design		
	MHz IOT			stand prep.	testing at CERN	update		
5	400 & 800 MHz FPC for full	design	construction	construction/test	ready for full test at	ready for full test at		
	system test				400 M Hz	800 MHz		
6	Horizontal test cryostat	construction	construction &	testing, 400 MHz	400 MHz full power	800 MHz full power		
			installation	system test (1 cell)	system test (2 cell)	system test (5 cell)		
7	400 MHz CM (4x 2-cell-	design	design	design folder, start	construction	start assembly	CM test	cavity exchange
	cavities)			construction,				
8	800 MHz CM (4x 4 cell	design	design	design folder, start	construction/	assembled	CM test	CM test
	cavities FNAL)			construction	assembly			

Key technologies and technological readiness

- RF technology exists to build this machine today, although not at the desired specifications.
- **Research** is needed to reach nominal specs, to keep capital cost under control and to increase energy efficiency beyond the baseline.
- **Development** (prototyping) of cavities, couplers, cryomodules is a time-consuming process and needs to start now.
 - 400 MHz centred at CERN,
 - 800 MHz started with strong US collaboration,
- CERN is making a strategic investment in a dedicated new SRF facility, in fundamental SRF R&D, in prototyping and in the development of high-efficiency RF sources.
- The ttbar starting date (2055) justifies a long-term research program for Nb3Sn cavities. Any progress until 2040 – 2045 will significantly impact cost & efficiency of the ttbar run. This is the time for a major technological step forward.

