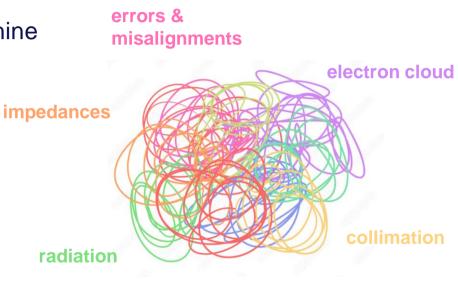


BEAM-BEAM STUDIES FOR FCC-ee

Peter Kicsiny, X. Buffat, V. Gawas, G. Iadarola, K. Oide, T. Pieloni, J. Salvesen, L. van Riesen-Haupt

for the beam-beam working group, with special thanks to:

H. Burkhardt, C. Carli, F. Carlier, M. Hofer, D. Schulte, M. Seidel, D. Shatilov, D. Zhou


FCC Week

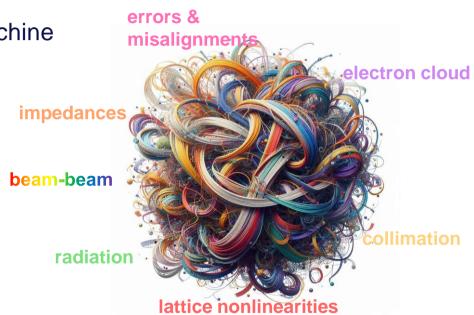
This work was performed under the auspices and with support from the Swiss Accelerator Research and Technology (CHART) program.

Overview

• FCC-ee will be a highly complex machine

• Interplay of various effects

lattice nonlinearities

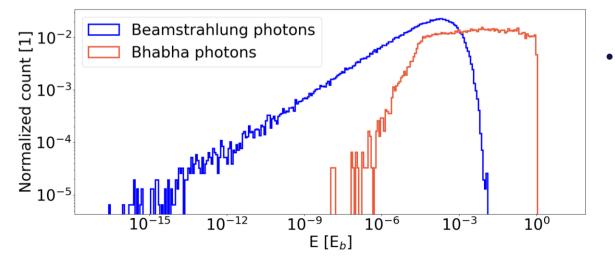

Overview

• FCC-ee will be a highly complex machine

Interplay of various effects

 Presence of beam-beam collisions further complicates beam dynamics

Self-consistent simulations are challenging


Radiation at FCC-ee collisions

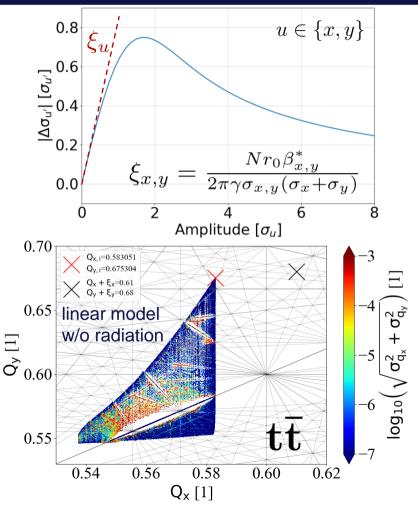
Incoherent

- Radiative Bhabha scattering
- Deflection in field of single particle of opposite bunch

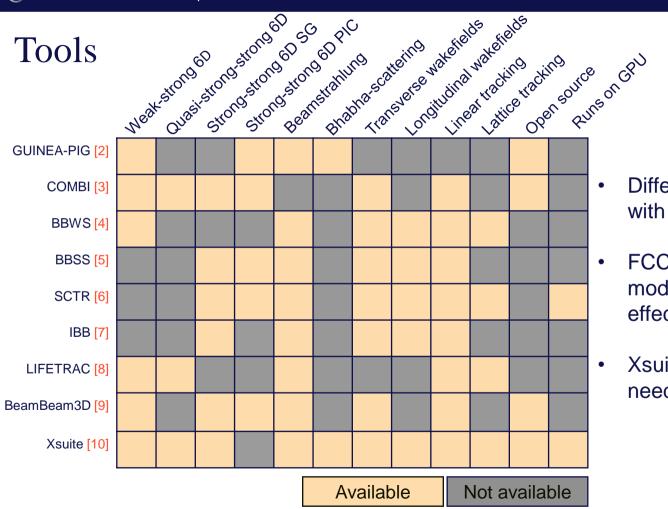
<u>Collective</u>

- Beamstrahlung
- Deflection in collective field of opposite bunch

Radiation particle losses $au \mathcal{L} \gtrless \sigma_z \sigma_\delta$


lifetimes: BS ~100 min BH ~30 min

Beam-beam force High lumi strong beam-beam force

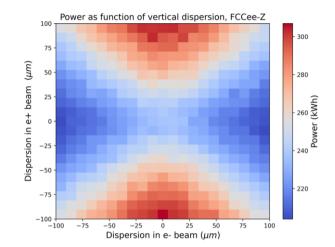

$$L = \frac{\gamma}{2er_e} \cdot \frac{I_{tot}\xi_y}{\beta_y^*} \cdot R_{hg}$$

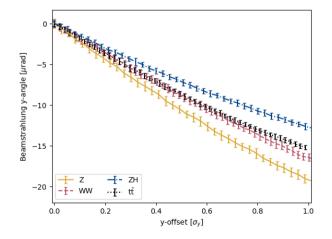
Consolidation...

- Radiation (synchrotron radiation, beamstrahlung, Bhabha)
- IP tuning & feedback
- Beam asymmetries
- Top-up injection

○FCC 11 June 2024 | FCC Week

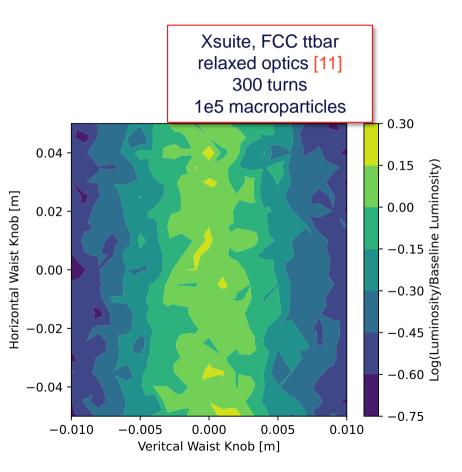
- Different beam-beam codes exist, with different features
- FCC-ee: self-consistent & fast modeling needed including many effects
- Xsuite: development driven by needs for FCC-ee


IP tuning & optimization

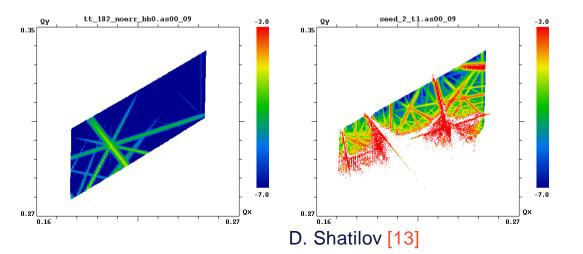

Design schemes to infer and correct for imperfections based on different signals (radiation, orbit measurements, ...)

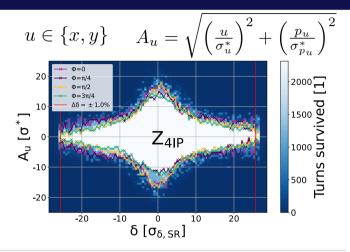
- Waist & dispersion shifts, beam offsets (fast IP feedback)
- Using GUINEA-PIG (single passage), multiturn effects with Xsuite need to be considered

V. Gawas, poster @ this conference


J. Salvesen, poster @ this conference

IP tuning & optimization

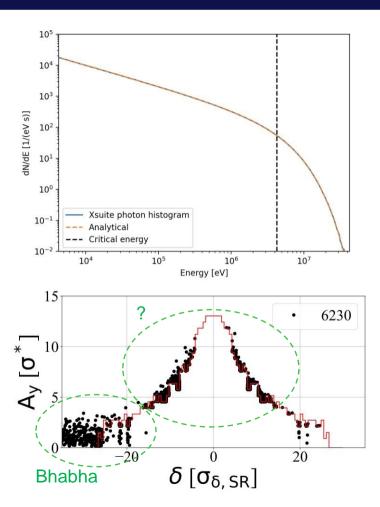

- Development of tuning knobs to vary beam configuration at the IP (waist)
 - Determine whether optics can be relaxed for better performance (e.g. easier startup)
 - Design experimental methods for waist correction based on luminosity
- Larger sensitivity in luminosity for vertical but smaller in horizontal waist
- Tests with machine errors in progress



Dynamic aperture

w/o errors

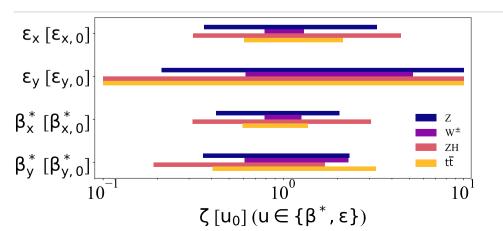
- Negligible reduction from beam-beam
- Compares well with SAD results from K. Oide [12]

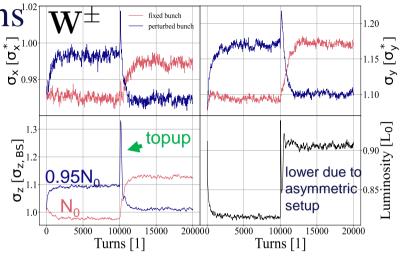

w/ errors & corrections

- More lattice induced resonances are seen with beam-beam due to large amplitude detuning
- Full lattice needs to be optimized with beam-beam included
- Tools are ready, requires work with tuning working group to establish correction strategies

Benchmarking radiation in Xsuite

Several benchmarks

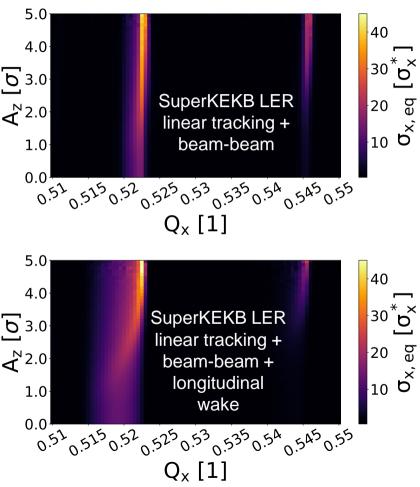

- ✓ Synchrotron radiation with MAD-X and SAD [14]
- ✓ Optics, orbit, energy with and without errors
- Quantum excitation and damping
- Equilibrium emittance w/ vertical wiggler
- Tracking and matrix methods
- ✓ Bhabha + beamstrahlung lifetimes
- Loss rate from unknown mechanism to be investigated (comparison with SAD to be refined)



Top-up injection & asymmetry scans^{1.02} \mathbf{W}

Longitudinal top-up simulated with Xsuite

- Perturbed bunch init. with 95% intensity
- Track till equilibrium & top-up
- Luminosity lower than in symmetric case (L₀) due to vertical blowup
 - Should be avoided (e.g. working point optimization)



- Evaluate asymmetries in emittance/beta leading to 50% vertical blowup
- Derived coarse tolerances for machine tuning

Case study at the SuperKEKB

- Beam-beam excites synchro-betatron resonances (collective [15], here single particle)
- Interplay with longitudinal wakefield enhances amplitude dependent incoherent x-z resonance
 - Impact on FCC-ee W? (high Q_s)
- Successful Xsuite benchmarks against BBWS, BBSS, PyHEADTAIL
- Transverse impedance + beam-beam @ FCC-ee

R. Soos, talk @ this conference

Summary

Work so far

- Xsuite beam-beam model developed:
 - Benchmarked against other codes GUINEA-PIG, BBWS, BBSS, PyHEADTAIL, COMBI, BBBREM, SAD, MAD-X
 - Tools are ready to combine beam-beam + lattice / IP + errors & tuning
 - Consolidated tolerances for asymmetries (bunch intensity, emittance, beta)

Lots of work still ahead...

- Understand lifetime discrepancy (not beam-beam related)
- Lattice tuning w/ errors @ beam-beam
- Beam-beam + longitudinal impedance @ FCC-ee W
- IP tuning with multiturn tracking
- Beam-beam + transverse impedance
- Monochromatization + beam-beam

Thank you!

References

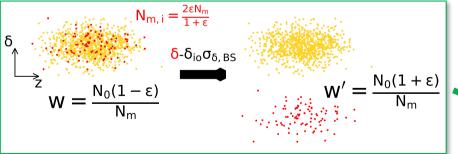
- [1] FCC-ee beam-beam meetings https://indico.cern.ch/category/18364/
- [2] D. Schulte https://cds.cern.ch/record/331845/files/shulte.pdf
- [3] T. Pieloni, W. Herr https://accelconf.web.cern.ch/p05/PAPERS/TPAT078.PDF
- [4] K. Ohmi https://indico.cern.ch/event/438918/contributions/1085290/attachments/1147002/ 1644777/BenchBBcodes.pdf
- [5] K. Ohmi https://oraweb.cern.ch/pls/hhh/code_website.disp_code?code_name=BBSS
- [6] K. Ohmi https://indico.cern.ch/event/1398060/contributions/5876155/attachments/2831376/4947208/Beam-beamFCCee_ohmi.pdf
- [7] Y. Zhang https://journals.aps.org/prab/pdf/10.1103/PhysRevAccelBeams.23.104402
- [8] D. Shatilov http://cds.cern.ch/record/1120233/files/p65.pdf
- [9] J. Qiang https://amac.lbl.gov/~jiqiang/BeamBeam3D/
- [10] Xsuite 10.18429/JACoW-HB2023-TUA2I1
- [11] L. van Riesen-Haupt https://www.jacow.org/ipac2024/pdf/WEPR04.pdf

[12] K. Oide, FCC-ee Collider Optics

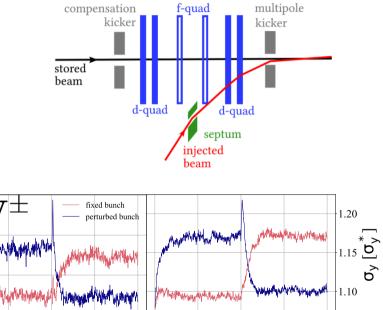
https://indico.cern.ch/event/1202105/contributions/5408583/attachments/2659051/4608141/FCCWeek_Optics_Oide_230606.pdf

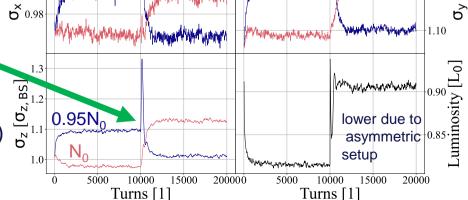
- [13] D. Shatilov, FCC Week 2022 https://indico.cern.ch/event/1064327/contributions/4893272/
- [14] L. van Riesen-Haupt https://www.jacow.org/ipac2024/pdf/WEPR05.pdf
- [15] K. Ohmi https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.119.134801

○ FCC


BACKUP

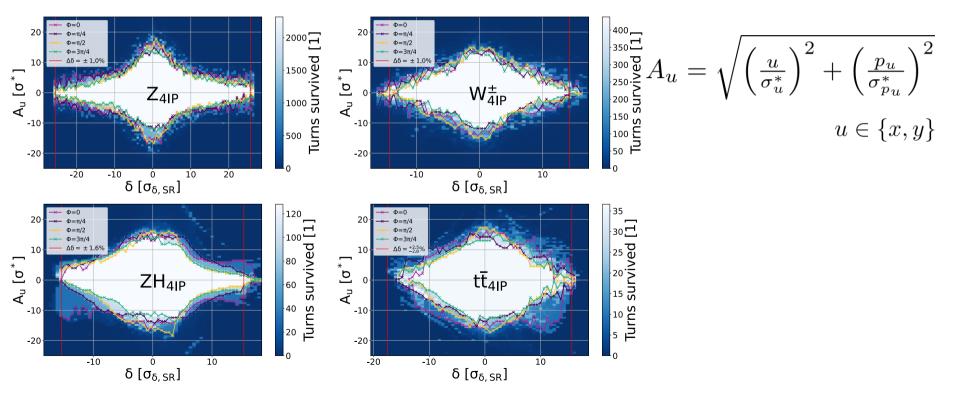
Top-up injection


- Maintains luminosity levels & compensates for decreased beam lifetime
- Single booster feeds both beams

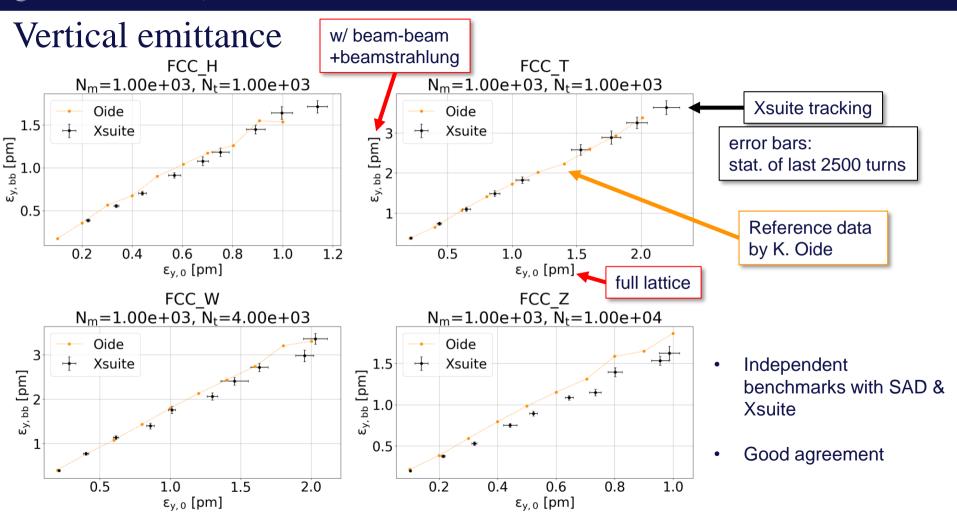

Longitudinal top-up simulated with Xsuite

- Perturbed bunch init. with 95% intensity
- Track till equilibrium & top-up

- Luminosity lower than in symmetric case (L₀)
 - This reduction cannot be avoided but currently not taken into account in design

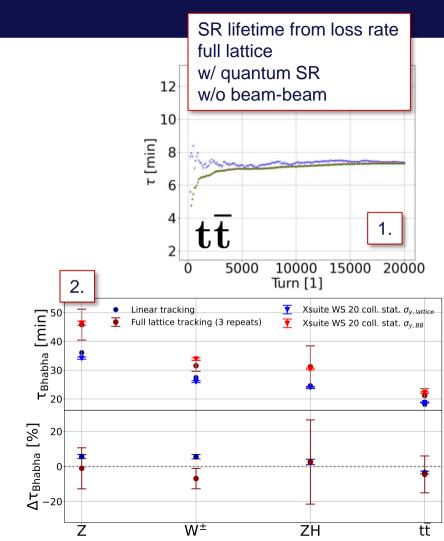

1.02

*×^{1.00}

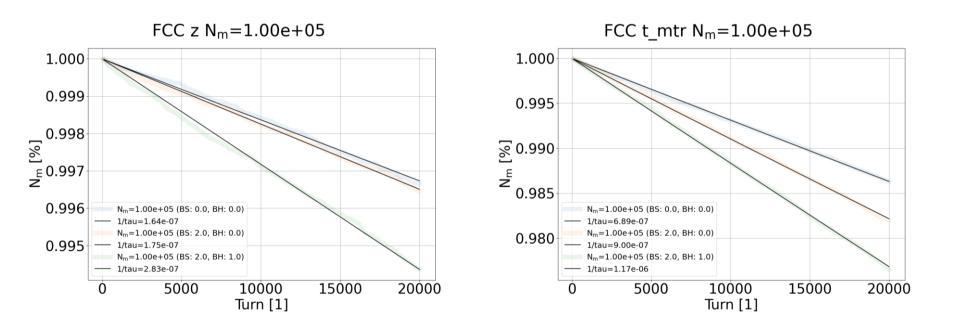

Simulation parameters

Slide #	9	11/upper	11/lower	12
Machine setup	FCC 4 IP baseline	FCC 4 IP baseline, W	FCC 4 IP baseline	SuperKEKB LER
Lattice model	nonlinear	linear	linear	linear
Beam-beam model	weak-strong	1 st part: quasi-strong- strong (f _{update} =100), 2 nd part: strong-strong	quasi- strong- strong (f _{update} =100)	strong-strong
# slices in beam-beam	100 (300 for Z)	100	100 (300 for Z)	100
# macroparti cles	4e4	1e5	1e5	1e5
# turns	2x SR damping time	2e4	1e4 (Z, W), 5e3 (H, T)	2e4

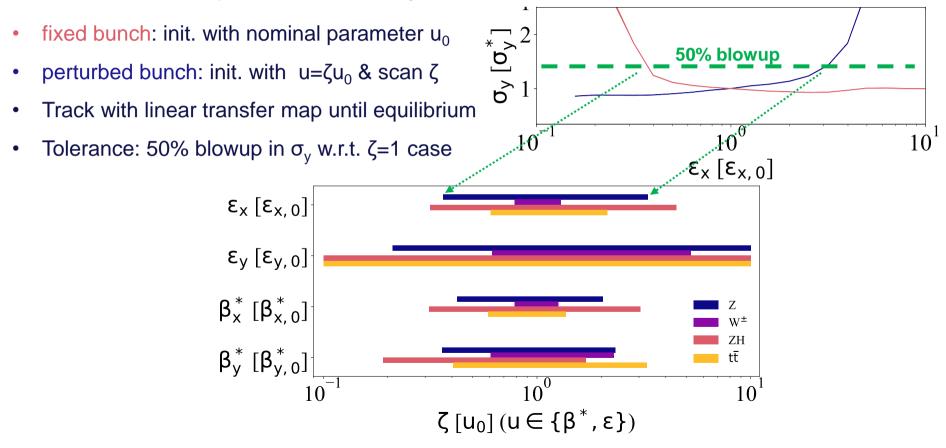
Dynamic aperture with beam-beam



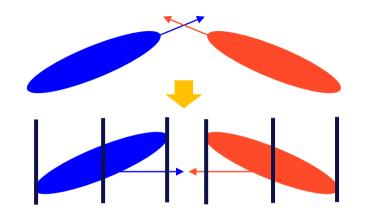
○FCC 11 June 2024 | FCC Week



Beam lifetime


- 1. Synchrotron radiation seems to be dominating
 - Discrepancy w.r.t. SAD results from K. Oide
 - Work in progress
- 2. Bhabha lifetimes simulated & compare well to reference estimates (GUINEA-PIG + BBBREM)

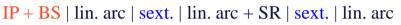
Bhabha lifetime: loss rates

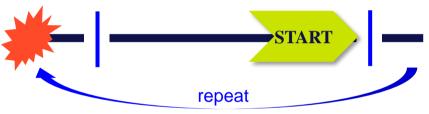

Tolerances to parameter asymmetries

Beam-beam in Xsuite

1. Lorentz transform into head-on frame

2. Longitudinal slicing

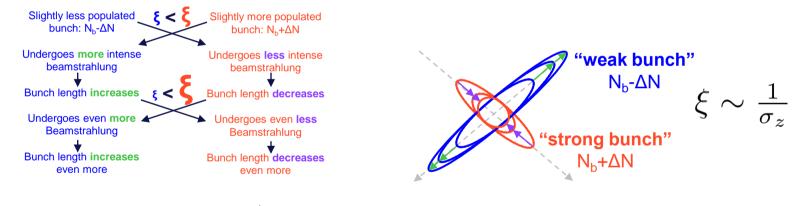



3. Beam-beam kick in soft-Gaussian approximation [4]

$$\begin{split} \Delta y' + i\Delta x' &= \frac{Nr_0\sqrt{2\pi}}{\gamma\sqrt{\sigma_x^2 - \sigma_y^2}} \left(\mathbf{w} \left[\frac{x + iy}{\sqrt{2(\sigma_x^2 - \sigma_y^2)}} \right] - \exp\left[-\frac{x^2}{2\sigma_x^2} - \frac{y^2}{2\sigma_y^2} \right] \cdot \mathbf{w} \left[\frac{x\frac{\sigma_y}{\sigma_x} + y\frac{\sigma_x}{\sigma_y}}{\sqrt{2(\sigma_x^2 - \sigma_y^2)}} \right] \right) \\ x' \leftarrow x' + \Delta x' \\ y' \leftarrow y' + \Delta y' \\ \end{split} \qquad \mathbf{w}[t] &= \exp\left[-t^2 \right] \left(1 + \frac{2\mathbf{i}}{\sqrt{\pi}} \int_0^t \exp\left[u^2 \right] \mathrm{d}u \right) \end{split}$$

Simplified tracking simulations with Xsuite

- First studies with 2 IP baseline from CDR [5]
- Recent studies with 4 IP design from [6]
- Xsuite tracking setup:
 - 1 IP + tracking over arc superperiod with linear transfer matrix
 - Arc split into 3 segments
 - 2 crab sextupoles between arc segments (β_x =3 m, β_y =500 m)
 - Each iteration begins in front of the right sextupole
 - Observation point for coordinates
 - Synchrotron radiation (damping+noise) in arc, beamstrahlung+bhabha scattering in beam-beam element



◯FCC 11 June 2024 | FCC Week

Flip-flop

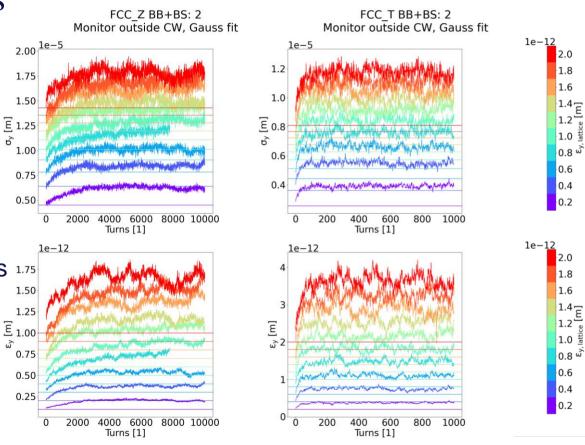
- Flip-flop instability (1D) observed in other colliders (VEPP-2000) [7]
- For FCC-ee: 3D flip-flop direct consequence of beamstrahlung, triggered by an initial asymmetry in bunch intensity [8]

- Inflation of one bunch
- nch
- Above a threshold ξ_0 longitudinal blowup drives transverse diffusion
- Relevant for FCC-ee top-up injection

· 3D flip-flop

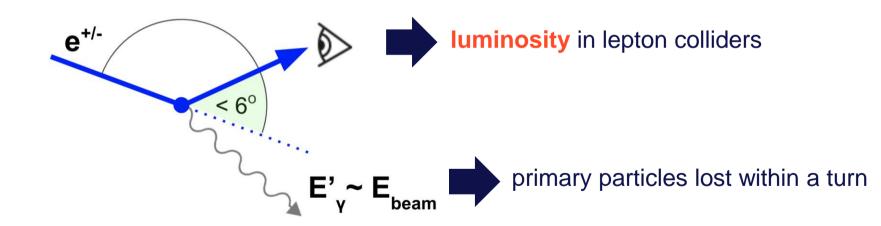
Workflow for emittance scan – everything in Xsuite

Prepare Xtrack line once [6]:


load MAD-X sequence [7]
add wigglers
convert to Xtrack line
build + twiss 4D
slice sequence
build + twiss 4D
save Xtrack line

Loop over a range of ε_v values:

load Xtrack line	:	
add observation point @ RF	add beam-beam element (optional)	
build + twiss 4D	build	
twiss 6D mean synrad + tapering	set quantum synrad	
match ε_v	track	
twiss 6D mean	repeat with next ϵ_y	
synrad + tapering		
:		

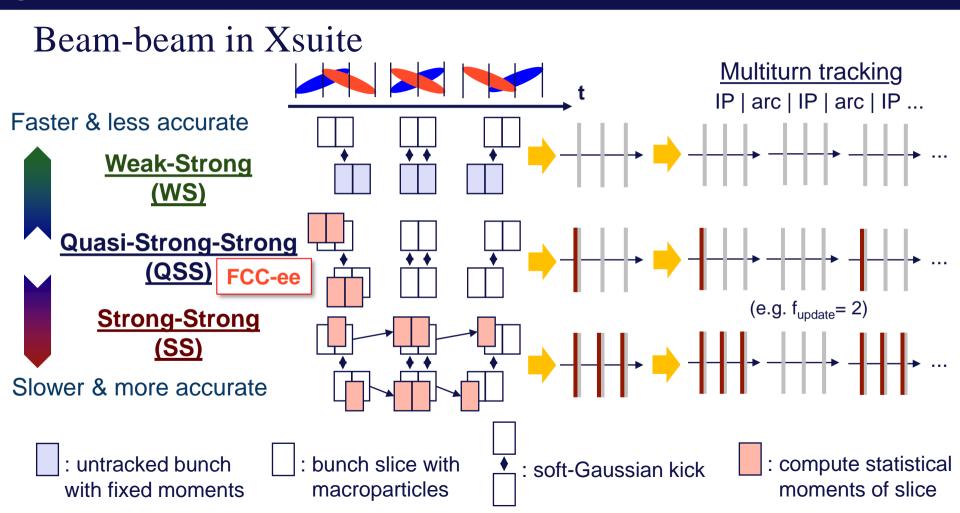

Emittance scan results

- Small discrepancy compared to SAD results
- Xsuite likely not yet converged
- Need more turns to see fully converged emittances 1.75

Small angle Bhabha scattering [6]

Dominated by t-channel (scattering) process

Main limitation of FCC-ee beam lifetime (alongside beamstrahlung)


Bhabha lifetimes

$$\frac{1}{\tau} = \frac{1}{N_b} \frac{dN_b}{dt} = \frac{1}{N_b} \sigma_{Bhabha} L_{inst} \cdot N_{IP} = \frac{1}{N_b} R_b \cdot f_{rev} \cdot N_{IP}$$

- T: Bhabha lifetime [s]
- N_b: bunch intensity [1]
- σ_{Bhabha}: Bhabha cross section [m^2]
- N_{IP}: number of lps [1]
- L_{inst}=L*f_{rev}: instantaneous lumi of 1 bunch crossing [m^-2 s^-1]
- L: integrated lumi of a single collision (luminosity per bunch crossing) [m^-2]
- f_{rev}: revolution frequency [s^-1]
- $R_b = \sigma_{Bhabha}^*L$: number of emitted Bhabha photons with E above mom. acceptance [1]

Dynamic aperture test grid

