Updates on the GHC lattic

K. Oide (UNIGE/CERN/KEK)

June 11, 2024 @ FCC Week 2024, San Francisco, California, U.S.A.

Many thanks to K.B.J. Andre, M. Benedickt, X. Buffat, Y. Dutheil, C. Garcia, J. Keintzel, P. Kicsiny, I. Karpov, K. Ohmi, T. Pieloni, P. Raimondi, T. Raubenheimer, L.V. Riesen-Haupt, G. Roy, D. Shatilov, R. Tomas, F. Zimmermann, and all FCC-ee/FCCIS colleagues

Work supported by the FCC Feasibility Study (FCC-GOV-CC-0004, EDMS 1390795 v.2.0)

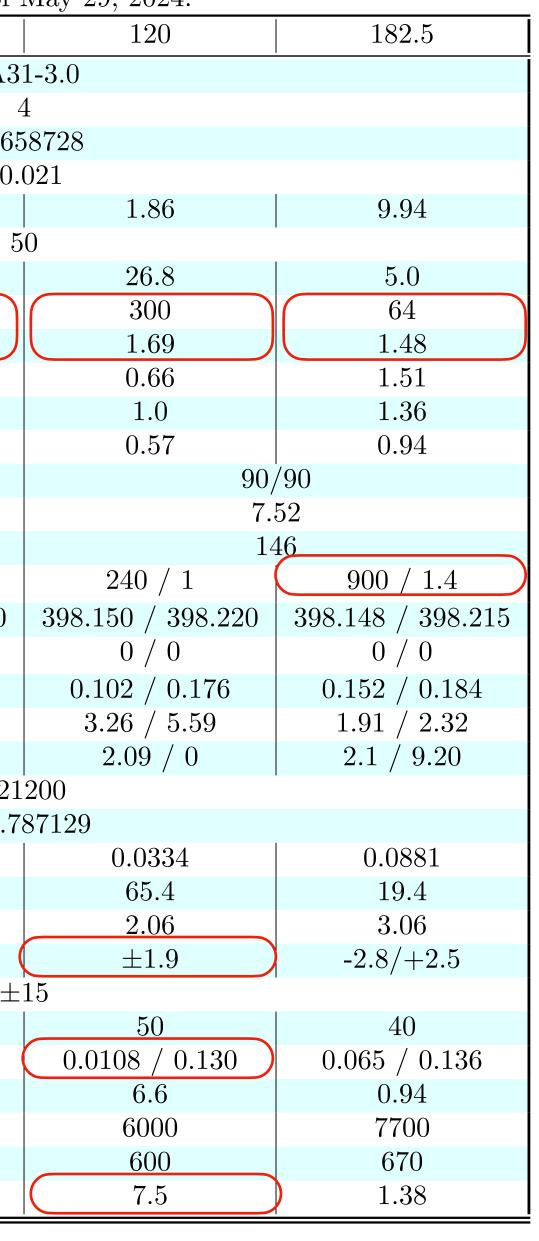
Incremental changes on the GHC lattice, since Nov. 2023 (or MTR)

• Items applied and adapted:

Items	changes	remarks	
higher bunch charge at Zh	1.69x10 ¹¹ from 1.32x10 ¹¹	19% higher luminosity	
momentum acceptance at Z/W, Zh	±1.0% from ±0.9% (Z/W) ±1.9% from ±1.6% (Zh)	required by on-axis injection (Y. Dutcheil) better lifetime (Zh)	
types of dipoles in a section of the IR straight (BG2 - BGA)	IR reduced from 9 to 2 types each bending angle is sta		
β* At tt	(0.9 m, 1.4 mm) from (0.8 m, 1.5 mm)	better lifetime	
Fine placement of sextupoles in the outer arc	a mistake in the spacing between dipole and sext was corrected	pointed out by C. Garcia, R. Tomas	

• Items tried, but not adapted:

Items	changes	remarks	
sextupole thickness/strengths	reduced from 1.3 m to 1.2 m/segment	860 T/m ² @ tt (unfinished 800 T/m2)	
types and angles of dipoles in the IR straight (BG2 - BGA, BL*, BS*)	reduced the types of lengths and angles	optics was possible, but seemed to have higher local chromaticity	
higher dispersion at SY*	0.189 m to 0.2 m	Ingher local chromaticity	
RF distribution for 2 LLSSs	800 MHz / 400 MHz	Special care is necessary for the tapering of quadrupoles around the RF cavities	


Parameters

FCC-ee collider parameters for the GHC lattice as of May 29, 2024.

Beam energy	[GeV]	45.6	80
Layout			PA3
# of IPs			
Circumference	$[\mathrm{km}]$		90.6
Bend. radius of arc dipole	[km]		10.
Energy loss / turn	[GeV]	0.0390	0.369
SR power / beam	[MW]		L L
Beam current	[mA]	1283	135
Colliding bunches / beam		11200	1852
Colliding bunch population	$[10^{11}]$	2.16	1.38
Hor. emittance at collision ε_x	[nm]	0.70	2.16
Ver. emittance at collision ε_y	[pm]	1.9	2.0
Lattice ver. emittance $\varepsilon_{y,\text{lattice}}$	[pm]	0.87	1.20
Arc cell		Long	90/90
Momentum compaction α_p	$[10^{-6}]$	29.5	2nx
Arc sext families		7	5
$\beta_{x/y}^*$	[mm]	110 / 0.7	220 / 1
Transverse tunes $Q_{x/y}$		218.158 / 222.220	218.185 / 222.220
Chromaticities $Q'_{x/y}$		0 / +5	0 / +5
Energy spread (SR/BS) σ_{δ}	[%]	$0.039 \ / \ 0.110$	$0.069 \ / \ 0.105$
Bunch length (SR/BS) σ_z	[mm]	$5.57 \ / \ 15.6$	3.46 / 5.28
RF voltage 400/800 MHz	$[\mathrm{GV}]$	0.079 / 0	1.00 / 0
Harm. number for 400 MHz			121
RF frequency (400 MHz)	MHz		400.7
Synchrotron tune Q_s		0.0289	0.0809
Long. damping time	[turns]	1171	218
RF acceptance	[%]	1.06	3.32
Energy acceptance (DA)	[%]	± 1.0) ± 1.0
Beam crossing angle at IP θ_x	[mrad]		±
Crab waist ratio	[%]	70	55
Beam-beam $\xi_x/\xi_y{}^a$		$0.0022 \ / \ 0.0977$	$0.013 \ / \ 0.129$
Piwinski angle $(\theta_x \sigma_{z,BS}) / \sigma_x^*$		26.6	3.6
Lifetime $(q + BS + lattice)$	[sec]	11800	4500
Lifetime $(lum)^b$	[sec]	1330	960
Luminosity / IP	$[10^{34}/{\rm cm}^2{\rm s}]$	143	20

^{*a*}incl. hourglass.

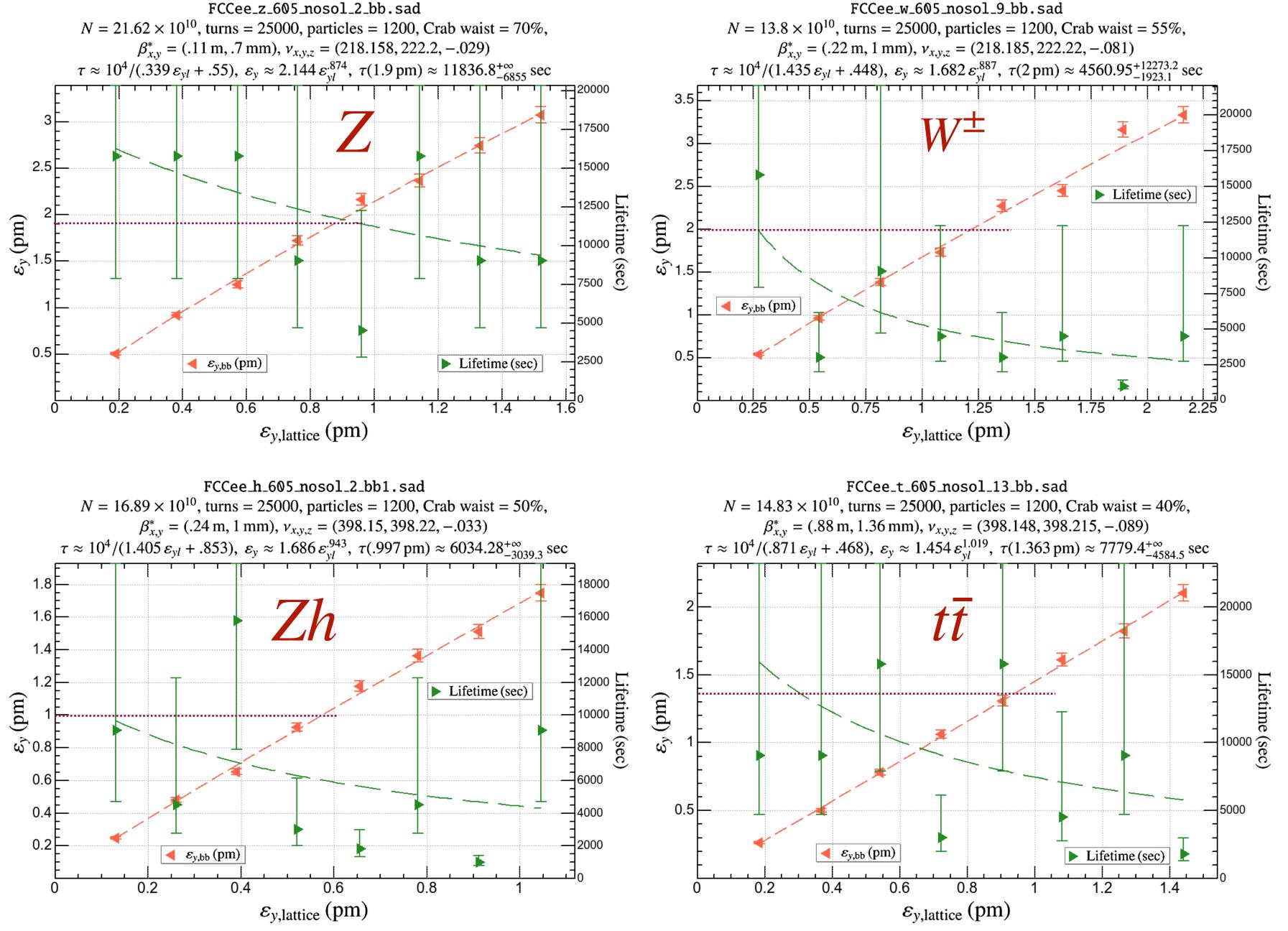
^bonly the energy acceptance is taken into account for the cross section, no beam size effect.

- compared to Jul. 2023:
- higher bunch charge, higher luminosity @Zh.
- lower bunch charge $@W/t\bar{t}$ for better lifetime.
- longer lifetime than MTR at all energies.
- • $\pm 1.0\%$ momentum acceptance@Z/W.
- At each energy, parameter with slightly higher luminosity is possible by increasing the bunch charge and ξ_{ν} in sacrifice of the lifetime.
- The crab waist ratio is subject to optimize further, see slides below.

Previous parameters (July 2023 almost for MTR)

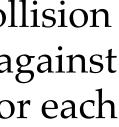
FCC-ee collider parameters as of July 30, 2023.					
Beam energy	$[\mathrm{GeV}]$	45.6	80	120	182.5
Layout			PA3	1-3.0	
# of IPs		4			
Circumference	$[\mathrm{km}]$	90.658816			
Bend. radius of arc dipole	[km]		10.	021	
Energy loss / turn	[GeV]	0.0391	0.374	1.88	10.29
SR power / beam	[MW]		5	0	
Beam current	[mA]	1279	137	26.7	4.9
Colliding bunches / beam		11200	1780	380	56
Colliding bunch population	$[10^{11}]$	2.14	1.45	1.32	1.64
Hor. emittance at collision ε_x	[nm]	0.71	2.17	0.67	1.57
Ver. emittance at collision ε_y	[pm]	1.9	2.2	1.0	1.6
Lattice ver. emittance $\varepsilon_{y,\text{lattice}}$	[pm]	0.85	1.25	0.65	1.1
Arc cell		Long	90/90	90	/90
Momentum compaction α_p	$[10^{-6}]$	28.6 7.4		.4	
Arc sext families		7	75	14	46
$eta_{x/y}^*$	[mm]	110 / 0.7	220 / 1	240 / 1	800 / 1.5
Transverse tunes $Q_{x/y}$		218.158 / 222.200	218.186 / 222.220	398.192 / 398.360	398.148 / 398.216
Chromaticities $Q'_{x/y}$		0 / +5	0 / +2	0 / 0	0 / 0
Energy spread (SR/BS) σ_{δ}	[%]	0.039 / 0.109	0.070 / 0.109	0.103 / 0.152	0.159 / 0.201
Bunch length (SR/BS) σ_z	[mm]	5.60 / 15.5	$3.46 \ / \ 5.09$	3.40 / 5.09	1.85 / 2.33
RF voltage 400/800 MHz	[GV]	0.079 / 0	1.00 / 0	2.08 / 0	2.1 / 9.38
Harm. number for 400 MHz		121200			,
RF frequency (400 MHz)	MHz	400.786684			
Synchrotron tune Q_s		0.0288	0.081	0.032	0.089
Long. damping time	[turns]	1158	219	64	18.3
RF acceptance	[%]	1.05	1.15	1.8	3.1
Energy acceptance (DA)	[%]	± 1.0	± 1.0	± 1.6	-2.8/+2.5
Beam crossing angle at IP	[mrad]	± 15		, ,	
Crab waist ratio	[%]	70	55	50	40
Beam-beam $\xi_x/\xi_y{}^a$		$0.0022 \ / \ 0.097$	$0.013 \ / \ 0.128$	0.010 / 0.088	0.066 / 0.144
Piwinski angle $(\theta_x \sigma_{z,BS})/\sigma_x^*$		26.4	3.7	5.4	0.99
Lifetime $(q + BS + lattice)$	[sec]	10000	4000	3500	3000
Lifetime $(lum)^b$	[sec]	1330	970	660	650
Luminosity / IP	$[10^{34}/{\rm cm}^2{\rm s}]$	141	20	6.3	1.38
Luminosity / IP (CDR)	$[10^{34}/cm^2s]$	230	28	8.5	1.8

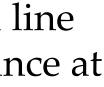
^{*a*}incl. hourglass.


^bonly the energy acceptance is taken into account for the cross section

FCC-ee collider parameters as of July 30, 2023

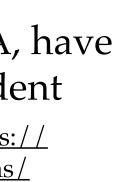
Lifetime & beam blowup with lattice + beam beam & beamstrahlung

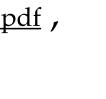


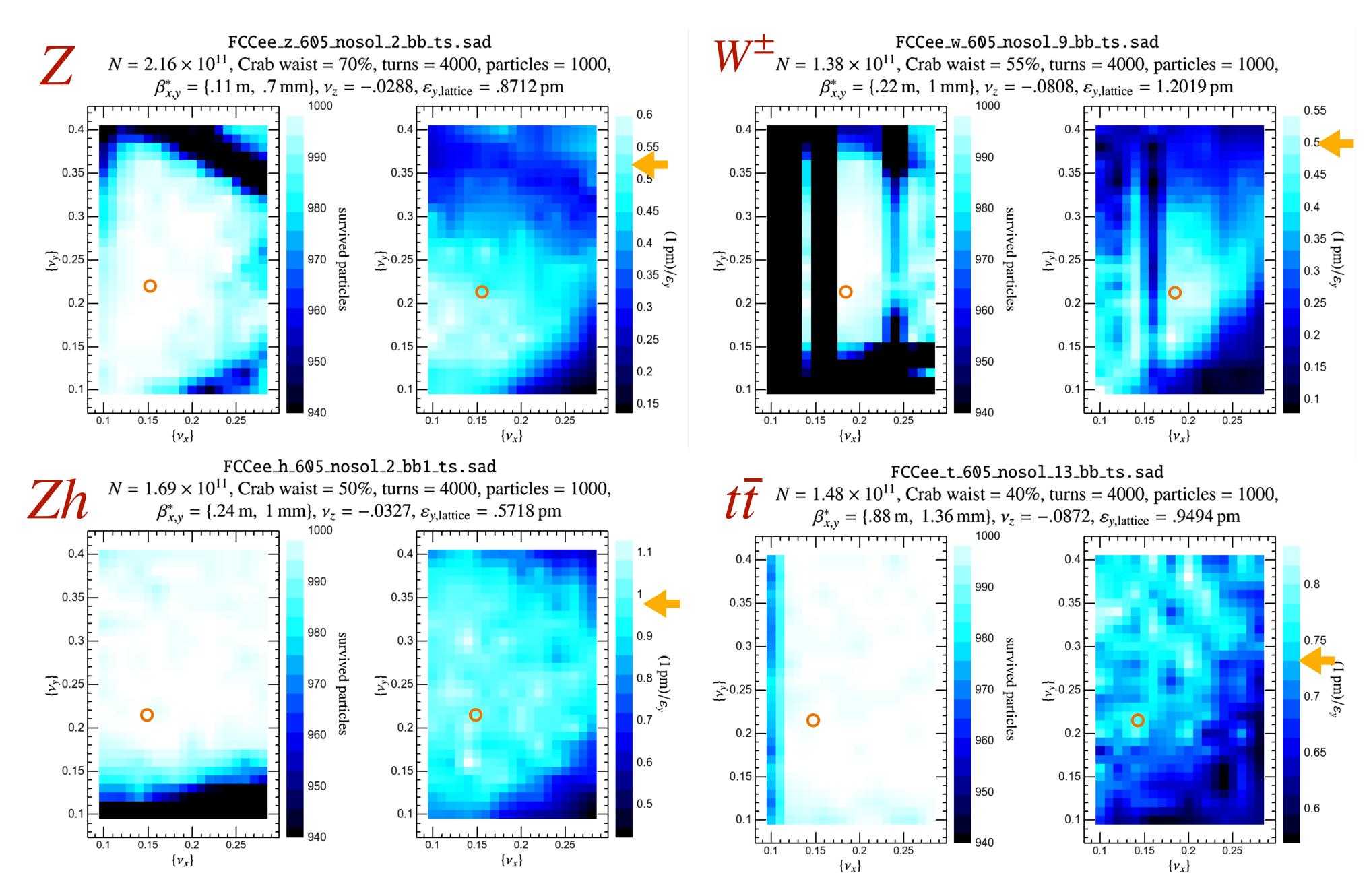

- The vertical emittance after collision (red) and the lifetime (green) against the lattice vertical emittance for each collision energy.
- The purple horizontal dashed line shows the goal vertical emittance at collision, where the vertical emittance of the strong beam is set at.
- SR in all elements, weak-strong beam-beam (BBWS), beamstrahlung are included.
- No machine error is included.
- These results, and also the DA, have been reproduced by independent simulations by P. Kicsiny: <u>https://</u> indico.cern.ch/event/1335891/contributions/ 5632544/attachments/2745020/4776609/

pkicsiny_fccee_optics_meeting_2023_11_02.pdf, except the lifetime.

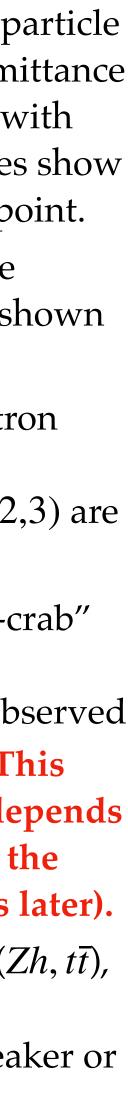
Using SAD/BBWS on HPC-BATCH Each plot takes 2 to 3 hours (higher energy needs more time for radiation).



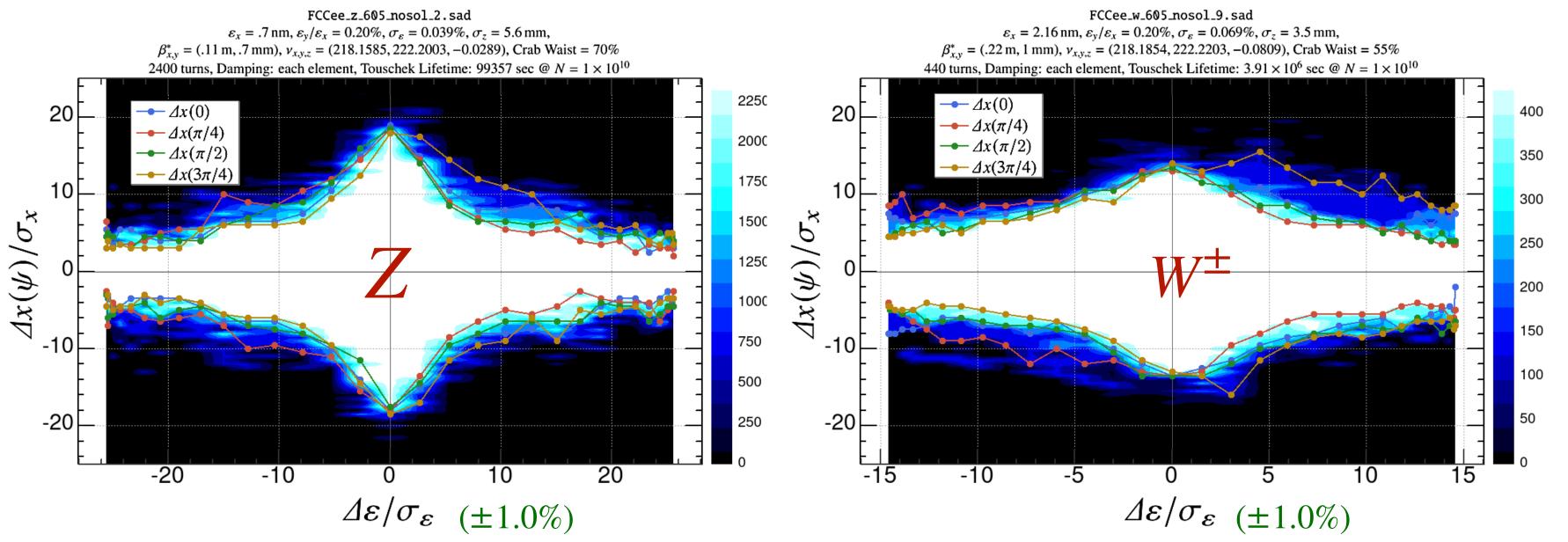


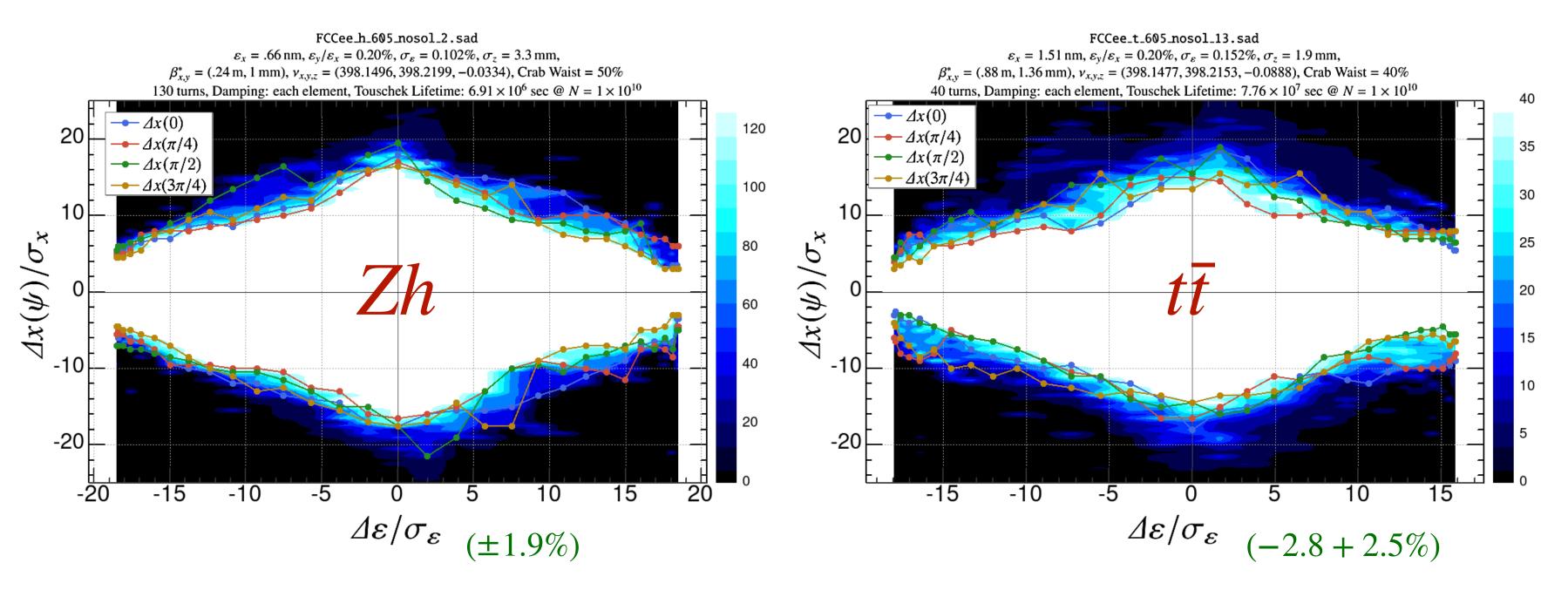


TUNE SCAN (lattice + beam-beam + beamstrahlung with SAD/BBWS)



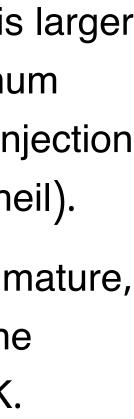
- Each plot shows the particle loss (left) and vert. emittance after collision (right) with each lattice. The circles show the current working point.
- The gradation of the design emittance is shown by yellow arrow.
- Very strong synchrotron sidebands
- $\nu_x + n\nu_z = N$, (n = 1, 2, 3) are seen at W^{\pm} .
- A strong "chromatic-crab" resonance line $\nu_x + 2\nu_v - \nu_z = N$ is observed with Z & W lattices. This resonance strongly depends on the magnitude of the


crab waist (see slides later).


• At higher energies $(Zh, t\bar{t})$, the chromatic-crab resonance seems weaker or invisible.

June 11, 2024, K. Oide 6

Dynamic aperture (z-x)



- The momentum acceptance is larger than $\pm 1\%$, which is the minimum requirement for synchrotron injection (following remarks by Y. Dutheil).
- Some DA(MA)s still seem immature, for instance at Z. However, the beam-beam lifetime looks OK.

June 11, 2024, K. Oide

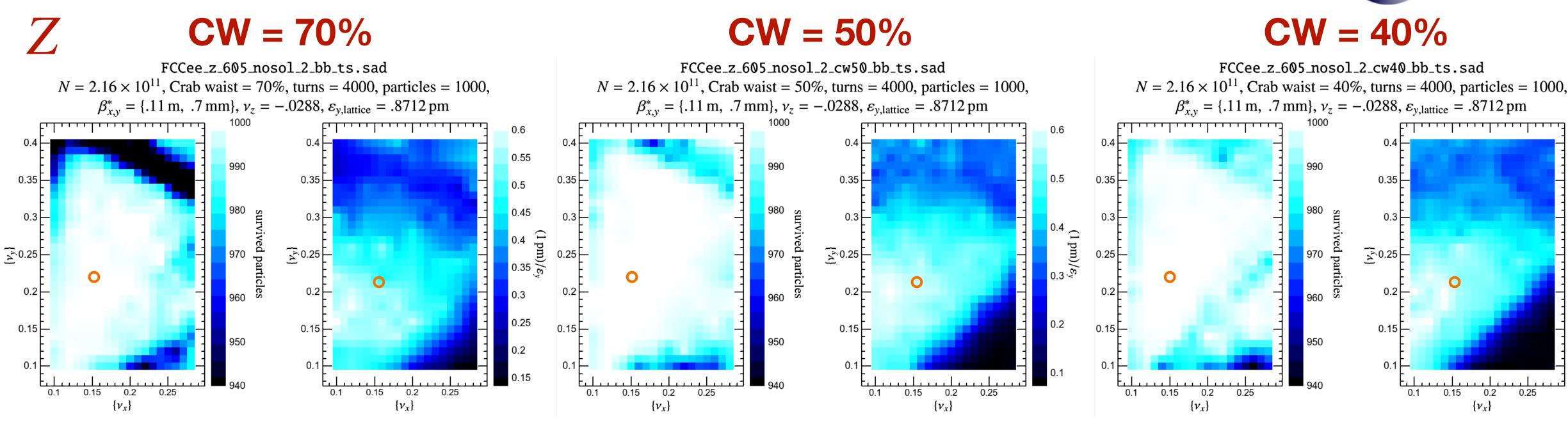
Significance of horizontal local chromaticity correction (XCCS)

	$t\bar{t}$		Ζ	
	$\int \gamma_x ds / 4\pi$	$\int \gamma_y ds/4\pi$	$\int \gamma_x ds/4\pi$	$\int \gamma_y ds / 4\pi$
IP ± 2.2 m	0.32	250.1	3.18	500.2
QC2L2 QC2R2	6.45	404.7	48.3	728.7
entire IR (QL6QS3)	15.3	448.2	63.5	823.9
RF straight	6.08	7.98	12.8	16.23

- one seems not much significant compared to those in other sections, esp. for $t\bar{t}$.
- is still 4 times larger than the design.
- ullet

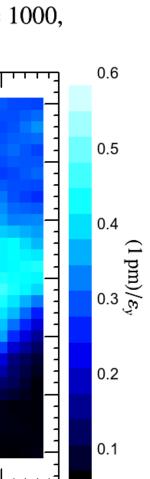
(For optics on May 8, 2024.)

• If we calculate the natural chromaticities $(=\int \gamma_{x,y} ds/4\pi)$ around the IP, the horizontal


• This is also seen at SuperKEKB, where their XCCS has not been effective so far, as β_x^*

If above is true, despite the naming, the most important difference between LCC/GHC optics is not the existence of XCCS, but in the structures of the arcs, HFD/FODO.

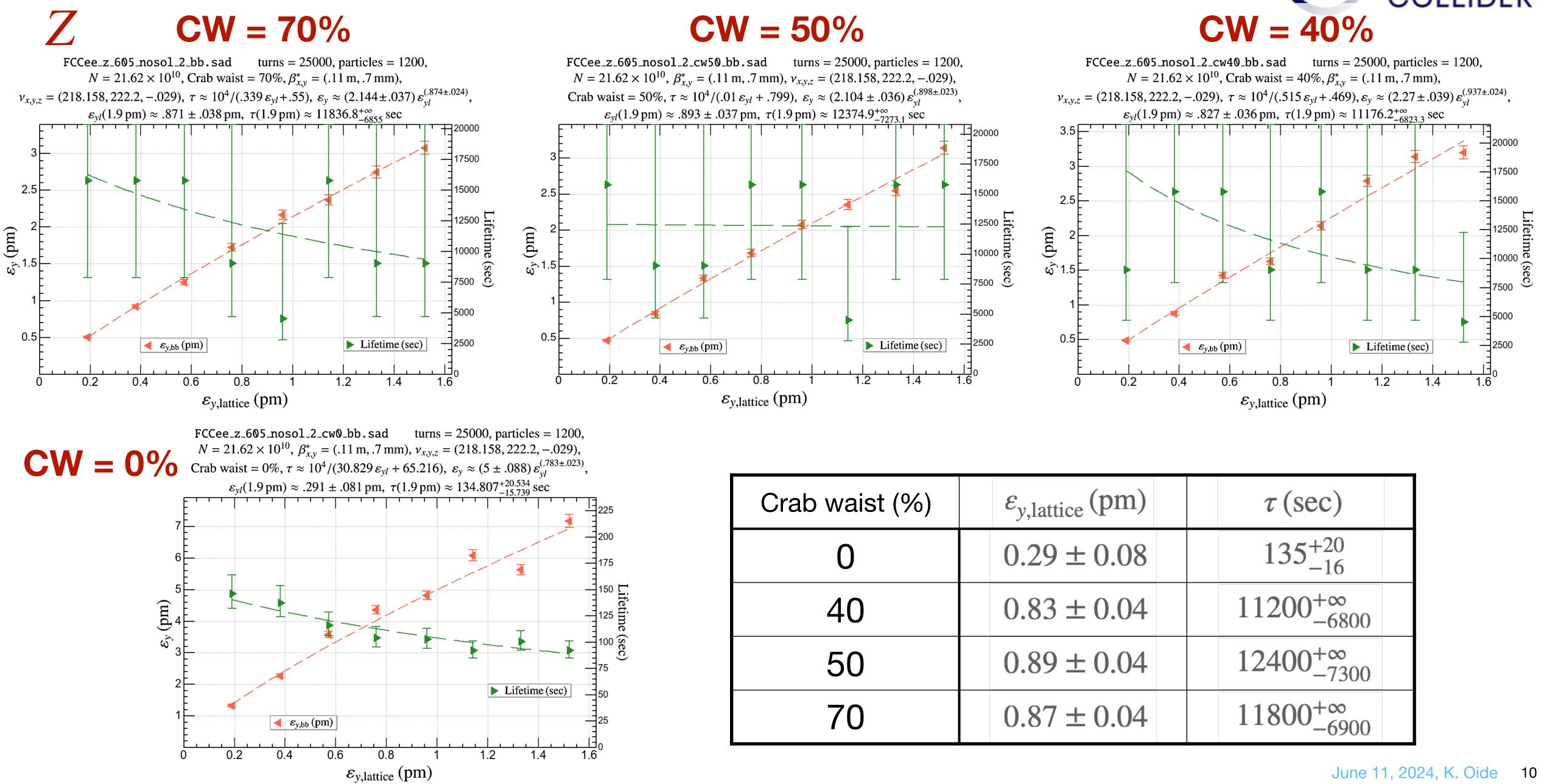
Resonance due to crab waist ratio @Z



- the crab waist ratio (CW).
- affected by the crab waist strength.

• The resonance line $\nu_x + 2\nu_y - \nu_z = N$ gets weaker by reducing

Both the lifetime and the emittance blowup by the resonance are



Emittance blowup & lifetime dependence on crab waist @Z

CIRCULAR COLLIDER

Crab waist (%)	$\varepsilon_{y,\text{lattice}}(\text{pm})$	τ (sec)
0	0.29 ± 0.08	135^{+20}_{-16}
40	0.83 ± 0.04	$11200^{+\infty}_{-6800}$
50	0.89 ± 0.04	$12400^{+\infty}_{-7300}$
70	0.87 ± 0.04	$11800^{+\infty}_{-6900}$

 135^{+20}_{-16}

Optimum crab waist ratio

- According to the simulations above, the optimum crab waist ratio for Z seems to be around 50%.
 - higher CW induces additional resonances due to beam-beam and crab.
 - simulations by the CDR did not take the lattice into account, gave the optimum at nearly 100% for Z.
- ... but what is the reason?
 - Is this lattice-specific?
 - currently the strong beam in BBWS does not take the CW on the beam shape.
 - needs independent simulations, incl. strong-strong model.

Crab waist (%)	$\varepsilon_{y,\text{lattice}}(\text{pm})$	τ (sec)
0	0.29 ± 0.08	135^{+20}_{-16}
40	0.83 ± 0.04	$11200^{+\infty}_{-6800}$
50	0.89 ± 0.04	$12400^{+\infty}_{-7300}$
70	0.87 ± 0.04	$11800^{+\infty}_{-6900}$

Summary

- Since November 2023 or the MTR, a few incremental changes have been made on the GHC lattice for each energy.
 - Many things remain for further modification:
 - Reduction/regulation of types of dipoles.
 - Insertions for injection/extraction/collimation/polarimeter@PL, etc.
 - The superperiodicity of the lattice will be violated.
 - Separation between two beams needs attention at RF, polarimeter, etc.
 - BPMs, correctors, ...
- The optimum crab waist ratio may be smaller than those has been lacksquarethought by the CDR.
- An alternative arc lattice will be pursued after this FCCW.
- These lattices are available in the repository, thank to G. Roy.

