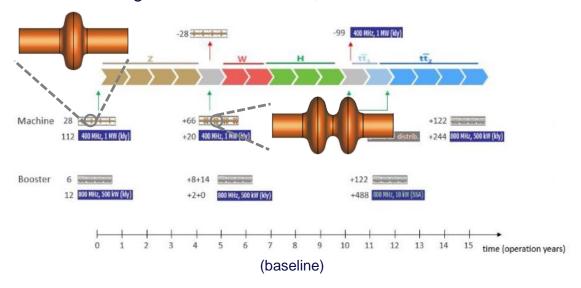


400 MHZ CAVITY PROGRAM AT CERN

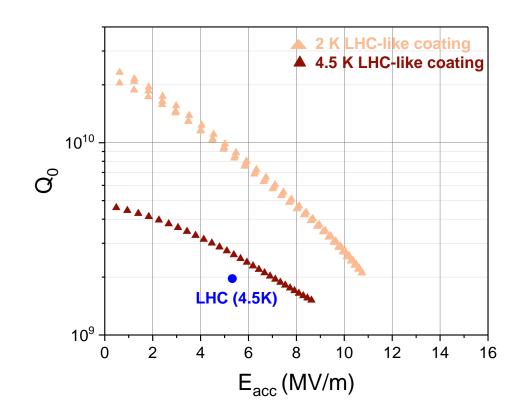

(coating & surface preparation)

C. P. A. Carlos, S. Leith, G. Rosaz, M. Taborelli, L. Ferreira, L. Vega-Cid, K. Brunner, W. Venturini-Delsolaro, M. Bonura, and C. Senatore

Motivation

F. Gerigk, Key RF R&D for future projects, Chamonix Workshop 2024

Nb-coated Cu cavities are being considered for the Z, W and H machines variants


Option of using 2-cell 400 MHz cavities for the Z is also under study

Either 1-cell + 2-cell or just 2-cell 400 MHz Nb/Cu cavities

Nb/Cu cavities

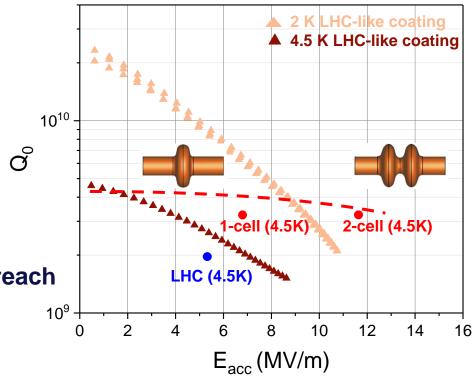
Reduce Load on Cryogenics

FCC

04/06/2024 / FCC week 2024 C. Pereira Carlos

Nb/Cu cavities

Reduce Load on Cryogenics


FCC

Specifications target FCC-ee:

1-cell: 3.3x10⁹ @ 6.9 MV/m 2- cells: 3.3x10⁹ @ 13.2 MV/m

Cure Q-slope & extend field reach

04/06/2024 / FCC week 2024 C. Pereira Carlos

Nb/Cu cavities

Nb coating is currently performed with High Power Impulse Magnetron Sputtering (HiPIMS)

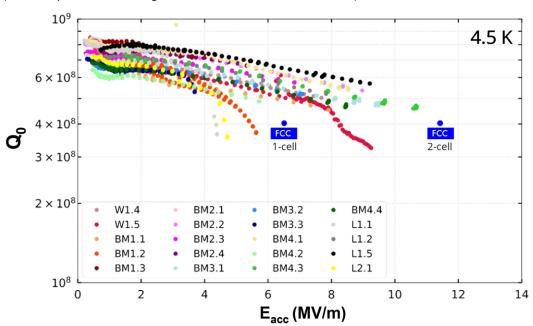
Prior to coating, Cu:

400 MHz cavity before & after coating

Electropolishing (smooth surface)

Passivation (prevents Cu oxidation, improves film adhesion)

R&D on samples and 1.3 GHz test cavities first, know-how is then transferred to 400 MHz



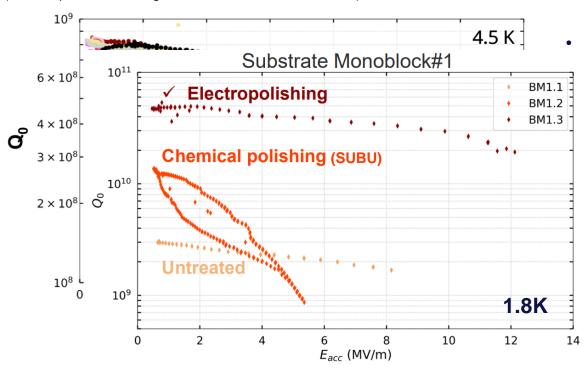
STATUS & GOALS

1.3 GHz and 400 MHz cavities

1.3 GHz test cavities: results

(FCC-ee performance targets scaled for 1.3 GHz substrates)

- High repeatability at 4.5K
- 1-cell target reached consistently
- 2-cells target within reach

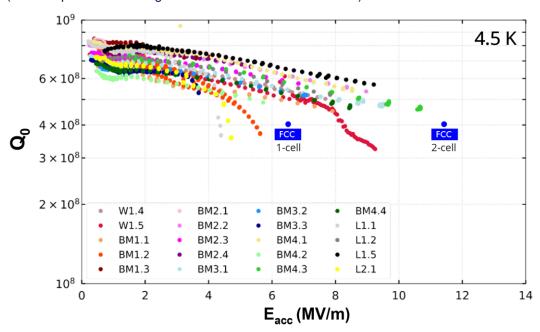

How?

L. Vega Cid et al. Results of the R&D RF Testing Campaign of 1.3 GHz Nb/Cu cavities, 21th Int. Conf. RF Supercond., SRF2023, Grand Rapids, MI, USA

1.3 GHz test cavities: results

(FCC-ee performance targets scaled for 1.3 GHz substrates)

FCC

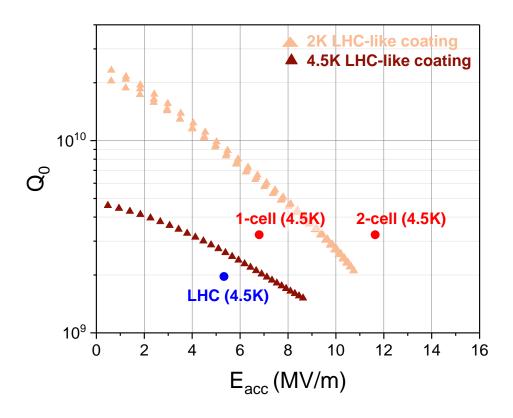

Improved Cu surface treatment

Electropolishing (EP), instead of SUBU as in LHC

Passivation to avoid layer delamination.

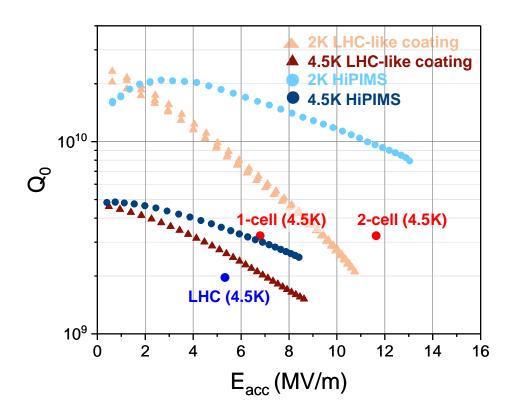
1.3 GHz test cavities: results

(FCC-ee performance targets scaled for 1.3 GHz substrates)


- Improved Cu surface treatment
- Seamless substrates

 (no welds at equator)

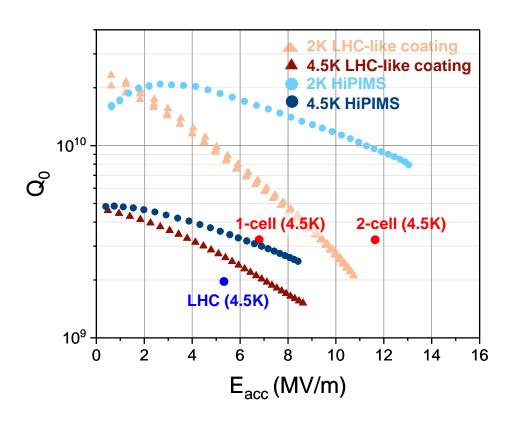
 Bulk machined (BM) & electroformed


 (L), gave the best results.
- Optimized coating recipe
 HiPIMS + DC substrate bias
 (6 µm and -75 V)

400 MHz HiPIMS: results

FCC

400 MHz HiPIMS: results

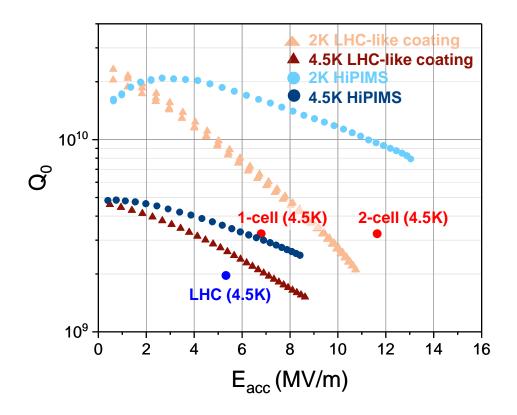


FCC

 Improved Q-slope and no field emission up to tested values.

 Approaching FCC-ee 1-cell target (no HOM ports)

400 MHz HiPIMS: results


FCC

Very promising result:

- PC04 is not a seamless substrate
- Treated by SUBU instead of EP.
- Coating done with Bipolar HiPIMS
 (HiPIMS + PP, DC biasing was not yet possible)
- HiPIMS coating validated, yet to be optimized (power supply limitation)

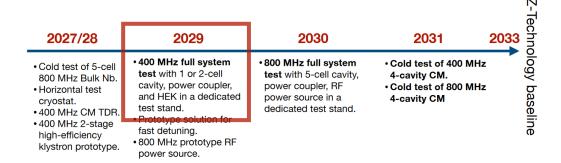
400 MHz HiPIMS: goals

FCC

Reach FCC 2-cell target

Electropolished surfaces, seamless substrates & optimised HiPIMS coating parameters.

ROADMAP


Scale up optimization done on 1.3 GHz to 400 MHz 1-cell and 2-cell

Going forward

Continue fundamental study on samples and 1.3 GHz cavities to optimize coating recipe

Upcoming RF milestones within the next years

SRF Roadmap, F. Gerigk, SRF workshop 2024

Prioritize coatings and RF measurements of 400 MHz cavities

FCC

- 2024, 3 RF measurements (Aug, Oct and Nov)
- Scale up simplified cavity to 1-cell configuration

400 MHz simplified cavity

400 MHz cavity

- Scale up simplified cavity to 1-cell configuration
 - 1. EP + HiPIMS PP (cavity w/o HOM ports)

EP surface treatment (instead of SUBU)

To be first qualified on a cavity Q3 2024

- Scale up simplified cavity to 1-cell configuration
 - 1. EP + HiPIMS PP (cavity w/o HOM ports)

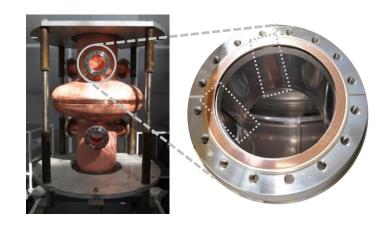
EP surface treatment

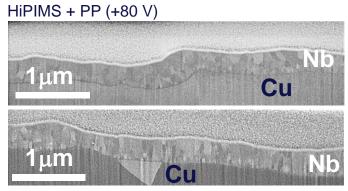
Coating with optimized parameters for Bipolar HiPIMS (HiPIMS + PP)

Scale up simplified cavity to 1-cell configuration

2. EP + HiPIMS PP (cavity <u>w/ HOM ports</u>)

FCC


Scale up simplified cavity to 1-cell configuration



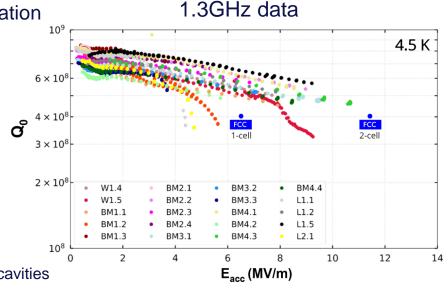
2. EP + HiPIMS PP (cavity <u>w/ HOM ports</u>)

Coating trial on samples done in 2020.

Dense, defect free layers.

04/06/2024 / FCC week 2024 C. Pereira Carlos 21

400 MHz roadmap


Scale up simplified cavity to 1-cell configuration

1. EP + HiPIMS PP (cavity w/o HOM ports)

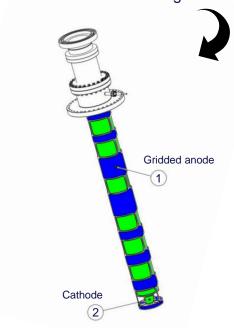
2. EP + HiPIMS PP (cavity <u>w/ HOM ports</u>)

3. EP + HiPIMS DC bias (cavity <u>w/ HOM ports</u>)

HiPIMS + DC bias as optimized for 1.3 GHz cavities

Coating system needed to be modified to allow DC bias: parts under manufacturing

Scale up simplified cavity to 1-cell configuration

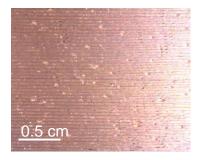

1. EP + HiPIMS PP (cavity w/o HOM ports)

2. EP + HiPIMS PP (cavity <u>w/ HOM ports</u>)

3. EP + HiPIMS DC bias (cavity <u>w/ HOM ports</u>)

HiPIMS + DC bias as optimized for 1.3 GHz cavities

Benchmark HiPIMS + DC bias with HiPIMS + PP


- Scale up simplified cavity to 1-cell configuration
- Seamless substrates
 - 1. Bulk machined 400 MHz

400 MHz Monoblock

- Scale up simplified cavity to 1-cell configuration
- Seamless substrates

1. Bulk machined 400 MHz

Surface state after machining

400 MHz Monoblock

- Scale up simplified cavity to 1-cell configuration
- Seamless substrates
 - 1. Bulk machined 400 MHz

Cu surface state after EP validated on samples

Carb 1
Carb 2

Carb 2

Samples made by the EN/MME group at CERN to replicate surface state

10 µm EP efficiently removed the surface defects

- Scale up simplified cavity to 1-cell configuration
- Seamless substrates

1. Bulk machined 400 MHz

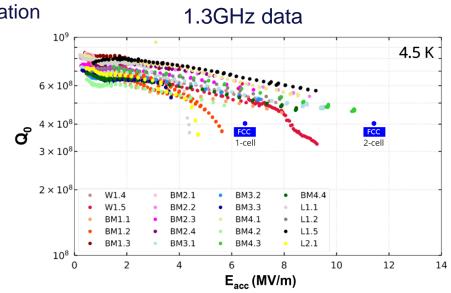
Cu surface state after EP validated on samples

EP and HiPIMS coating on finished substrate planned **2025**

400 MHz Monoblock

- Scale up simplified cavity to 1-cell configuration
- Seamless substrates
 - 1. Bulk machined 400 MHz
 - 2. Hydroformed (collaboration with KEK)

4 HiPIMS coatings done on 1.3 GHz cavities in early 2024 (2 RF tests done at KEK, 4 RF tests to be done at CERN)


Large scale production under study

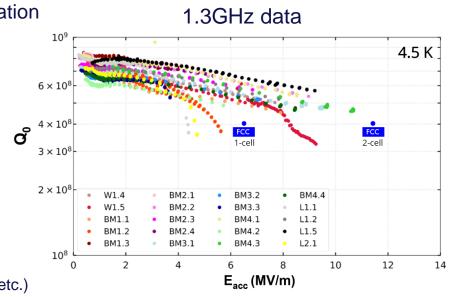
1.3 GHz hydroformed cavities

- Scale up simplified cavity to 1-cell configuration
- Seamless substrates
- 400 MHz 2-cell cavities

- Scale up simplified cavity to 1-cell configuration
- Seamless substrates
- 400 MHz 2-cell cavities
 - 1. 2-cell specs within reach at higher frequencies (1.3 GHz)

04/06/2024 / FCC week 2024 C. Pereira Carlos

400 MHz roadmap


- Scale up simplified cavity to 1-cell configuration
- Seamless substrates
- 400 MHz 2-cell cavities
 - 1. 2-cell specs within reach at higher frequencies (1.3 GHz)
 - 2. 2-cell cavity not yet available.

Manufacture substrate

Design/update coating setup (new cathode, etc.)

Update EP bench

. . .

CRD+ 2025

- Goals for CDR+ 2025:
 - 1. Reach FCC-ee 1-cell specifications simplified cavity

Establish the surface treatment recipe Define a Nb coating recipe

- 2. Reach FCC-ee 1-cell specifications cavity w/ HOM ports
- 3. Assess maximum reachable performance:

Bulk-machined 400MHz cavity Electropolished substrate Optimized coating recipe 2-cells specification within reach?

Thank you for your attention.