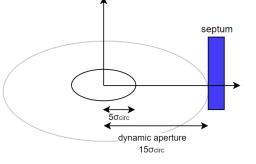


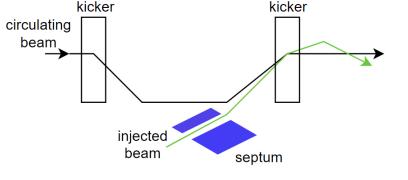
FUTURE CIRCULAR COLLIDER

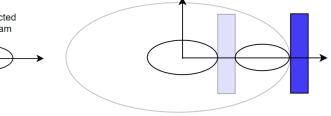
Top-up injection scheme into the collider

Y. Dutheil & S. Yue, on behalf of SY-ABT CERN, Geneva, Switzerland

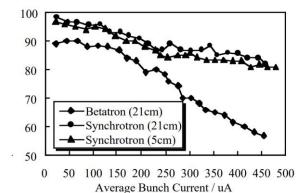



Context and outline


- The FCC lepton collider aims at maintaining record-high luminosities
 - Beam lifetime and high bunch charge require continuous top-up injection
- Introduction to top-up injection conventional concept
 - On-axis Vs Off-axis
 - Experience from LEP
- Baseline scheme
 - Hardware and concept selection
 - Z-mode design
 - Possible optimisation
 - Other modes concepts
- Machine protection concerns
- MKI scenario
- Conclusion


Introduction to top-up injection: conventional concept

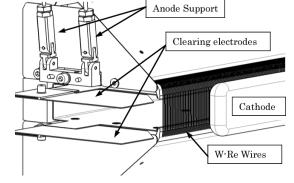
- Dipole kickers magnets create a closed bump to bring the stored beam trajectory close to the injection system (see G. Favia and J. Borburgh on Thu)
- Two kickers are placed with 180° phase advance between them (π -orbit-bump)
- The bump is constant for up to a single turn while off before and after
- Beam separation at the injection septum
 - Off-axis means the separation exists in the transverse space
 -> betatron oscillations and damping
 - On-axis means the separation exists in momentum at a dispersive region -> longitudinal oscillations and damping

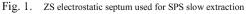


[1] P. Hunchak, 2021 FCCIS WP2 Workshop , link

Introduction to top-up injection: history of LEP

- LEP was design for both on-axis and off-axis top-up injection
 - Operation started with off-axis injection until the first tests in 1994
 - Following commissioning and comparison, on-axis injection became the nominal injection scheme
- Advantages of the on-axis
 - Faster damping since the injected beam undergoes longitudinal oscitations
 - Flat trajectories in the achromatic experimental straight sections reduced radiation doses to experiments
 - Overall, less affected by injection errors and provided better injection efficiency at higher bunch current


[1] Collier, Paul. "Synchrotron phase space injection into LEP." Proceedings Particle Accelerator Conference. Vol. 1. IEEE, 1995.


Baseline scheme: selection

- Injection Septum technology •
 - Electrostatic septum
 - Minimal blade thickness of ~100 µm

 - A potential availability risk was identified due to photo-electron induced sparking, as observed in the SPS when accelerating positrons [2]
 - An ongoing R&D program in ABT aims at characterizing the sparking probability in the presence of synchrotron radiation
 - Magnetic septum
 - Thicker blade of 1 mm to a few mm is needed
 - Several technology available
 - New baseline concept uses a **thin magnetic septum of 2.8 mm** blade thickness (see J. Borburgh on Thu)
- **Baseline injection scheme** •
 - Every scheme was reviewed in 2018 [3] and conventional as well as multipole kicker injection schemes were considered suitable
 - Off-axis injection scheme
 - Experience from LEP is directly applicable : lower radiation to experiments with on-axis scheme
 - Modelling of SR power deposition around experimental area showed that betatron injection with gap of $\sim 10\sigma$ is not feasible [1]
 - On-axis injection scheme
 - Septum gap between injected and circulating beams opened by dispersion and momentum offset
 - Requires sufficient dynamic aperture and flexible optics to obtain a large dispersion at the injection point
 - The baseline scheme uses **on-axis injection**

[3] Aiba, Masamitsu, et al. "Top-up injection schemes for future circular lepton collider." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 880 (2018): 98-106.

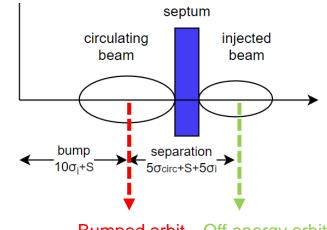
^[1] K. Andre, SR power deposition from injected beam, 161st FCC-ee Optics Design Meeting,

^[2] Dubois, R; Weisse, E; Keizer, R L, First comments on the interaction of synchrotron light with the electrostatic septa of the SPS, SPS-ABT-Tech-Note-88-05

Baseline scheme: z-mode requirements

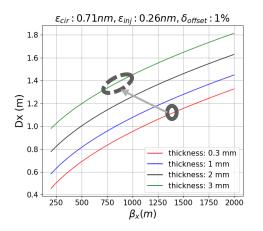
- Ring dynamic aperture limits the injected beam < $\pm 1 \%$
- Requirements:

$$\left| \boldsymbol{D}_{\boldsymbol{x}} \boldsymbol{\delta}_{offset} \right| = 5\boldsymbol{\sigma}_{cir} + \boldsymbol{S} + 5\boldsymbol{\sigma}_{inj}$$


 $\begin{array}{l} - \quad \delta_{cir,BS} = 0.109\%^{[3]} \\ \epsilon_{cir} = 0.71 nm^{[3]}, \, \epsilon_{inj} = 0.26 \, nm^{[4]} \end{array}$

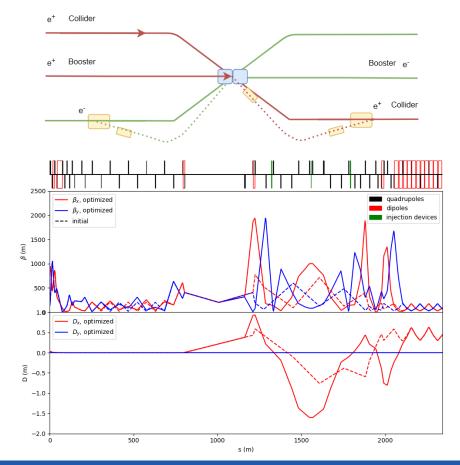
-
$$\sigma_{cir} = \sqrt{\epsilon_{cir}\beta_x + (D_x\delta_{cir})^2},$$

 $\sigma_{inj} = \sqrt{\epsilon_{inj}\beta_x}$ (considers achromatic injected beam)


Simplified analytical constraint on the optics

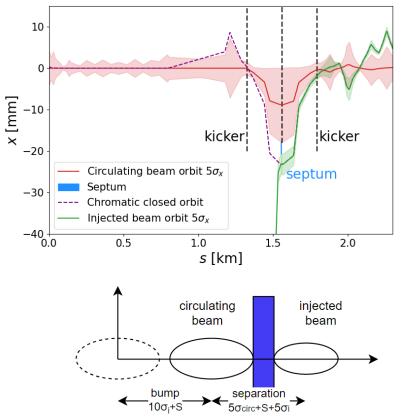
$$\boldsymbol{D}_{\boldsymbol{X}} = \frac{(S+5\sqrt{\epsilon_{inj}\beta_{\boldsymbol{X}}})\boldsymbol{\delta}_{offset} + 5\sqrt{\epsilon_{cir}\beta_{\boldsymbol{X}}}\left(\boldsymbol{\delta}_{offset}^{2} - 25\boldsymbol{\delta}_{cir}^{2}\right) + (S+5\sqrt{\epsilon_{inj}\beta_{\boldsymbol{X}}})^{2}\boldsymbol{\delta}_{cin}^{2}}{\left(\boldsymbol{\delta}_{offst}^{2} - 25\boldsymbol{\delta}_{cir}^{2}\right)}$$

- First optics constraints
 - $D_x = 1.4$ m and $\beta_x = 1000$ m for 2.8 mm blade thickness

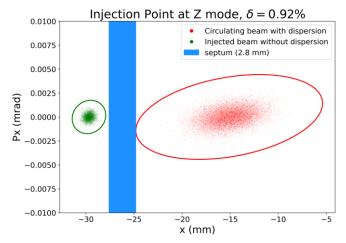


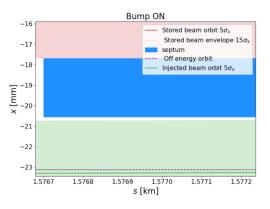
Bumped orbit Off energy orbit

Baseline scheme: Z-mode optics design and matching


- Optics constraints at the injection point
 - $D_x = 1.4 \text{ m} \text{ and } \beta_x = 1000 \text{ m}$
 - Makes use of the dispersion created by the separation dipoles at the center of the straight section
- · Optics matching to the ring lattice
 - Twiss parameters are matched on both sides of the straight section
 - Phase advance across the straight section matched
 - No matching of the W function
- Large D_x and β_x
 - Reducing the requirement on energy offset
- π mode bump
- Effects in ring dynamics
 - No significant effect observed in late 2023 on GHC lattice (<u>MR59</u>)
 - Systematic validation of the injection optics is required

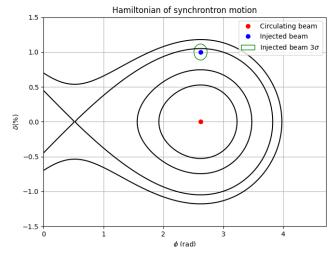
11/06/2024

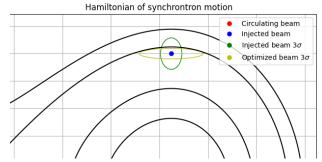

Baseline scheme: Z-mode envelopes and aperture


- Circulating beam bumped close to the injection septum
 - Bump amplitude of 10σ + septum thickness
 - Fast bump lasting only 1 turn
- Parameters
 - Kicker strength: 36 µrad
 - Rise and fall time depend on filling scheme rise & fall time 1.1 µs flat-top time: 304 µs for full turn filling
- Strong requirements on kickers field flatness is challenging to maintain over 304 µs (see G. Favia on Thu)
- Large envelopes due to dispersion
 - Need to ensure the aperture is sufficient with and without the injection bump

Baseline scheme: Z-mode envelopes at the injection point

- Real space geometry of the envelopes at the septum
 - Deflection angle of the circulating beam is 0.1 mrad
 - Stray field impact for the circulating beam ~1 µrad
 - Maximum gap between septum and injected beam 5σ envelope is ~0.2mm
 - No need for wedged septum -> septum has fixed thickness across entire length
- Halo interception by the septum
 - Septum clashes with part of the circulating beam during the injection turn
 - Halo absorption upstream of the septum needs to be considered and halo population precisely quantified in the presence of beam-beam



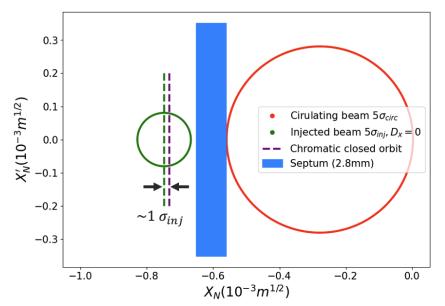


Baseline scheme: Z-mode longitudinal phase space

- Longitudinal parameter
 - RF acceptance in collider: 1.06% [1]
 - Energy offset of beam extracted from booster : 1%
 - Energy spread of beam extracted from booster : 0.038 %
 - Bunch length of beam extracted from booster : 2.43 mm
- Goal of $\geq 3 \sigma_z$ injected beam capture
 - Increase collider ring RF acceptance
 - − Decrease energy offset of injected beam \rightarrow ≤0.95%
 - Accept lower injection efficiency

[1] K. Oide, Collider GHC lattice

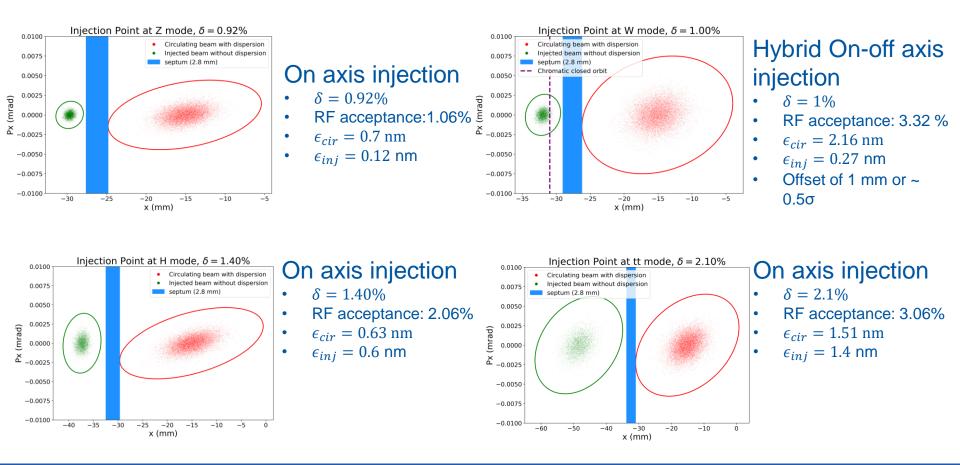
Baseline scheme: optimisation with hybrid on-off axis injection scheme


- Limitations to the energy offset of the injected beam
 - RF acceptance

○ FCC

- Dynamic aperture
- Small betatron offset of a few sigma remains acceptable [1]
- Hybrid optimization reduces
 momentum offset at the expense of
 - $D_s \delta < 5\sigma_{cir} + S + 5\sigma_{inj}$ -> Offset = $5\sigma_{cir} + S + 5\sigma_{inj} - D_s \delta$
- Betatron oscillation damping is slower than longitudinal
 - Z-mode longitudinal damping time is ~0.3 s

11/06/2024


- Z-mode considering injections every ~3 s Andre, SR power deposition from injected beam, <u>161st FCC-ee Optics Design Meeting</u>,

 Taking the orbit with an energy offset of 1% as an example
 Distance between injected beam and off energy orbit

~ 1.5 mm
$$\equiv$$
 ~1 σ_{inj}

Baseline scheme: first estimates at other modes

11/06/2024

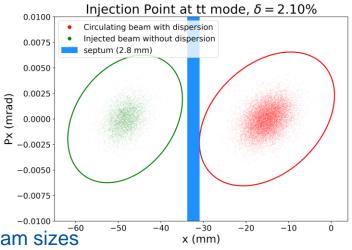
Baseline scheme: first estimates at other modes

FCC-ee collider parameter [1]

Beam energy GeV	45.6	80	120	182.5
Horizontal emittance [nm]	0.7	2.16	0.66	1.51
RF acceptance [%]	1.06	3.32	2.06	3.06
Energy acceptance (DA) [%]	±1.0	±1.0	<u>+</u> 1.9	-2.8/+2.5
Energy Spread (BS) σ_{δ} [%]	0.11	0.105	0.176	0.184
Septa blade thickness (mm)	2.8			

FCC-ee booster parameter

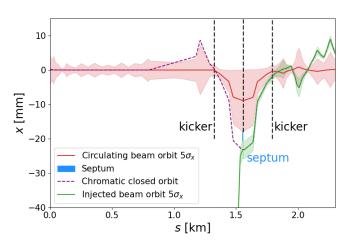
Beam energy GeV	45.6	80	120	182.5
Horizontal emittance [nm]	0.12	0.27	0.6	1.4
Energy spread [10 ⁻³]	0.38	0.67	1.01	1.53
Extraction bunch length [mm]	2.43	2.56	2.26	1.98

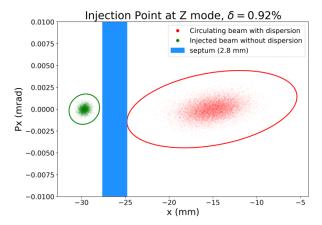

[1] K. Oide, Collider GHC lattice,

[2]Booster lattice, GitLab

Baseline scheme: first estimates at other modes

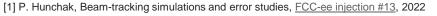
Status

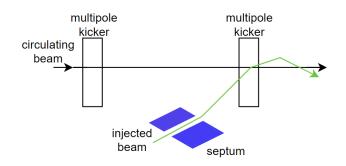

- Injected beam dispersion is mismatched causing betatron beating of the injected beam
- Baseline scheme developed for the Z-mode requires adapted parameters at other modes
- Higer-energy optics rematched to the Z injection lattice
- Challenges
 - Longitudinal beam parameters matching is not possible at large momentum offsets close to the acceptance limit
 - Top-mode large emittance presently requires very large beam sizes
 - Possible hardware changes between modes
- Next steps
 - Tracking of injected beam to estimate injection efficiency and validation at every mode
 - Considering requirements on the booster vertical emittance
 - Presently using the booster horizontal equilibrium which may not be easily reachable for the Zmode -> need to consider the effect of larger horizontal emittance

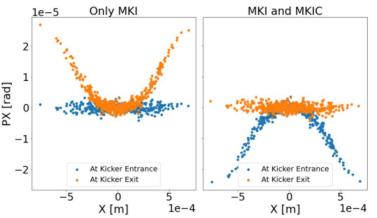


Machine protection consideration

- Present status from discussion in 2023 between several groups of CERN [1] identified several critical failure cases and possible mitigation methods
- Collider injection bump
 - Circulating beam is bumped for 1 turn
 - Failure of the ring kicker causes >10 sigma oscillation around the ring
 - Simple model by A. Abramov (BE-ABP, CERN) shows that such oscillation is too large for the collimation system
 - Reviewing the possibility to split each kicker in 2 independent systems to limit the maximum oscillation to ~5 sigma
- Other systems are slow (septa, dipoles, quadrupoles)
 - Failure could be mitigated by a fast dump trigger system (with reaction within 1 turn or less)
 - Feasibility of a system with reaction time ≤ 1 turn remains to be studied
- Circulating beam scraping on the injection septum needs to be considered
- Comprehensive and systematic review on injection, extraction and beam transfer failure cases is needed


[1] A. Abramov, Y. Dutheil, M. Hofer, A. Lechner, C. Wiesner, S. Yue, FCCee beam transfer meetings special machine protection, indico




MKI injection scheme: back-up injection concept

- Fast kicker magnet producing a non-linear field as close as possible from a step function
- The effect of the highly non-linear field on the stored beam is countered by an identical magnet 180° phase advance upstream
- Effort until 2023 by University of Saskatchewan-Canadian Light Source (P. Hunchak and M. Boland) with support of CERN
- Potential advantages
 - Larger gap at the injection septum
 - Lower optics constraints at the injection point
 - Smaller circulating beam oscillations in case of injection failure
 - Can be simulated with minimal changes to the injection straight section layout

11/06/2024

Dutheil -SY-ABT - FCCweek24 top-up

FCC 🕥

Conclusion

- Baseline top-tup injection scheme uses on-axis injection
 - Limits or removes oscillations of the injected beam in experimental straight sections
 - Primarily developed at the Z-mode, generalisation to other modes is ongoing
- Ring requirements
 - Dynamic aperture is critical for top-up injection
 - Collimation and collimation scheme behaviour has not been considered yet
- · Challenges and assumptions to be studied
 - Injected beam size is reduced by using zero dispersion -> dispersion mismatch causes betatron beating of injected beam
 - Z-mode longitudinal damping time ~0.3 s is not negligible compared to the repetition time of ~3 s and may limit or prevent using any betatron offset or beating
 - Using linear optical functions determined around the reference momentum
 - Machine protection concerns may be critical to the baseline scheme
 - Full ring transfer presents hardware challenging
- Next steps towards the FSR
 - Injection scheme tracking with synchrotron radiation and possibly beam-beam
 - Agree on a realistic minimal injection efficiency for the injector chain requirement (possibly 80% after a commissioning period)
 - Review of the injection scheme to be scheduled in the fall at CERN