

FUTURE CIRCULAR COLLIDER

SRF SYSTEM INTEGRATION: Cryomodule technical specifications and design of the 400MHz

with contributions from: V. Parma, S. Gorgi Zadeh, F. Peauger, E. Montesinos, M. Timmins, N. Favre, F. Cottenot, L. Delprat, B. Naydenov, B. Bradu, A. Henriques, F. Valchkova-Georgieva. and inputs from: N. Elias (ESS), P. Pierini (ESS), D. Passarelli (FNAL), V. Roger (FNAL)

FCC week 2024, San Francisco

Karin Canderan

Outline

- RF system layout
- Cavity strings 400MHz and 800MHz
- Cryomodules specifications:

> 400MHz Cryomodule

- CM general requirements Ο
- Heat loads budget and margins Ο
- Cryogenic scheme 0

800MHz Cryomodule

- CM general requirements 0
- Heat loads budget and margins Ο
- Cryogenic scheme Ο
- Helium safety and PRDs
- Design details of the 400MHz CM
 - Overall dimensions
 - Iterations on FPC geometry and cooling strategy
- Summary and future work

Physics schedule – number and type of cryomodules to be installed:

- 400MHz single-cell (Nb/Cu): 28 CM @4.5K, removed after the Z working point
- 400MHz two-cell (Nb/Cu): 66 CM @4.5K ${}^{\bullet}$
- 800MHz five-cell (bulk Nb): 272 CM @2K, 122 CM for the collider and 150 CM for the booster.

- 400MHz two-cell (Nb/Cu): 38 CM @4.5K
- 800MHz five-cell (bulk Nb): 272 CM @2K, 122 CM for the collider and 150 CM for the booster(**).

Cryomodule design focused on the integration of the 400MHz two-cell cavities, and the 800MHz five-cell cavities. (**) Potential reduction of the # CM, according to the new RF parameters for the booster RF voltage

2 cell cavities / 4 cavities per CM

FUTURE CIRCULAR COLLIDER

	W / I	H / tī	
	Coll	lider	
	(2 be	ams)	
# cell / cav		2	
RF Frequency [MHz]	400).79	
#cav/CM		4	
Eacc [MV/m]	10	.63	
Vcavity [MV]	7.	95	
# CM	66		
T operation [K]	4	.5	
Nominal dynamic losses/cav [W]	129) (*)	
stat losses/cav [W]	Defined in th	ne CM specs	
Q0	2.70	E+09	
Max FPC power/cav [kW]	38	38	
HOM power [kW]	15.4 /	6.4/3	
Intercovity engling	2023	2024	
intercavity spacing	2.04m	2.18m	
Covity atring longth	2023	2024	
Cavity string length	10.1	10.64	

(*) Dynamic losses linked to the nominal values of Q0 and E_{acc} . This value represents only the power dissipated by the cavity. The heat loads from power coupler and HOMs are not included.

Cavity string 800MHz

5 cell cavities / 4 cavities per CM

	tī	Z/W/H/t ī
	Collider	Booster
	(2 beams)	(2 beams)
# cell / cav	5	5
RF Frequency [MHz]	801.58	801.58
#cav/CM	4	4
Eacc [MV/m]	20.60	20.05
$\lambda = \frac{1}{10000000000000000000000000000000000$	10.26	5.83 / 18.75 / 18.75
	19.20	19.17
# CM	122	150
T operation [K]	2	2
Nominal dynamic losses/cav [W]	23 (*)	3 (*)
stat losses/cav [W]	Defined in	the CM specs
Q0	3.00E+10	3.00E+10
Max FPC power/cav [kW]	163	208 (15% duty cycl
HOM power [kW]	2.98	TBD
Intercevity specing	2023	2024
intercavity spacing	1.67	WIP
Cavity string length	2023	2024
Cavity stillig length	6.68	WIP

(*) Dynamic losses linked to the nominal values of Q0 and E_{acc} . This value represents only the power dissipated by the cavity. The heat loads from power coupler and HOMs are not included.

General requirements

	Value	
Ø Warm beam pipe	50 mm	Possibility to cha
CM length (GV flange to GV flange)	11.24 m	
Beam height from the floor	1200 mm	New proposed
CM width	~ 1.9 m	Final value TB cooling method f
CM height	~ 2.6 m	Final value TB cooling method and PF
Cavity operating temperature	4.5 K	
Environ. magnetic shield	≤ 5 mG	Levels o
Layout architecture	Fully segmented (baseline)	Proposal under vacuum with ex
Tunnel integration	Supported on floor	
Tunnel inclination	0.25%	Influ
FPC orientation	Vertical/top	
FPC cooling strategy	Active cooling with supercritical helium (DWT)	Active cooling con flexibility (F
Maintainability		Design for in situ

Remarks

ange to 75mm under discussion.

value. Present baseline 980mm. BD according to: final geom. and for the FPC, lifting lugs and HOMs outlets.

BD according to: final geom. and for the FPC, waveguides, jumper RDs space occupations.

of magnetic shielding TBD discussion: continuous insulation xternal cryogenic distribution line

uence on liquid levels

- **Fixed** antenna
- nsidered as baseline for operational
- HI still considered as option)
- accessibility to critical components

Mech design: Marc Timmins

Heat loads and margins

	Z(*)	W/H/tt	
	Collider	Collider	
Static HL at 4.5K/CM [W]	131	131	
Dynamic HL at 4.5K/CM [W]	36	516	
HL to thermal shield at 50K/CM [W]	218	218	`
Required liquefaction capacity/CM [mg/s]	320	320	

	Z(*)	W/H/tī	
	Collider	Collider	
Static HL at 4.5K/CM [W]	197	197	
Dynamic HL at 4.5K/CM [W]	43.2	236.4	
HL to thermal shield at 50K/CM [W]	327	327	on
Required liquefaction capacity/CM [mg/s]	480	480	

	Z(*)	W/H/tt	
	Collider	Collider	
# CM	28	66	
Static HL at 4.5K [kW]	5.5	13	
Dynamic HL at 4.5K [kW]	1.1	36.7	t
Total HL at 4.5K [kW]	6.1	49.7	
HL to thermal shield at 50K [kW]	9.2	21.6	
Required liquefaction capacity [g/s]	13.5	32	

	 Static heat loads to the cold mass: Derived from experimentally measured values of L cryomodule (with active thermal shield correction) Dynamic losses: Power dissipation per cavity indicated in the baseline
ominal	 Heat loads to thermal shield: Derived with conservative assumptions and a simplified the CM
aiues	 Liquefaction capacity necessary for the active cooling of the FPC
largins	 50% margin on the static heat loads – due to the preliminary design maturit 8% operational margin on the dynamic loads – for the scenario with only 9 operational cavities operating at higher E_{acc} with a consequent increase of 2 dynamic heat load.
RF side	 50% margin on the liquefaction capacity – to grant flexibility on the helium
	 Static heat loads at 4.5K: sum of the contributes of all the CM
achine otal HL	 Dynamic heat loads at 4.5K: sum of 90% of the total number of cavities Heat loads to the thermal shield at 50K: sum of the contributes of all the CM

General requirements

	Value	Remarks
Beam pipe size (Ø after tapering)	50 mm	Possibility to change to 7 discussion
CM length (GV flange to GV flange)	WIP	
Beam height from the floor	1200 mm (collider) / 1200 + 1030mm (booster)	New proposed value. Present (collider) / 980 + 1030mr
CM width	~ 2.6 m	Final value TBD according to cooling method for the FPC, we lugs and HOMs or
CM height	~ 1.8 m	Final value TBD according to cooling method for the FPC, just space occupation
Cavity operating temperature	2 K	
Environ. magnetic shield	≤ 5 mG	Levels of magnetic shie
"Fast" CD of cavities	> 2-3 K/min across 9.2K	PIP-II reference, val
Layout architecture	Fully segmented (baseline)	Proposal: continuous insulati integrated cryogen
Tunnel integration	Supported on floor (collider) / supported on fixed pillars (booster)	
Tunnel inclination	0.25%	Influence on liquid
		Fixed antenna
FPC orientation	Horizontal / Side	Horizontal position so the same collider and booster
FPC cooling strategy	Active cooling with supercritical helium (DWT)	Active cooling considered a operational flexibility (HI still option)
Maintainability		Design for in situ accessib components

75mm under

baseline 980mm m (booster). : final geom. and vaveguides, lifting utlets. : final geom. and umper and PRDs

ons.

elding TBD lueTBC ion vacuum with nic line

levels

e CM can fit in the position as baseline for

considered as

bility to critical

Conceptual design based on the FermiLab PIP-II design: Marc Timmins Detailed mechanical design: refer to the talk from Donato Passarelli

Heat loads and margins

	Z(*)	W/H/tt	tī	
	Booster	Booster	Collider	
Static HL at 2K/CM [W]	32	32	32	
Dynamic HL at 2K/CM [W]	1.2	12	92	
HL to thermal shield @50K/CM [W]	103	103	103	
Required liquefaction capacity/CM [mg/s]	320	320	320	

	Z(*)	W/H/tt	tī	
	Booster	Booster	Collider	
Static HL at 2K/CM [W]	48	48	48	
Dynamic heat loads at 2K/CM [W]	1.44	14.4	14.4	
HL to thermal shield @50K/CM [W]	154	154	154	on
Required liquefaction capacity/CM [mg/s]	480	480	480	

	Z(*)	W	н	tī	tī	
	Booster	Booster	Booster	Booster	Collider	
# CM	6	14	28	150	122	
Static HL at 2K [kW]	0.3	0.7	1.4	7.2	5.9	
Dynamic HL at 2K [kW]	0.007	0.17	0.34	1.8	11.2	tc
Total HL at 2K [kW]	0.3	0.9	1.7	9.2	18.8	
HL to thermal shield at 50K [kW]	1	2.2	4.4	23.1	18.8	
Required liquefaction capacity [g/s]	3	7	14	72	59	

FUTURE CIRCULAR COLLIDER

800 MHz Cryomodule – Cryogenic scheme

Risk case scenarios FCC cryomodules:

FUTURE CIRCULAR COLLIDER

- 1. Machine subjected to a **power cut**. In the helium tanks of all the cryomodules, the pressure raises since the static loads cause helium boil-off in. This is a **nonnominal operating condition**, not an emergency scenario. The limited mass flow will be dealt with a CV/SV which ensure leak-tight reclosing, the mass flow is intended to be recovered.
- **2. Insulation vacuum break.** Rupture of the vacuum vessel with atmospheric air venting and condensing on cold surfaces. At this stage it is considered that the cold surfaces are fully protected with MLI. Thus, a heat transfer rate of 0.6 W/cm2 has been taken to calculate the heat load causing helium boil-off in the helium tank. (Dimensioning of the vacuum vessel relief plates TBD).
- **3.Beam vacuum break**. Rapture of the beam pipe causing atmospheric air leak and condensation inside the cavities. In this case the heat flux exchange considered is 4 W/cm2, given the condensation in the cavities internal surfaces where there is no insulation/protection.

Worst case scenario to cover – used for the definition of the discharge area of the PRDs

The MAWP / PS is an initial assumption, based on similar designs (LHC and ESS), no structural analysis has been performed on the actual design of the FCC cavities.

Helium safety and PRDs

FUTURE CIRCULAR COLLIDER

CM/ Case	Risk Situation	Heat Ioad	Mass flow	T	Pressure reached (bar)	Discharge diameter	Comments
400MHz – Risk case scenario 3	Beam vacuum break (100 mm aperture)	380 kW	19.57 Kg/s	4.99K	~ 1.95 bara	Ø _{min} = 130.5mm 1 x BD DN150 or	HL calculated considering the wet surface of the cavities (9.5m ²) without protection (4 W/cm ²).
						2 x BD DN100 (each one taking half of the flow rate)	Exceptional case. Mitigation measures are needed to contain the probability of this event (e.g. orifice limiting bellows protections, no mech. work with liquid inventory).
800MHz – Risk case scenario 3	Beam vacuum break (100 mm	195 kW	10.3 Kg/s	4.99K	~ 1.95 bara	Ø _{min} = 95mm 1 x BD DN125 or	HL calculated considering the wet surface of the cavities (4.96m ²) without protection (4 W/cm ²).
aperture)					2 x BD DN80 (each one taking half of the flow rate)	Mitigation measures are needed to contain the probability of this event (e.g. orifice limiting bellows protections, no mech. work with liquid inventory).	

Required discharge area calculated according to the standards EN ISO 13648-3, EN ISO 4126-6 and EN ISO 4126-7

The BDs size sets the minimum value for the diameter of the 2-phase pipe and the raisers to avoid restrictions along the path of the pressurized vapor.

3%: Maximum pressure drop considered from the helium tank to the BDs.

Design details of the 400MHz CM

Overall dimensions

11.24m from GV flange to GV flange

Key design concepts:

- Actively cooled thermal shield at 50K
- HOMs connectors:
 - Flexible coax if P_{HOM} x 6 <1kW
 - Rigid coax if $P_{HOM} \ge 6 > 1 kW$ •
- Tie-rods supports ٠
- LHC type tuner with motor outside
- Accessibility to waveguide and HOM ports
- Simplification of the helium tank shape (compared ٠ to LHC) and introduction of the 2-phase line instead of the vapor boxes (not illustrated).
- Helium inventory of 116 kg preliminary ٠ conservative estimate.

Mech design: Marc Timmins

FPC geometry and cooling strategy

GOAL :

FUTURE CIRCULAR COLLIDER

- Minimize the static and dynamic heat loads of the FPC (not yet accounted in the FCC) MTR) throughout:
 - the machine working points (Z,W,H,ttbar) $\rightarrow P_{cav}$: 900 kW (Z) 400 kW (W and H) continuous
 - The RF operating conditions (nominal, beam transient, coupler conditioning) \rightarrow variable EM field \rightarrow variable RF dissipation in the FPC outer conductor.
- Provide the inputs for the integration of the FPC in the cryomodule, and the cryogenic 2. scheme

CONSTRAINTS :

- RF design of the inner and outer conductor
- RF power input and operating conditions

FREE PARAMETERS :

- Outer conductor cooling strategy
- Length of the cylindrical part.

RF power to the 400 MHz 2-cell cavities.

RF design: S. Gorgi Zadeh

Alternative cooling strategies

	Active cooling with supercritical helium	Fixe
Thermodynamic efficiency (Cryogenic cost)	Strategy exploits the high sensible heat of the helium vapor, from 4.5K to T _{amb} .	The co releas tempe with th refrige
CAPEX	Potentially lower. Requires liquefaction capacity to be added to the cryogenic plant.	Requir lines a modul
Flexibility	Flexible cooling capacity changing the helium mass flow for the multiple operating condition (no need of electric heaters for low heat load scenarios).	None.
Operational complexity	To be assessed (heaters, control, mass flow regulation).	Low –
Reliability	To be assessed.	High.
Machines	LHC, ESS, SPL	Crab o

d T heat interception

ost of the heat loads sed to the different erature levels is compared ne cost of the helium vapor eration.

res additional cryogenic and valves in the service le.

passive heat extraction.

SPL coupler design: Active vapor cooling

Crab cavities coupler design : Heat Intercepts

cavities, XFEL, PIP-II

RF inputs and preliminary conclusions

High variability of the operating conditions

The RF power dissipated in the outer conductor is calculated as

$$P_{RF} = \frac{1}{2} R_{wall}(T) \int_0^{2\pi} \int_0^L H(x,\theta,t)^2 dx d\theta$$
$$= \frac{1}{2} R_{wall}(T) \cdot \pi D \int_0^L |H(x)|^2 dx$$

with $H(x, \theta)$ from RF simulations.

The magnetic field is multiplied by:

- 1 : Nominal operation, almost no reflected power for a synchrotron machine Duration: **10 months per year.**
- **1.5** : Off nominal operation: beam transients of operation in half detuning Duration: several minutes to 10 months per year.
- **2** Coupler conditioning: full reflection mode, 4 x RF power dissipation. Duration: several weeks.

Preliminary conclusions:

- The active cooling strategy allows to change the flowrate and the energy consumptions according to the RF operating conditions.
- Additional fluid dynamic studies of the DWT required to ensure optimal heat transfer with variable He flowrates.
- This choice would impact the final geometry of the FPC outer conductor and the final constraint on the diameter of the vacuum vessel.
- At system level, the selected cooling strategy will determine the **cryogenic scheme** and distribution lines

Summary and future work

Updates:

- Progress in the definition of the technical specifications for the 400MHz and 800MHz cryomodule.
- Definition of a heat loads budget and margins for the cryogenic system.
- Definition of a preliminary cryogenic scheme.
- Assessment of the risk case scenario leading to helium overpressure in the tank and calculation of the required discharge area of the PRDs.
- Updates on the 800MHz design refer to the talk from Donato Passarelli.

Future work:

- Finalization of the conceptual design
- Definition of the **tuning system**
- **Engineering design** of the **helium tank** in relation to the cavity tuning

Thank you for your attention.

2	1

Supporting slides

Heat loads budget – Cryomodule nominal values

	Z(*)	W/H/tt	ſ
	Collider	Collider	
#cav/CM	4	4	
T operation [K]	4.5	4.5	
Dynamic losses at 4.5K/cav [W]	9	129	
Static losses at 4.5K / CM [W]	131	131	
Dynamic losses at 4.5K/CM [W]	36	516	
Losses to the thermal shield at 50K/CM	218	218	ſ

	Z(*)	W/H/t ī
	Collider	Collider
Required liquefaction capacity /CM [mg/s]	320	320

Z(*) Preliminary values.

tic losses to the helium bath

alue for the entire cryomodule instead of W/cav.

lominal value from the experimental measures of the LHC cryomodule - radiative heat bad to the cold masses corrected to account for the presence of an actively cooled nermal shield in the FCC CM (150W - 19W = 131W).

namic losses:

lominal value in W/cav kept from baseline.

sses to the thermal shield

Derived with conservative assumptions and a simplified design of the cryomodule.

With active cooling as baseline for the FPC, the cryogenic plants must include liquefaction capacity.

800 MHz Cryomodule Heat loads budget – Cryomodule nominal requirements

	Z(*)	W/H/tt	tī
	Booster	Booster	Collider
#cav/CM	4	4	4
T operation [K]	2	2	4.5
Dynamic lossess at 2K/cav [W]	0.3	3	23
Static losses at 2K/ CM [W]	32	32	32
Dynamic losses at 2K/ CM [W]	1.2	12	92
Static losses to the thermal shield @50K/CM (50%margin)	103	103	103

	Z	W/H/tt	tī
	Booster	Booster	Collider
Required liquefaction capacity/CM [mg/s] – lead from the collider need	320	320	320

Static losses to the helium bath

- Value for the entire cryomodule based on the MTR estimate of 8 of W/cav.
- In line with experimental values from prototypes of HB650 (PIP-II) and elliptical HB (ESS), both design candidates from the 800 MHz CM

Dynamic losses:

Value in W/cav kept from the baseline •

Losses to the thermal shield

Derived with conservative assumptions and a simplified design of the cryomodule.

With active cooling as baseline for the FPC, the cryogenic plants must include liquefaction capacity.

O FUTURE COLLIDER 400 MHz Cryomodule – P&ID (Heat intercepts for the FPC cooling)

Warm helium line 300K, <1.1 bar

25

O FUTURE COLLIDER 800 MHz Cryomodule – P&ID (Heat intercepts for the FPC cooling)

HP line (He guards) 300K, 3bar	
Warm Helium line 300K, <1.1 bar	
Purge return 300K, <1.1 bar	
Line E: Th. shield supply 50K, 20bar	
Line F: TH shield return 75K, 18bar	
Line C: He supply 4.6K, 3bar	
Line D: He return 4.5K, 1.3bar	
Line DH: He return 20K, 1.3bar	
Line A: He supply 2.2K, 1.3bar	
Line B: He return 2K, 31 mbar	

Geometrical parameters – 400MHz

Wet surface of four cavity, inside the			
helium tank.	9.44	m2	
External surface of one helium tank.	3.21	m2	
Helium inventory per helium tank	0.223	m3	2231
Volume liquid helium 2-phase pipe			
Buffer for 15 minutes, beam OFF	0.064	m3	64.65
Diameter double phase pipe	0.155	m	
Volume double phase pipe	0.13	m3	1321
Filling ratio	48.9	%	
Wet surface of the double phase pipe	1.68	m2	
Diameter of the raisers	0.155	m	
Wet surface of the raisers (4)	0.097	m2	
Volume of the raisers (4)	0.0037	m3	3.71
Total wet surface	14.62	m2	
Total volume - Helium inventory L	1.027	m3	1027I
Liquid helium inventory	0.96	m3	9601
He vapor inventory	0.067	m3	671
Helium inventory kg x CM	115.701	kg	

Design guidelines:

- Liquid helium in the 2-phase = Buffer for 15min with beam OFF
- $\emptyset BD = \emptyset min 2$ -phase
- 50% max filling ratio
- \emptyset raisers = \emptyset 2-phase

Geometrical parameters – 800MHz

Wet surface of four cavity, inside the	4.00	
nellum tank.	4.96m2	2
External surface of one helium tank.	1.77m2	2
Helium inventory per helium tank	0.08m3	3 80I
Volume liquid helium 2-phase pipe Buffer for 15 minutes, beam ON +		
1cm of static height	0.052m	3 52
Diameter double phase pipe	0.155 m	
Volume double phase pipe	0.11 m3	3 113I
Filling ratio	46.5%	
Wet surface of the double phase pipe	1.68m2	2
Diameter of the raisers	0.140m	
Wet surface of the raisers (4)	0.097m2	2
Volume of the raisers (4)	0.0037m3	3 3.7I
Total wet surface	8.59m	2
Total volume - Helium inventory L	0.436m3	3 437l
Liquid helium inventory	0.37m3	3 376l
He vapor inventory	0.06m3	3 60I
Helium inventory kg x CM	54.87kg	

Design guidelines:

- Liquid helium in the 2-phase =
 - Buffer for 15min with beam ON
 - Liquid to ensure 1cm of liquid height on top of the raisers
- $\emptyset BD = \emptyset min 2$ -phase
- 50% max filling ratio
- Ø raisers to ensure a max heat flux of 1.2W/cm2 in the superfluid helium

FCC

Point H 400 MHz

Point H: Z, W Collider

► Distance beam2 : 430 to 760

► Distance beam1/2 : 800 to 960

4a : CM transport / Robot space 4b : CM installation / Robot 4c : CM in position / Robot

5a: Cryo line Jumper / Booster Moved to the other side

FCC

Point H 400 MHz

Point H: H, ttbar Collider

► Distance beam2 : 430 to 760

4a : CM transport / Robot space 4b : CM installation / Robot 4c : CM in position / Robot

5a: Cryo line Jumper / Booster Moved to the other side

Point H 800 MHz

Point L 800 MHz

