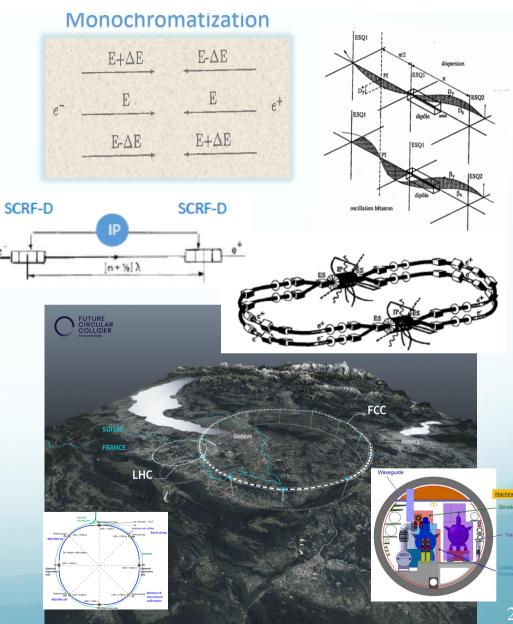


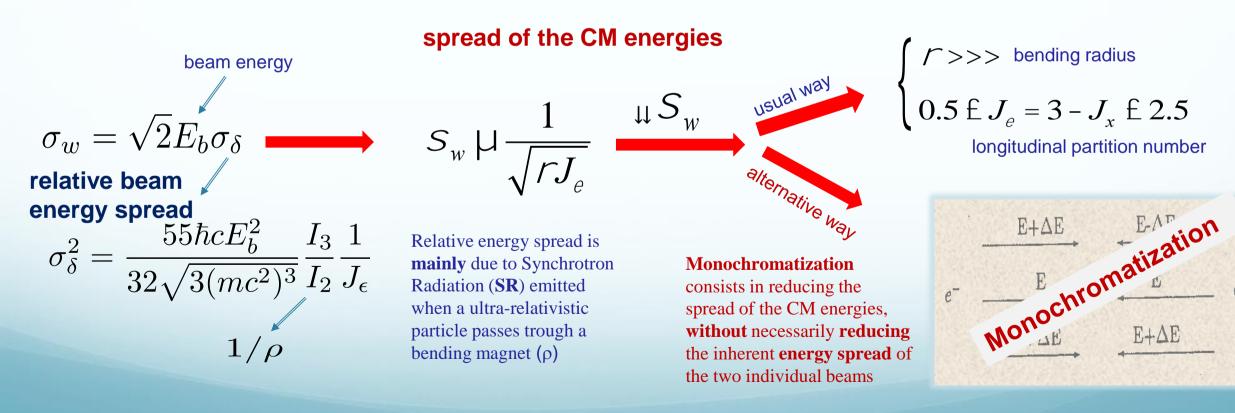
SUISSE FRANCE LHC


Monochromatization a new operation mode for e⁺e⁻ circular colliders

A. Faus-Golfe (IJCLab) Z. Zhang (IJCLab & IHEP), P. Raimondi (FNAL), F. Zimmermann (CERN), K. Oide (UGE)

Outline

- Monochromatization concept in e⁺e⁻ colliders
 - Low-energy
 - ➢ High-energy: FCC-ee
- FCC-ee monochrom physics motivation and performance studies
- FCC-ee monochrom schemes and implementation studies
- Summary and Perspectives

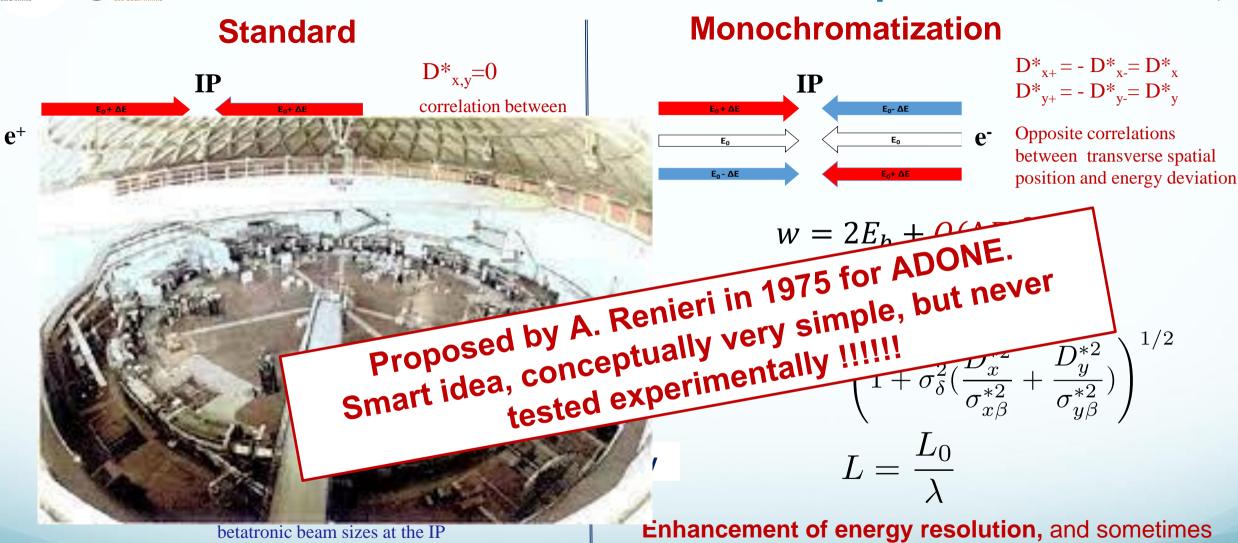


CM Energy Resolution in Colliders

Reducing the spread of the centre-of mass (CM) energies (σ_{ω}) of colliding beams is a way to increase the collision energy resolution, that is of particular interest when operating the collider on a narrow particle resonance or at the threshold of its pair production.

Monochromatization Principle

Monochromatization Standard $D_{v_{+}}^{*} = - D_{v_{+}}^{*} = D_{v_{+}}^{*}$ $D_{x,v}^{*}=0$ IP IP $D_{v_{+}}^{*} = - D_{v_{-}}^{*} = D_{v_{+}}^{*}$ correlation between Εα- ΔΕ transverse spatial **Opposite correlations** e^+ **e**⁻ **e**⁻ **e**⁺ E₀ En Eo E۵ position and energy between transverse spatial deviation $E_0 - \Delta E$ Ε. - ΔΕ position and energy deviation $E_0 - \Delta E$ $w = 2E_h + O(\Delta E)^2$ $w = 2(E_h + \Delta E)$ **CM** energy $\sigma_w = \frac{\sqrt{2E_b\sigma_\delta}}{\sqrt{2E_b\sigma_\delta}}$ $\sigma_w = \sqrt{2}E_b\sigma_\delta$ **Spread of the CM energies** $\lambda = \left(1 + \sigma_{\delta}^2 \left(\frac{D_x^{*2}}{\sigma_{x\beta}^{*2}} + \frac{D_y^{*2}}{\sigma_{y\beta}^{*2}}\right)\right)^{-1}$ $\lambda = 1$ **Monochromatization factor** $L_0 = \frac{k_b f_r N_+ N_-}{4\pi \sigma_{m\beta}^* \sigma_{m\beta}^*}$ $L = \frac{L_0}{r}$ Luminosity betatronic beam sizes at the IP **Enhancement of energy resolution**, and sometimes increase of the relative frequency of the events at the $\sigma_{x,y}^{*} = \sqrt{\beta_{x,y}^{*} \epsilon_{x,y} + \left(D_{x,y}^{*} \sigma_{\delta}\right)^{2}}$ center of of the distribution but luminosity loss !!!!

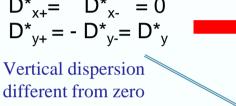

dispersive beam size at the IP

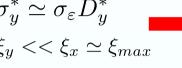
4

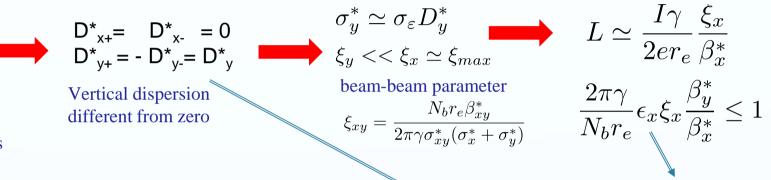
Monochromatization Principle

 $\sigma_{x,y}^{*} = \sqrt{\beta_{x,y}^{*} \epsilon_{x,y} + (D_{x,y}^{*} \sigma_{\delta})^{2}}$

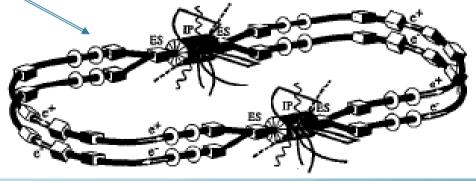
dispersive beam size at the IP


Ennancement of energy resolution, and sometimes increase of the relative frequency of the events at the centre of of the distribution but **luminosity loss** !!!!


Monochromatization in Low-energy Colliders



At low-energy e⁺e⁻ colliders, with flat beam schemes $(\sigma_{v}^{*} < < \sigma_{x}^{*})$ and where the energy spread is meanly due to SR ("beamstrahlung" (BS) is not important), we could optimize this scheme by playing with the beam-beam parameters and the emittances to avoid **Iuminosity losses:**

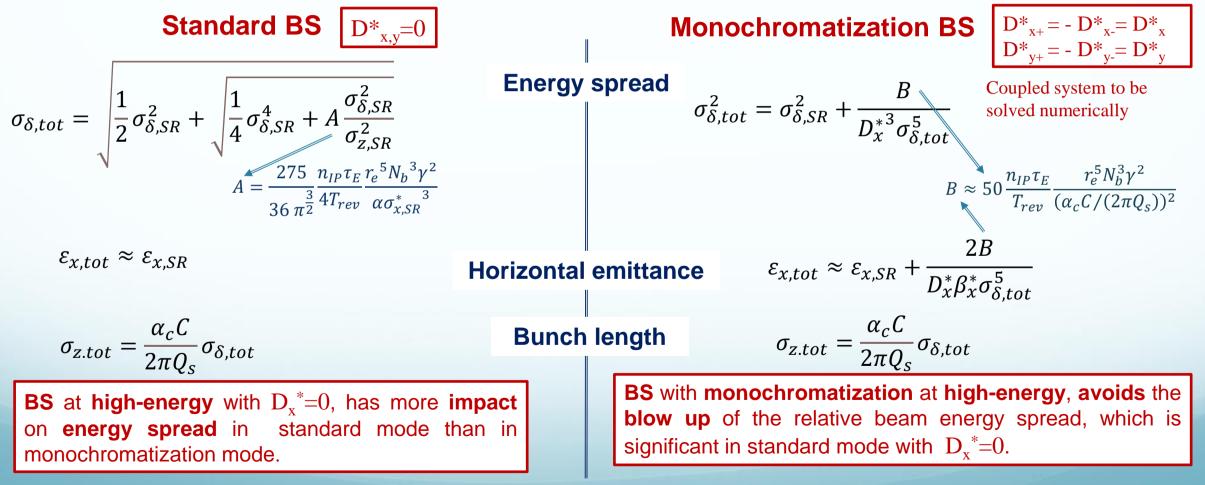


we could gain in energy resolution **keeping** the **luminosity** constant and the **beambeam** in the standard limits !!!!!!

with low-horizontal emittance

 τ -charm factory with monocromatization scheme

A. Faus-Golfe, J. Le Duff, Versatile DBA and TBA lattices for a tau charm factory with and without beam monochromatization. Nucl. Instrum. Methods A 372, 6–18 (1996)


Monocromatization Design Studies for low-energy e⁺e⁻ colliders:

- VEPP4: one ring, electrostatic quads (τ -charm)
- SPEAR: one ring, electrostatic quads, $\lambda \sim 8$
- LEP: one ring, electrostatic quads (limited strength) and alternative RF magnetic quads, λ ~3 (optics limitations)
- B-factory: Superconducting RF resonators
- τ -charm factory: two rings, vertical dipoles, λ -7.5

Monochromatization in High-energy Colliders

In the previous case for low-energy e⁺e⁻ colliders, the **relative energy spread** is mainly given by **SR** in the colliders arcs ($\sigma_{\delta} = \sigma_{\delta,SR}$). Alternatively in **high-energy e⁺e⁻**, we have to take into account also the **SR** created by the strong opposing EM field during collision or "**beamstrahlung**"(**BS**) (N $\gamma \propto 1/\sigma_z (\sigma_x^* + \sigma_y^*)$, with σ_z the bunch length).

Lab CIS

M. A. Valdivia García, F. Zimmermann, Towards an optimized monochromatization for direct Higgs production in future circular e+ e- Colliders, in CERN-BINP Workshop for Young Scientists in e+e- Colliders, pp. 1–12 (2017)

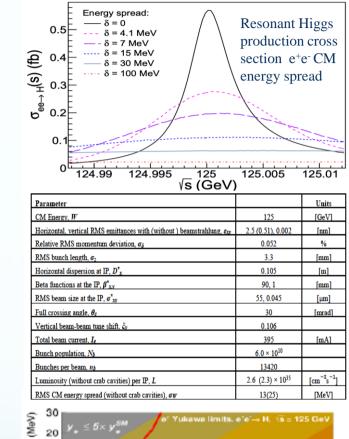
FUTURE CIRCULAR

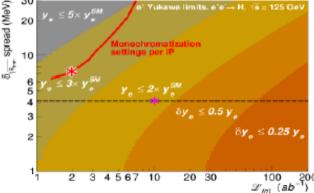
COLLIDER

FCC-ee Monochrom Physics Motivation and Performance

> In recent years interest in **monochromatization** has been renewed, as **FCC**ee could directly produce the Higgs boson in *s*-channel annihilation $e^+e^- \rightarrow H$ at **125 GeV**. This production mode is only possible if the default collision energy spread (~ 50 MeV) can be reduced to a level comparable with the natural width of the **Higgs boson** Γ_H = **4.2 MeV**, offering the only known path to measuring the electron-Yukawa coupling (y_e).

S. Jadach, R.A. Kycia, Phys. Lett. B 755, 58 (2016. DOI: 10.1016/j.physletb.2016.01.065

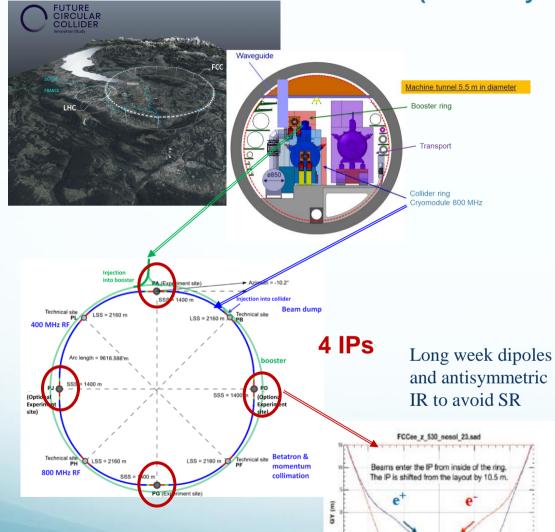

FCC-ee self-consistent parametric studies at 125 GeV has been realized to identify the best scenario with $D_x^* ≠ 0$.


A. Faus-Golfe, M. Valdivia Garcia, F. Zimmermann, The challenge of monochromatization Direct s-channel Higgs production: $e+e^- \rightarrow H$, Eur. Phys. J. Plus (2022) 137:31, DOI: 10.1140/epjp/s13360-021-02151-y

Associated upper limits contours (95% CL) on the electron Yukawa coupling (y_e) has been calculated.

Red curves show the range of parameters presently reached in self-parametric FCC-ee monochromatization studies. The red star indicates the best signal strength monochromatization point in the plane (the pink star over the $\delta\sqrt{s} = \Gamma H = 4.2$ MeV dashed line, indicates the ideal baseline point assumed in default analysis). All results are given per IP and per year.

D. d'Enterria, A. Poldaru, G. Wojcik, Measuring the electron Yukawa coupling via resonant s-channel Higgs production at FCCee, arXiv:2107.02686v1 [hep-ex] 6 Jul 2021



CLab CL CL CL CL CL CL CL CLAB CL

(Global Hybrid Correction)

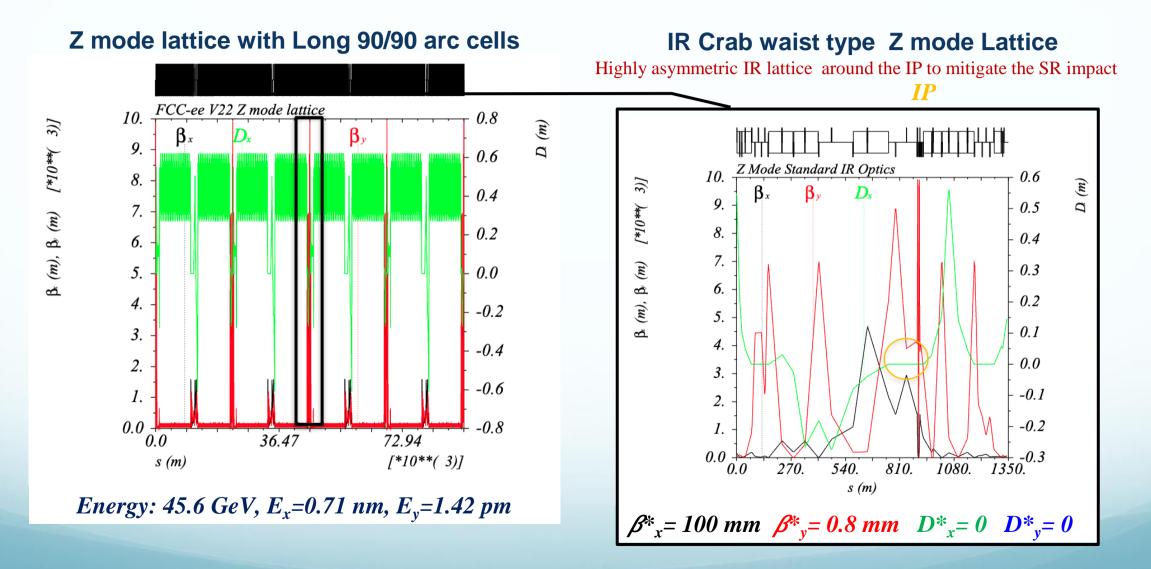
FCC-ee GHC Performance Table for V22

4 operation modes: Z, WW, ZH, ttbar

Beam energy	[GeV]	45.6	80	120	182.5	
Layout		PA31-1.0				
# of IPs			4			
Circumference	[km]	91.17	4117	91.17	74107	
Bending radius of arc dipole	[km]		9.9	37		
Energy loss / turn	[GeV]	0.0391	0.370	1.869	10.0	
SR power / beam	[MW]		50)		
Beam current	[mA]	1280	135	26.7	5.00	
Bunches / beam		10000	880	248	40	
Bunch population	[10 ¹¹]	2.43	2.91	2.04	2.37	
Horizontal emittance ε_x	[nm]	0.71	2.16	0.64	1.49	
Vertical emittance ε_y	[pm]	1.42	4.32	1.29	2.98	
Arc cell		Long	90/90	90	/90	
Momentum compaction α_p	$[10^{-6}]$	28	.5	7.	33	
Arc sextupole families		7	5	14	46	
$\beta^*_{x/y}$	[mm]	100 / 0.8	200 / 1.0	300 / 1.0	1000 / 1.6	
Transverse tunes/IP $Q_{x/y}$		53.563 /	53.600	100.565	/ 98.595	
Energy spread (SR/BS) σ_{δ}	[%]	0.038 / 0.132	0.069 / 0.154	0.103 / 0.185	0.157 / 0.221	
Bunch length (SR/BS) σ_z	[mm]	4.38 / 15.4	3.55 / 8.01	3.34 / 6.00	1.95 / 2.75	
RF voltage 400/800 MHz	[GV]	0.120 / 0	1.0 / 0	2.08 / 0	2.5 / 8.8	
Harmonic number for 400 MHz			1210	648		
RF freuquency (400 MHz)	MHz	399.99	4581	399.9	94627	
Synchrotron tune Q_s		0.0370	0.0801	0.0328	0.0826	
Long. damping time	[turns]	1168	217	64.5	18.5	
RF acceptance	[%]	1.6	3.4	1.9	3.0	
Energy acceptance (DA)	[%]	± 1.3	± 1.3	± 1.7	-2.8 + 2.5	
Beam-beam ξ_x/ξ_y^a		0.0023 / 0.135	0.011 / 0.125	0.014 / 0.131	0.093 / 0.140	
Luminosity / IP	$[10^{34}/cm^{2}s]$	182	19.4	7.26	1.25	
Lifetime $(q + BS + lattice)$	[sec]	840	-	< 1065	< 4062	
Lifetime (lum)	[sec]	1129	1070	596	744	

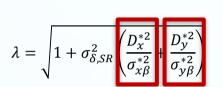
Large crossing angle (θ_c =30 mrad) at IP are required to separate the two beams to harmful effects of parasitic collisions

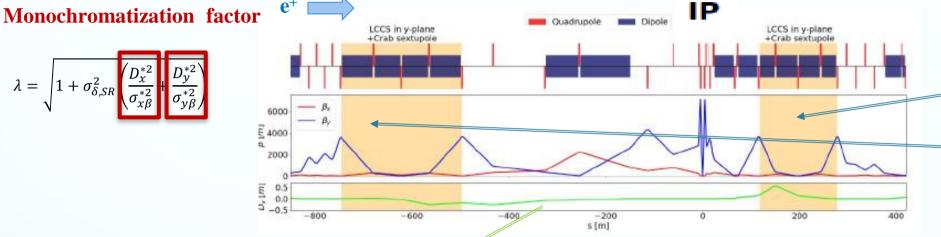
^aincl. hourglass.


30 mrad

GX (m)

FCC-ee GHC V22 Standard Optics





J. Keintzel, A. Abramov, M. Benedikt, M.Hofer, K.Oide et al. "FCC-ee lattice design", eeFACT2022, doi:10.18429/JACoW-eeFACT2022-TUYAT0102

FUTURE Monochrom Implementation in FCC-ee GHC IR .ab CNS

Despite the **simplicity** of the **monochromatization concept**, the **creation** and the **contro** of the necessary H/V dispersion function of opposite signs at the IP could be rather difficult to implement.

IR GHC: Local Chromaticity Correction Section (LCCS) with Crab **Sextupoles** (CS) in the vertical to produce a crab waist collision

\blacktriangleright D^{*}, \neq 0 generation at the IP

In FCC-ee IR region, the large crossing angle of 30 mrad in the H-plane and the LCCS is made possible with H-dipoles at the two sides of the IP creating some **H-dispersion** D_{x}^{*} ($D_{y} \neq 0$ in the LCCS and $D_{y} = 0$ close to the IP for high-luminosity). $D_x^* \neq 0$ could be generated (~10 cm) by mismatching D, in the LCCS.

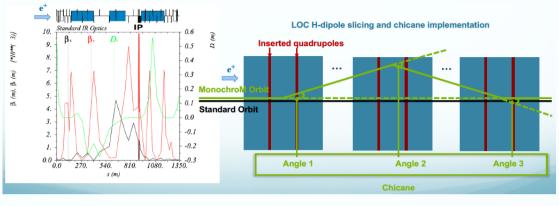
$P D_v^* \neq 0$ generation at the IP

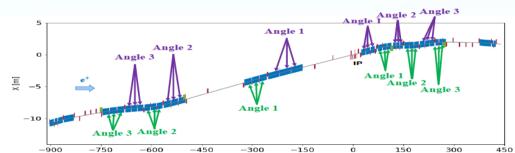
Because $\sigma_{\nu\beta}^* \ll \sigma_{\kappa\beta}^*$, about **100 times smaller D**^{*}_v (~mm) is needed to get the same monochromatization factor. Therefore $\mathbf{D}_{\mathbf{v}}^* \neq \mathbf{0}$ could be generated by implementing skew quadrupoles around IP. These quadrupoles could to be located where the CS pairs are located in the LCC system.

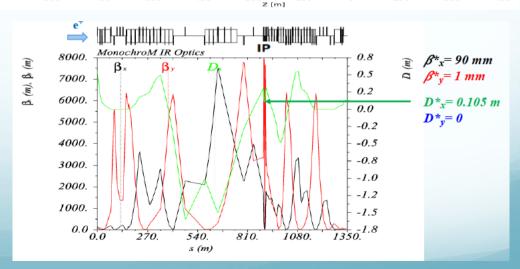
> **IPAC2024:** WEPR21, TUYD1

11

H-Monochrom Implementation in FCC-ee GHC IR (I)

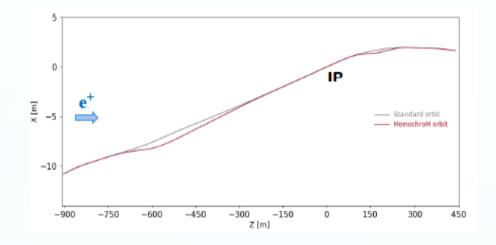



Step 1: All LCCS H-dipoles (blue) are cut into three pieces and quadrupoles (red) are inserted between them for matching flexibility. Additional chicanes are implemented in each upstream and downstream LCCS H-dipole to create the dispersion at the IP while keeping the orbit.

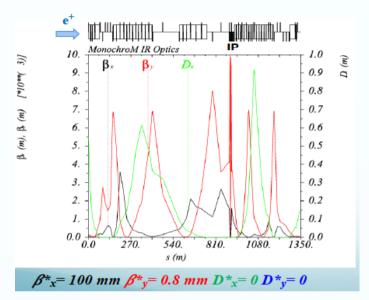

Step 2: To mitigate the horizontal emittance blowup, two long chicanes are implemented to each upstream and downstream. And each angle of chicane is equally distributed to all the three pieces of each LCCS H-dipole.

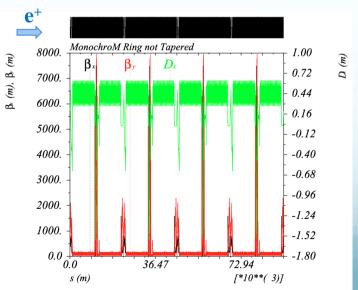
Step 3: The IP beam parameters are matched to FCC-ee Monochrom self-consistent parameters* while keeping the beam parameters at the entrance and exit of the IR similar to those of standard mode, including phase advances between sextupoles and crab sextupoles.

* A. Faus-Golfe, M. Valdivia Garcia, F. Zimmermann, The challenge of monochromatization Direct s-channel Higgs production: $e+e- \rightarrow H$, Eur. Phys. J. Plus (2022) 137:31, https://doi.org/10.1140/epjp/s13360-021-02151-y



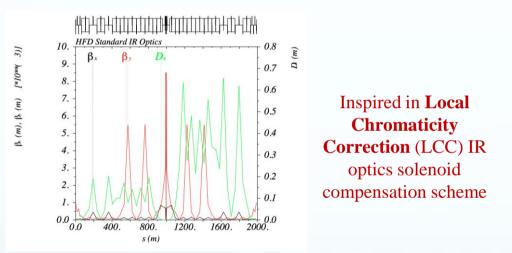
H-Monochrom Implementation in FCC-ee GHC IR (II)


FUTURE CIRCULAR COLLIDER


Step 4: Compatibility orbit checking for the standard mode with $D_x = 0$.

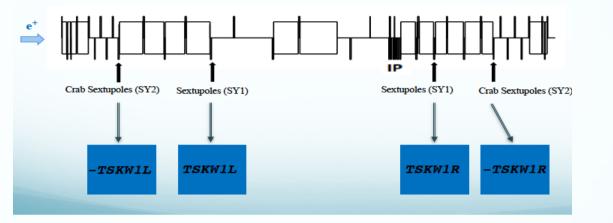
Step 5: IR Monochrom is implemented in the four IPs and global matching:

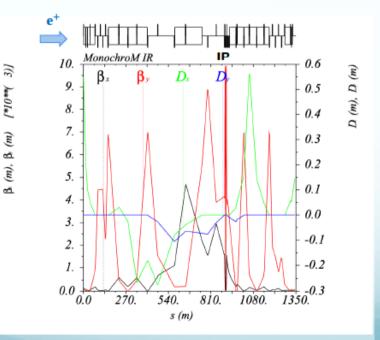
- LCCS chromaticity correction
- Global arc chromaticity correction
- Tune correction
- Emittance checks and SR-RF strategy compensation
- Preliminary Tracking and DA calculations



V-Monochrom Implementation in FCC-ee GHC IR

Step 1: Therefore $D_y^* \neq 0$ could be generated by implementing **skew quadrupoles** around IP. These quadrupoles could be located where the CS pairs are located in the LCC system.


Step 2: IR Monochrom is implemented in the four IPs and global matching:


- LCCS chromaticity correction
- Global arc chromaticity correction
- Tune correction

Lab CNIS

IN2P3

- Emittance checks and SR-RF strategy compensation
- Preliminary Tracking and DA calculations

 $\beta_x^* = 100 \text{ mm } \beta_y^* = 0.8 \text{ mm } D_x^* = 0 D_y^* = 1 \text{ mm}$

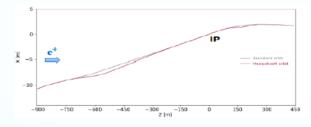
HV-Monochrom Implementation in FCC-ee GHC IR

Step 1: All LCCS H-dipoles (blue) are cut into three pieces and quadrupoles (red) are inserted between them for matching flexibility. Additional chicanes are implemented in each upstream and downstream LCCS H-dipole to create the dispersion at the IP while keeping the orbit.

Laboratoire de Physique

D*

 D_y^*


x

Step 2: To mitigate the horizontal emittance blowup, two long chicanes are implemented to each upstream and downstream. And each angle of chicane is equally distributed to all the three pieces of each LCCS H-dipole.

Step 3: The IP beam parameters are matched to FCC-ee Monochrom self-consistent parameters' while keeping the beam parameters at the entrance and exit of the IR similar to those of standard mode, including phase advances between sextupoles and crab sextupoles.

*A. Faus-Golfe, M. Valdivia Garcia, F. Zimmermann, The challenge of monochromatization Direct s-channel Higg production: e+e- → H, Eur. Phys. J. Plus (2022) 137:31, https://doi.org/10.1140/epip/s13360-021-02151-y

Step 4: Compatibility orbit checking for the standard mode with $D_x = 0$.

8000.

6000.

5000

3000. 2000.

1000.

0.0

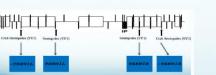
🗳 ענייינעעעעייידי-אינעעעעיייייזי

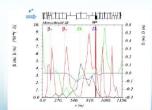
β*_x− 90 mm

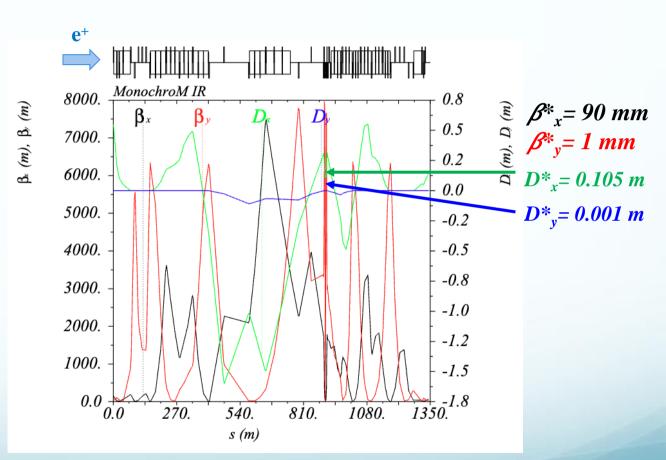
B* = 1 mm

 $D^* = 0$

-0.2


0.8


D* = 0.105 m


Step 1: Therefore $D_{y}^{*} \neq 0$ could be generated by implementing **skew quadrupoles** around IP. These quadrupoles could to be located where the CS pairs are located in the LCC system.

Step 2: IR Monochrom is implemented in the four IPs and global matching:

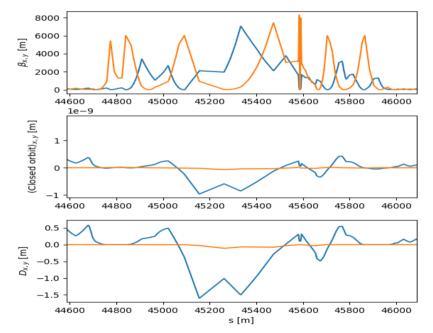
- LCCS chromaticity correction
- Global arc chromaticity correction
 Tune correction
- Emittance checks
- Preliminary Tracking and DA calculations

IPAC2024: WEPR21, TUYD1

FUTURE CIRCULAR

COLLIDER

Innovation Study


FCC-ee GHC Monochrom Lattices

7 kinds of FCC-ee GHC V22 Monochrom optics design based on Z mode and 7 lattices based on ttbar mode has been completed with different possible combination of H, V, H/V dispersions and number of IPs.

FCC-ee GHC	Orbit changed or not	Dx*	Dy*
standard_625	No	0	0
monochrom_h_4ip	Yes	0.105 m	0
monochrom_h_2ip	Yes	0.105 m	0
monochrom_h_d0	Yes	0	0
monochrom_v_1	No	0	0.001 m
monochrom_v_2	No	0	0.002 m
monochrom_mix	Yes	0.105 m	0.001 m

MADX - Methodical Accelerator Design. <u>http://madx.web.cern.ch/madx/</u> Xsuite. <u>https://xsuite.readthedocs.io/</u> $q_x = 214.27016 \ q_y = 214.38974$ $Q'_x = 20.88 \ Q'_y = -18.99 \ \gamma_{tr} = 185.73$

Xsuite Monochrom mixed based on Z mode lattice.

FCC-ee GHC Monochrom Optics Performance based on Z mode lattice (w/o BS effect)

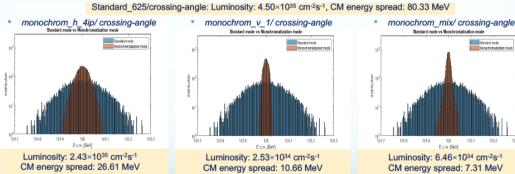
Parameters	Units	Standard	Standard_625*	Monochrom_h_4ip	Monochrom_h_2ip	Monochrom_h_d0	Monochrom_v_1	Monochrom_v_2	Monochrom_mix
Beam Energy E	GeV	45.6	62.5	62.5	62.5	62.5	62.5	62.5	62.5
# of IPs	/	4	4	4	4	4	4	4	4
Circumference	m	91174.117	91174.117	91174.117	91174.117	91174.117	91174.117	91174.117	91174.117
Energy Loss/turn	MeV	39.1	137.9	142.7	140.2	142.7	137.8	137.7	142.7
SR power loss	MW	50.0	54.5	56.4	55.4	56.4	54.4	54.4	56.4
Beam current	mA	1280	395	395	395	395	395	395	395
Bunches/beam n _b	/	10000	13420	13420	13420	13420	13420	13420	13420
Bunch population N _b	1011	2.43	0.56	0.56	0.56	0.56	0.56	0.56	0.56
Horizontal emittance (SR/BS) ε_x	nm	0.71 / 0.71	1.33 / 1.33	2.09 / 4.94	1.71 / 4.73	1.66 / 1.66	1.32 / 1.32	1.32 / 1.32	2.03 / 4.88
Vertical emittance (SR/BS) ε_y	pm	1.42 / 1.42	2.65 / 2.65	4.17 / 4.17	3.42 / 3.42	3.33 / 3.33	2.65 / 2.65	2.63 / 2.63	4.06 / 4.06
Momentum compaction α_c	10-6	28.2	28.0	27.4	27.7	27.6	27.9	27.9	27.4
$oldsymbol{eta}^*_{x/y}$	mm	100 / 0.8	100 / 0.8	90 / 1	90 / 1	100 / 0.8	100 / 0.8	100 / 0.8	90 / 1
$D_{x/y}^*$	m	0 / 0	0 / 0	0.105 / 0	0.105 / 0	0 / 0	0 / 0.001	0 / 0.002	0.105 / 0.001
Energy Spread (SR/BS) σ_{δ}	%	0.0392 / 0.2804	0.0537 / 0.0910	0.0548 / 0.0559	0.0543 / 0.0554	0.0548 / 0.0852	0.0537 / 0.0910	0.0537 / 0.0911	0.0548 / 0.0559
MonochroM Factor (SR/BS) λ	/	1/1	1/1	4.32 / 2.96	4.70 / 2.99	1/1	11.72 / 19.80	23.44 / 39.75	9.66 / 9.26
CM energy spread (SR/BS) σ_W	MeV	25.3 / 180.8	47.47 / 80.42	11.22 / 16.70	10.21 / 16.36	48.46 / 75.28	4.05 / 4.06	2.03 / 2.03	5.02 / 5.33
Bunch length (SR/BS) σ_z	mm	4.38 / 30.96	4.09 / 6.80	4.15 / 4.16	4.13 / 4.14	4.17 / 6.36	4.10 / 6.81	4.10 / 6.82	4.15 / 4.16
Sychrotron tune <i>Q_s</i>	/	0.037	0.054	0.053	0.054	0.054	0.054	0.054	0.053
Longitudinal damping time	turns	1168	453	438	446	438	454	454	438
Luminosity (SR/BS)	$10^{34} \text{cm}^{-2} \text{ s}^{-1}$	5476 / 5476	206.9 / 206.9	28.69 / 27.23	32.12 / 30.35	164.8 / 164.8	17.68 / 10.46	8.89 / 5.24	3.24 / 3.13

* Not realistic only scaling

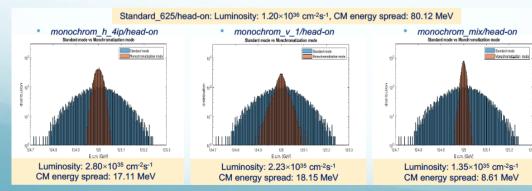
FCC-ee GHC Monochrom Performance (II)

FCC-ee GHC Monochrom Optics Performance based on ttbar mode lattice (w/o BS effect)

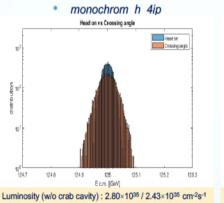
Parameters	Units	Standard	Standard_625*	Monochrom_h_4ip	Monochrom_h_2ip	Monochrom_h_d0	Monochrom_v_1	Monochrom_v_2	Monochrom_mix
Beam Energy E	GeV	182.5	62.5	62.5	62.5	62.5	62.5	62.5	62.5
# of IPs	/	4	4	4	4	4	4	4	4
Circumference	m	91174.117	91174.117	91174.117	91174.117	91174.117	91174.117	91174.117	91174.117
Energy Loss/turn	MeV	10000.0	137.6	143.5	140.5	143.4	137.6	137.6	143.4
SR power loss	MW	50.0	54.3	56.7	55.5	56.7	54.3	54.3	56.7
Beam current	mA	5	395	395	395	395	395	395	395
Bunches/beam n _b	/	40	13420	13420	13420	13420	13420	13420	13420
Bunch population N _b	1011	2.37	0.56	0.56	0.56	0.56	0.56	0.56	0.56
Horizontal emittance (SR/BS) ε_{χ}	nm	1.49 / 1.49	0.17 / 0.17	1.48 / 4.31	0.84 / 3.97	0.35 / 0.35	0.17 / 0.17	0.17 / 0.17	1.48 / 4.31
Vertical emittance (SR/BS) ε_y	pm	2.98 / 2.98	0.34 / 0.34	2.96 / 2.96	1.68 / 1.68	0.71 / 0.71	0.35 / 0.35	0.35 / 0.35	2.96 / 2.96
Momentum compaction α_c	10-6	6.99	7.30	6.92	7.12	7.06	7.31	7.31	6.92
$oldsymbol{eta}^*_{x/y}$	mm	1000 / 1.6	1000 / 1.6	90 / 1	90 / 1	1000 / 1.6	1000 / 1.6	1000 / 1.6	90 / 1
$D_{x/y}^*$	m	0 / 0	0 / 0	0.105 / 0	0.105 / 0	0 / 0	0 / 0.001	0 / 0.002	0.105 / 0.001
Energy Spread (SR/BS) σ_{δ}	%	0.1569 / 0.2180	0.0537 / 0.0861	0.0552 / 0.0563	0.0545 / 0.0556	0.0552/0.0714	0.0537 / 0.0861	0.0537 / 0.0861	0.0552 / 0.0563
MonochroM Factor (SR/BS) λ	/	1/1	1/1	5.12/3.16	6.65 / 3.25	1/1	22.81 / 36.55	45.58 / 73.08	11.38 / 10.82
CM energy spread (SR/BS) σ_W	MeV	404.91 / 562.75	47.46 / 76.10	9.54 / 15.73	7.24 / 15.14	48.81 / 63.08	2.08 / 2.08	1.04 / 1.04	4.29 / 4.60
Bunch length (SR/BS) σ_z	mm	2.03 / 2.70	3.86 / 6.18	4.05 / 4.13	3.95 / 4.03	4.09 / 5.28	3.86 / 6.18	3.86 / 6.18	4.05 / 4.13
Sychrotron tune Q_s	/	0.082	0.015	0.014	0.014	0.014	0.015	0.015	0.014
Longitudinal damping time	turns	18.5	454	436	445	436	454	454	436
Luminosity (SR/BS)	$10^{34} \text{cm}^{-2} \text{ s}^{-1}$	2.21 / 2.21	353.2 / 353.2	34.1 / 32.3	46.19 / 43.53	173.5 / 173.5	15.49 / 9.66	7.750 / 4.834	3.227 / 3.116


* Not realistic only scaling

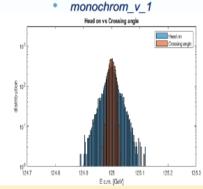
Lower CM energy spread compared to Z mode


FCC-ee GHC Monochrom Luminosity and CM Energy Spread (I) IN2P3

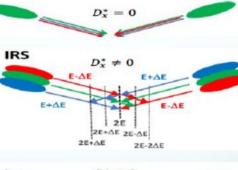
Luminosity and CM Energy Spread (with BS) calculated with Guinea-pig for FCC-ee GHC monochom based on Z mode lattice for: monochrom crab cavities (CC) and monochrom (crossing or Integrated Resonances Scan IRS) compared to standard (crossing)


Monochrom CC vs Standard

Monochrom IRS vs Standard



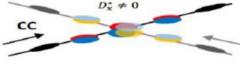
Monochrom CC vs IRS

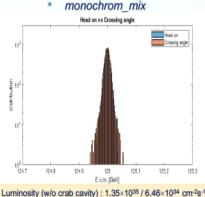

CM energy spread (w/o crab cavity) : 17.11 / 26.61 MeV

Advantage: Higher luminosity with crossing angle Disadvantage: CM energy spread blows up with crossing angle

Luminosity (w/o crab cavity) : 2.23×1035 / 2.53×1034 cm-2s-1 CM energy spread (w/o crab cavity) : 18.15 / 10.66 MeV

Advantage: CM energy spread reduces with crossing angle Disadvantage: Luminosity loss with crossing angle like standard mode




IP

FUTURE CIRCULAR

Innovation Study

COLLIDER

CM energy spread (w/o crab cavity) : 8.61 / 7.31 MeV

Advantage: Lowest CM energy spread and less luminosity loss with crossing angle than that of monochrom v 1 Disadvantage: Potentially face issues related to betatron coupling

FCC-ee GHC Monochrom Optics based on Z mode lattice

Parameters	Units	Standard	Standard_625	Monochrom_h_4ip	Monochrom_h_2ip	Monochrom_h_d0	Monochrom_v_1	Monochrom_v_2	Monochrom_mix
Luminosity (w/o crab cavity)	$10^{34} \text{cm}^{-2} \text{ s}^{-1}$	449 / 99.3	120 / 45.0	28.0 / 24.3	31.2 / 27.8	99.8 / 42.7	22.3 / 2.53	9.92 / 1.28	13.5 / 6.46
CM energy spread (w/o crab cavity)	MeV	180.38 / 182.85	80.12 / 80.33	17.11 / 26.61	16.31 / 26.18	76.65 / 75.52	18.15 / 10.66	9.12 / 9.66	8.61 / 7.31

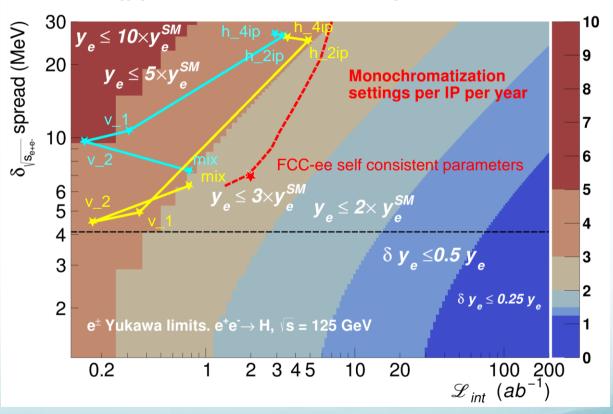
FCC-ee GHC Monochrom Optics based on ttbar mode lattice

Parameters	Units	Standard	Standard_625	Monochrom_h_4ip	Monochrom_h_2ip	Monochrom_h_d0	Monochrom_v_1	Monochrom_v_2	Monochrom_mix
Luminosity (w/o crab cavity)	$10^{34} \text{cm}^{-2} \text{ s}^{-1}$	1.83 / 1.52	399 / 122	33.7 / 29.4	45.3 / 40.6	210/91.2	21.2 / 2.98	9.08 / 1.45	14.8 / 6.43
CM energy spread (w/o crab cavity)	MeV	547.02 / 542.7	75.94 / 76.65	15.86 / 25.88	15.32 / 25.10	63.43 / 64.39	9.10 / 4.94	5.94 / 4.51	7.64 / 6.36

Monochrom optics based on ttbar mode lattice has lower CM energy spread than the one based on Z mode lattice

IPAC2024: WEPR21, TUYD1

FCC-ee Monochrom Physics Performance


Associated upper limits contours (95% CL) on the electron Yukawa (y_e)

FCC-ee monochrom parametric studies (red line*), Z mode lattice based monochrom perfomance (light blue), ttbar mode lattice based monochrom performance (yellow).

The best performance is obtained with the **ttbar lattice** based **"mix" mode**, which reaches an upper limit of $y_e < 2.9^*y_e(SM)$ in the Higgs-electron coupling.

Re-optimization of the beam parameters should give better performances.

D. d'Enterria, A. Poldaru, G. Wojcik, Measuring the electron Yukawa coupling via resonant s-channel Higgs production at FCC-ee, arXiv:2107.02686v1 [hep-ex] 6 Jul 2021

* A. Faus-Golfe, M. Valdivia Garcia, F. Zimmermann, The challenge of monochromatization Direct s-channel Higgs production: $e+e^- \rightarrow H$, Eur. Phys. J. Plus (2022) 137:31, https://doi.org/10.1140/epjp/s13360-021-02151-y

Summary and Perspectives

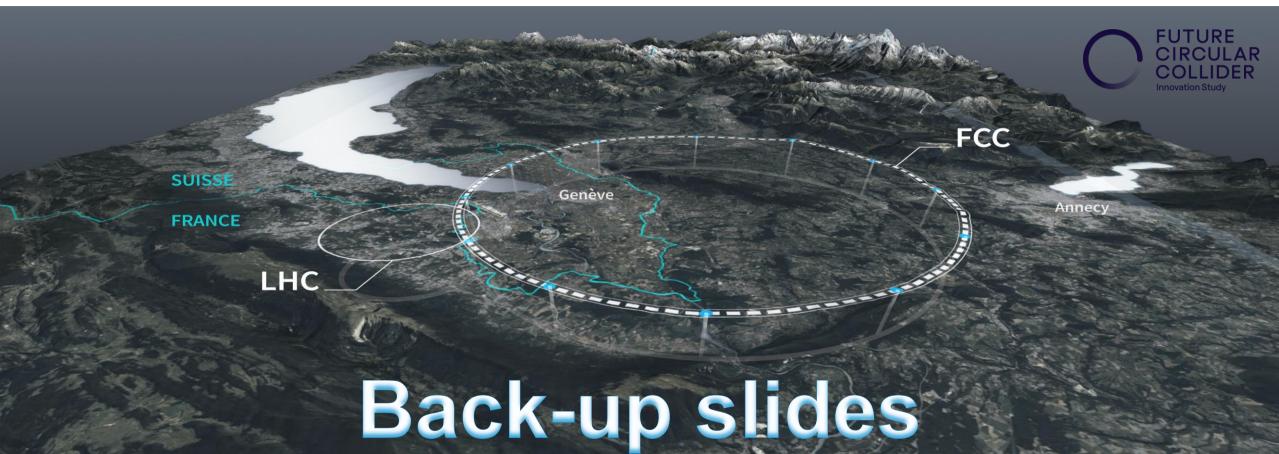
- Monochromatization is a simple conceptual idea but not easy to implement in a collider, if not integrated from the beginning in the optics IR design as a dedicated operation mode.
- However, the monochromatization principle research never reached a maturity level allowing implementation and experimental testing. A flexible lattice with two modes of operation with/without monocromatization is mandatory.
- Different FCC-ee GHC Monochrom "realistic" optics lattices has been completed for V22 featuring very promising performances.
- Further studies on FCC-ee GHC Monochrom lattices are needed: to evaluate the impact of the beam-beam with D^{*}_{x,y} ≠ 0 and to optimize the DA for these new type of operation mode.
- Implementation and comparison with the LCC FCC-ee kind of lattice with more symmetric IRs will be carried out.
- Monochrom optics design for CEPC is ongoing (IR more symmetric)

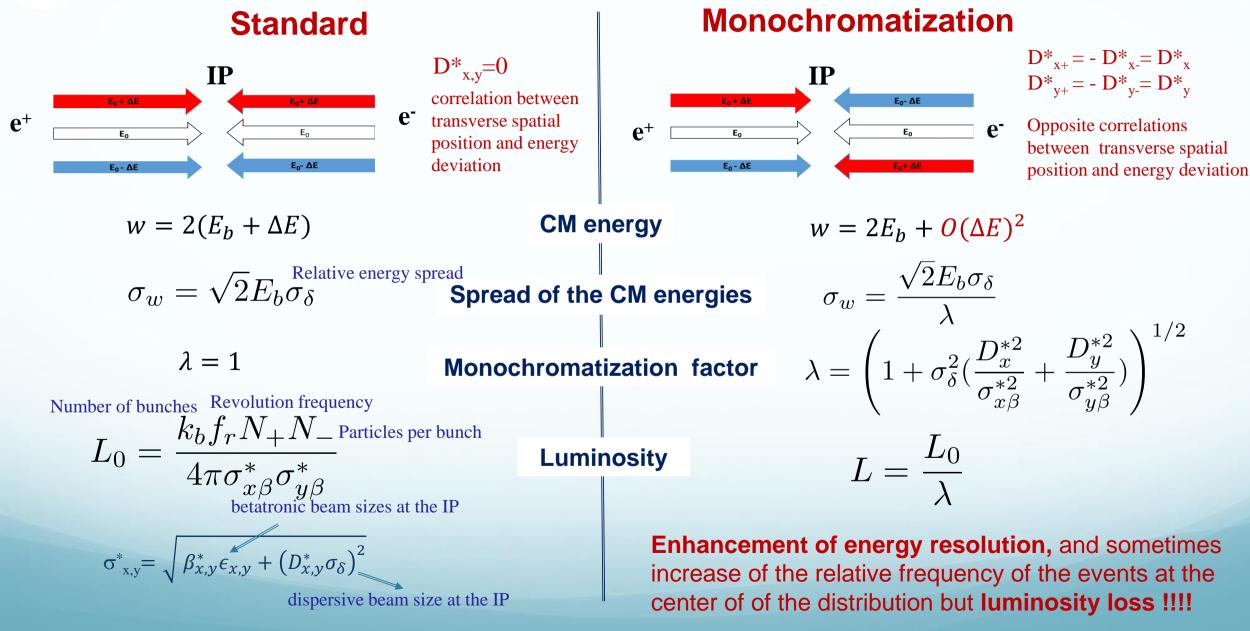
Experimental proof of monochromatization concept in running e+e- low energy colliders are under study for BEPCII (IHEP China), Daphne and maybe in SuperKEKB.

THE BRAVE COLLABORATORS MonochroM team

鸡尾酒

A. Faus-Golfe, Z. Zhang, B. Bai, H. Jiang, M. A. Valdivia García, J. Jowett,
F. Zimmermann, K. Oide, A. Blondel, P. Raimondi, D. Shatilov, D. d'Enterria, P. Janot, U. Bassler
A. Zholents, J. Keintzel, G. Wilkinson, C. Milardi, A. Ciarma





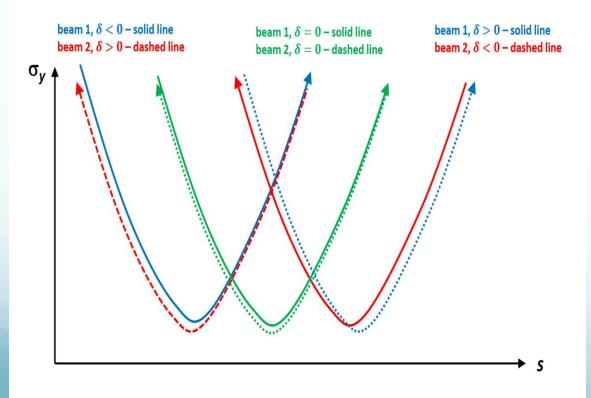
Monochromatization principle

25

Monochromatization in high-energy colliders

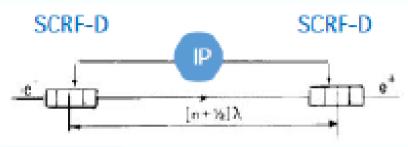
N2P3

In the previous case for low-energy e⁺e⁻ colliders, the **relative energy spread** is mainly given by **SR** in the colliders arcs ($\sigma_{\delta} = \sigma_{\delta,SR}$). Alternatively in **high-energy e⁺e⁻**, we have to take into account also the **SR** created by the strong opposing EM field during collision or "**beamstrahlung**"(**BS**) (N $\gamma \propto 1/\sigma_z (\sigma_x^* + \sigma_y^*)$, with σ_z the bunch length).


Monochromatization BS $D^{*}_{x+} = -D^{*}_{x-} = D^{*}_{x}$ $D^{*}_{y+} = -D^{*}_{y-} = D^{*}_{y}$ Standard BS D*_{x.y}=0 Energy spread w/o BS **Energy spread** $\sigma_{\delta,tot} = \sqrt{\frac{1}{2}\sigma_{\delta,SR}^2 + \sqrt{\frac{1}{4}\sigma_{\delta,SR}^4 + A\frac{\sigma_{\delta,SR}^2}{\sigma_{z,SR}^2}}} Bunch length w/o BS$ $A = \frac{275}{36\pi^{\frac{3}{2}}4T_{rev}} \frac{n_{IP}\tau_E}{\alpha\sigma_{x,SR}^*} \frac{r_e^5N_b^3\gamma^2}{\alpha\sigma_{x,SR}^*} Beam size w/o BS$ $\sigma_{\delta,tot}^2 = \sigma_{\delta,SR}^2 + \frac{B}{D_x^{*3}\sigma_{\delta,tot}^5}$ Coupled system to be $B \approx 50 \frac{n_{IP} \tau_E}{T_{rev}} \frac{r_e^5 N_b^3 \gamma^2}{(\alpha_c C / (2\pi Q_s))^2}$ Revolution time $\varepsilon_{x,tot} \approx \varepsilon_{x,SR} + \frac{2B}{D_r^* \beta_r^* \sigma_s^5}$ $\varepsilon_{x.tot} \approx \varepsilon_{x.SR}$ Horizontal emittance Horizontal emittance without BS Momentum compaction factor $\sigma_{z.tot} = \frac{\alpha_c C}{2\pi \Omega_c} \sigma_{\delta,tot}$ $\sigma_{z.tot} = \frac{\alpha_c C}{2\pi Q_s} \frac{\text{Circumference}}{\substack{\sigma_{\delta,tot}\\\text{Synchrotron tune}}}$ **Bunch length** BS with monochromatization at high-energy, avoids the **BS** at high-energy with $D_x^*=0$, has more impact **blow up** of the relative beam energy spread, which is energy spread in standard mode than in significant in standard mode with $D_x^*=0$. monochromatization mode.

M. A. Valdivia García, F. Zimmermann, Towards an optimized monochromatization for direct Higgs production in future circular e+ e- Colliders, in CERN-BINP Workshop for Young Scientists in e+e- Colliders, pp. 1–12 (2017)

[>] Monochromatization could be obtained by operating with a **residual nonzero local vertical chromaticity** (RLC). This enables the focal length of the final quadrupoles to change with the momentum deviation of a beam particle, and establishes a dependence between the vertical beam size waist and momentum offset. An effective monochromatization could be obtained, without adding any new hardware. The resulting monochromatization factor will be enhanced for smaller \mathscr{R}_{V}^{*} , but limited λ possible.


Waist location for beam 1 with momentum offset δ , can be made to coincide with the waist location for beam 2 with momentum offset $-\delta$, leading to an effective monochromatization, without adding any new hardware.

P. Raimondi, F. Zimmermann, private communication

Monochromatization with dispersion inside the deflecting RF cavities (SCRF-D) on either side of the collision point.

$$E_{s} = -E_{s0} \sin k_{x} x \cdot \cos k_{z} z \cdot \cos(\omega t + \phi),$$

$$H_{x} = \frac{k_{z}}{k} E_{s0} \sin k_{x} x \cdot \sin k_{z} z \cdot \sin(\omega t + \phi),$$
 (1)

$$H_{z} = -\frac{k_{x}}{k} E_{s0} \cos k_{x} x \cdot \cos k_{z} z \cdot \sin(\omega t + \phi),$$

where E_{s0} is the amplitude of electric field; ω , ϕ are the frequency and phase of oscillations; $k_x = 2\pi/a_x$, $k_z = \pi/a_z$, $k^2 = k_x^2 + k_z^2$.

A.A. Zholents, Sophisticated accelerator techniques for colliding beam experiments. Nucl. Instrum. Methods A 265, 179–185 (1988)

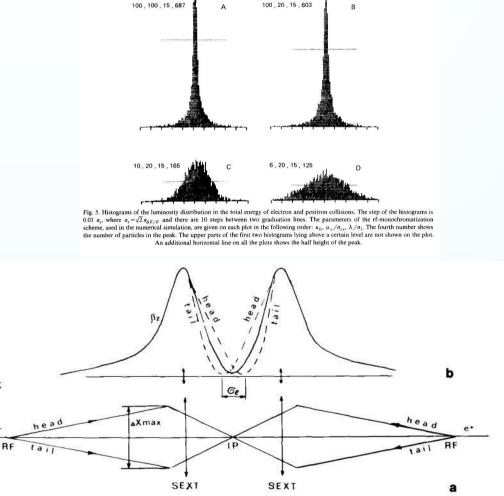
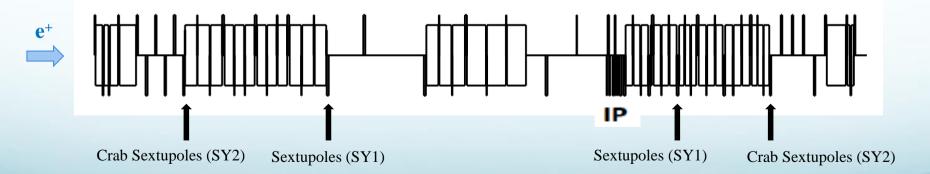


Fig. 6. a) The trajectories of the head and the tail of the bunch in the region between AS. b) The behaviour of β_2 -function.

Monochromatization IR Global Implementation


- Local Chromaticity Correction
- Load monochromatization ring lattice, and extract sequence from IP to crab sextupoles.
- Turned off all the sextupoles including crab sextupoles SY2.
- Match the vertical chromaticity from IP to crab sextupoles to 0 using the sextupoles SY1.
- Calculate the strength of crab sextupoles (SY2) with the following formula ^[6]:

 $K2SY2 = K2SY1 \pm crab_{factor} \cdot crab_{strength}$

The crab strength is given by:

$$crab_{strength} = \frac{1}{L_{SY2} * \theta_{CROSS} * BY_{IP} * BY_{CS}} * \sqrt{\frac{BX_{IP}}{BX_{CS}}}$$

The crab factor is determined from Beam-beam studies, at Z it's 97%, W 87%, so ~90% for Higgs mode seems a good starting guess.

[6] K. Oide, M. Aiba, S. Aumon, M. Benedikt, A. Blondel et al. "Design of beam optics for the future circular collider e⁺e⁻ collider rings", Physical Review Accelerators and Beams, 19, 111005 (2016)

Monochromatization IR Global Implementation

Global Chromaticity Correction

With the matched strength of the SY1 and the strength of SY2 calculated by the formula, the global chromaticity correction is done by matching the strength of all the sextupoles in the arc.

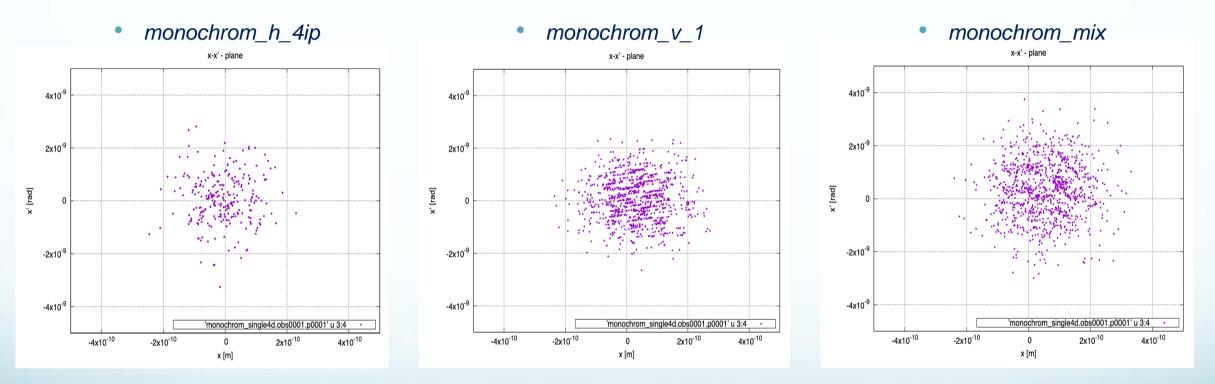
There are two kinds of sextupoles in the arc, focus sextupoles and defocus sextupoles. The strength of all the focus sextupoles is multiplied by the coefficient kn_sf, while the strength of all the defocus sextupoles is multiplied by the coefficient kn_sf.

The horizontal chromaticity (DQ1) and vertical chromaticity (DQ2) are matched to 5 with the two coefficient, because positive chromaticity is benefit for the beam stability.

• Tune Correction

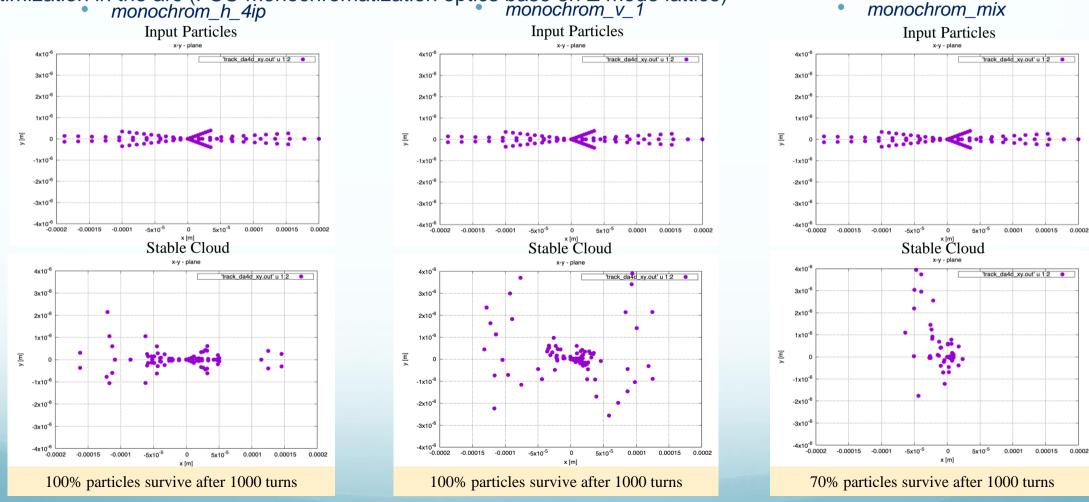
By varying the strength of quadrupoles around the RF cavities in the arc, the horizontal tune Q1 and vertical tune Q2 are matched to be same with the standard mode while keeping the beam parameters at the IRs.

Emittance Check


Switching on the RF cavities and considering the energy loss due to synchrotron radiation, the longitudinal energy difference (*pt*) are matched to zero by varying the voltage and the phase of the RF cavities in tapering twiss model.

• Preliminary Single Particle Tracking in MADX-PTC

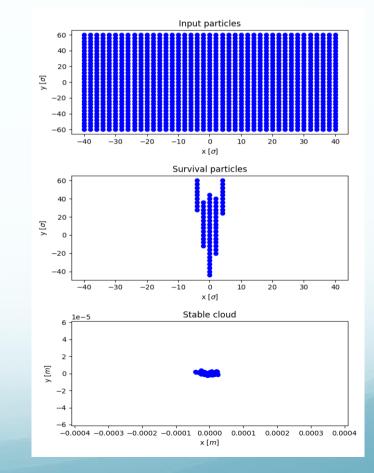
1000-turn single particle tracking (4D) calculated with MADX-PTC (FCC-ee monochromatization optics base on Z mode lattice)

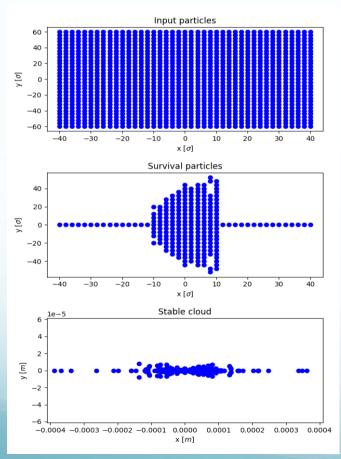


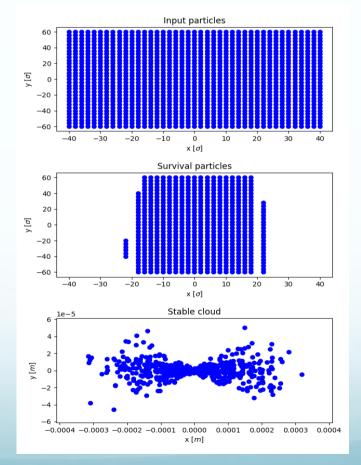
0.000

Preliminary Dynamic Aperture Particle Tracking in MADX-PTC

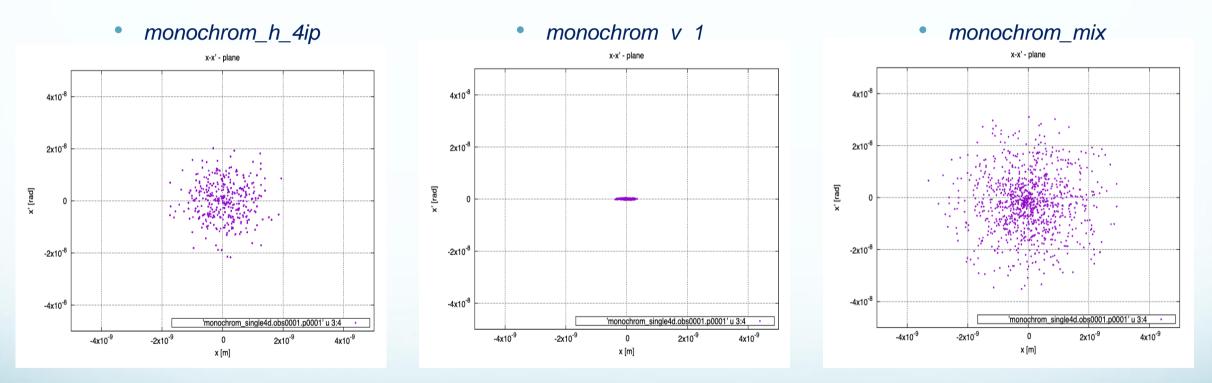
1000-turn dynamic aperture particle tracking (4D) calculated with MADX-PTC taking 100 particles without family sextupole optimization in the arc (FCC monochromatization optics base on Z mode lattice) *monochrom_h_4ip*


Preliminary Dynamic Aperture Particle Tracking in Xsuite


1000-turn dynamic aperture particle tracking (4D) calculated with Xsuite without family sextupole optimization in the arc (FCC-ee monochromatization optics base on Z mode lattice).

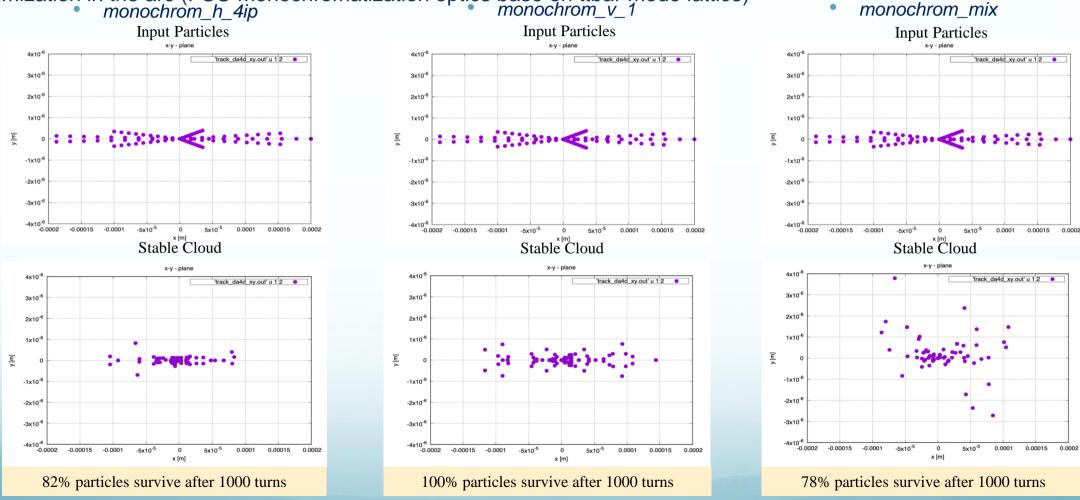

monochrom_h_4ip

• monochrom_mix



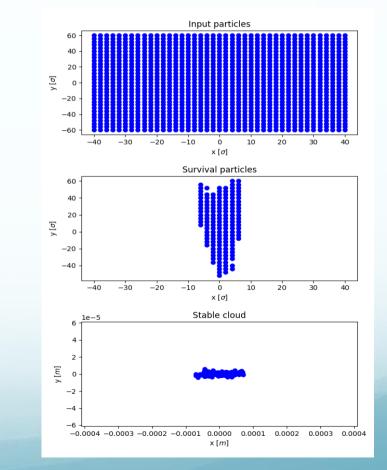
• Preliminary Single Particle Tracking in MADX-PTC

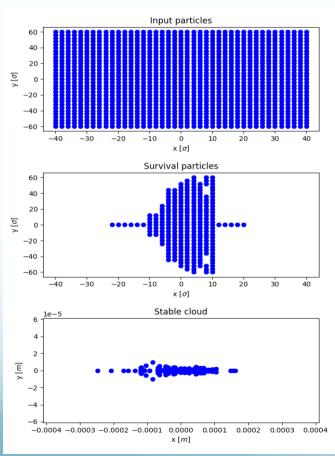
1000-turn single particle tracking (4D) calculated with MADX-PTC (FCC-ee monochromatization optics base on ttbar mode lattice)

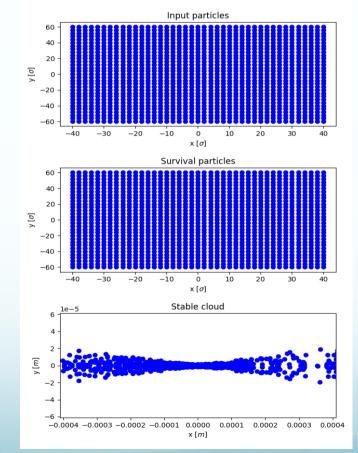


• Preliminary Dynamic Aperture Particle Tracking in MADX-PTC

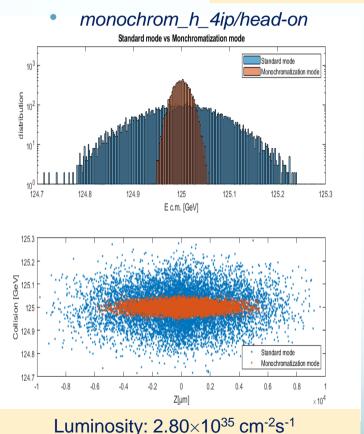
1000-turn dynamic aperture particle tracking (4D) calculated with MADX-PTC taking 100 particles without family sextupole optimization in the arc (FCC monochromatization optics base on ttbar mode lattice) *monochrom_h_4ip monochrom_v_1 monochrom_v_1*


• Preliminary Dynamic Aperture Particle Tracking in Xsuite


1000-turn dynamic aperture particle tracking (4D) calculated with Xsuite without family sextupole optimization in the arc (FCC-ee monochromatization optics base on ttbar mode lattice).

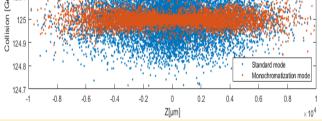

monochrom_h_4ip

monochrom_mix

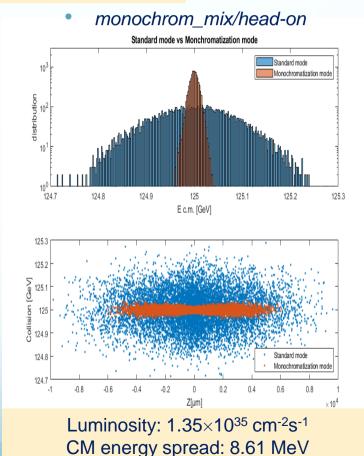

Luminosity and CM Energy Spread (with BS effect)

The following figures show the Guinea-pig calculation result of FCC-ee monochromatization optics base on Z mode lattice with crab cavities (head-on) compared with that of the scaled standard mode.

Standard_625/head-on: Luminosity: 1.20×10³⁶ cm⁻²s⁻¹, CM energy spread: 80.12 MeV


monochrom v 1/head-on

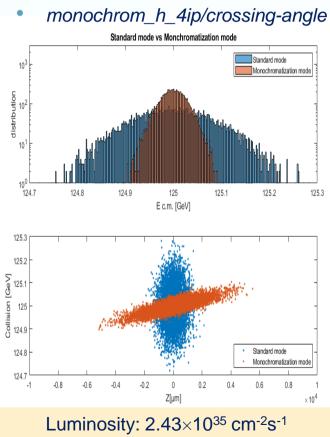
Standard mode vs Monchromatization mode

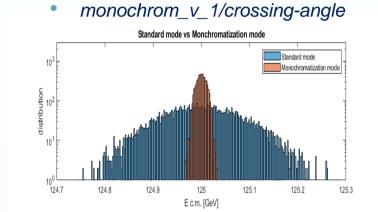


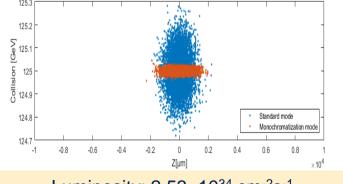
CM energy spread: 17.11 MeV

10³ 10³ 10⁴ 12⁵ 12

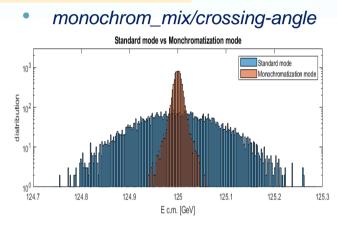
Luminosity: 2.23×10³⁵ cm⁻²s⁻¹ CM energy spread: 18.15 MeV

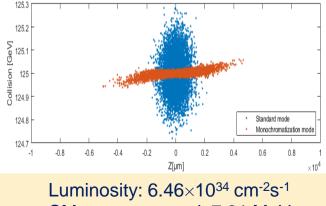



Luminosity and CM Energy Spread (with BS effect)

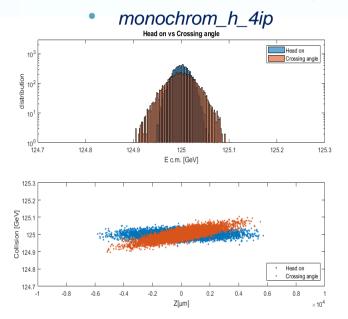

The following figures show the Guinea-pig calculation result of FCC-ee monochromatization optics base on Z mode lattice without crab cavities (crossing-angle) compared with that of the scaled standard mode.

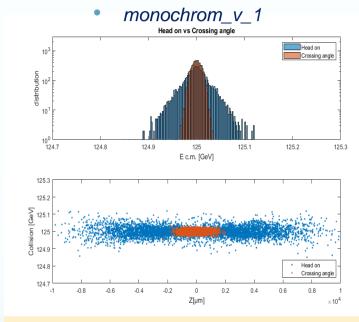
Standard_625/crossing-angle: Luminosity: 4.50×10³⁵ cm⁻²s⁻¹, CM energy spread: 80.33 MeV



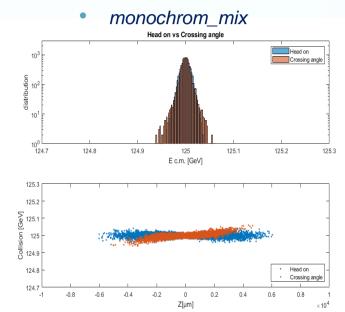

CM energy spread: 26.61 MeV

Luminosity: 2.53×10³⁴ cm⁻²s⁻¹ CM energy spread: 10.66 MeV


CM energy spread: 7.31 MeV


Luminosity and CM Energy Spread (with BS effect)

The following figures show the comparison of the Guinea-pig calculation result with/without crab cavities of FCC-ee monochromatization optics design base on Z mode lattice.


Luminosity (w/o crab cavity) : 2.80×10³⁵ / 2.43×10³⁵ cm⁻²s⁻¹ CM energy spread (w/o crab cavity) : 17.11 / 26.61 MeV

Advantage: Higher luminosity with crossing angle Disadvantage: CM energy spread blows up with crossing angle

Luminosity (w/o crab cavity) : $2.23 \times 10^{35} / 2.53 \times 10^{34}$ cm⁻²s⁻¹ CM energy spread (w/o crab cavity) : 18.15 / 10.66 MeV

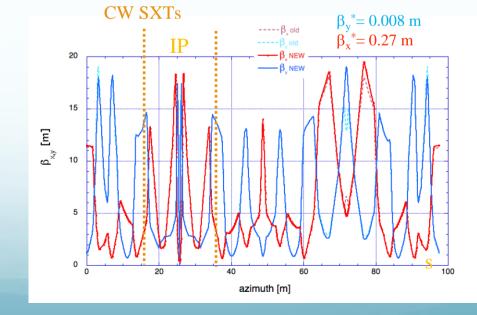
Advantage: CM energy spread reduces with crossing angle Disadvantage: Luminosity loss with crossing angle like standard mode

Luminosity (w/o crab cavity) : $1.35 \times 10^{35} / 6.46 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ CM energy spread (w/o crab cavity) : 8.61 / 7.31 MeV

Advantage: Lowest CM energy spread and less luminosity loss with crossing angle than that of monochrom_v_1 Disadvantage: Potentially face issues related to betatron coupling

- The monochromatization IR optics design
- Chromaticity correction, tune correction and emittance check of monochromatization optics
- Luminosity and CM energy calculation in Guinea-Pig
- ✓ Single particle tracking and dynamic aperture particle tracking
- Dynamic aperture optimization is in progress
- Beam-beam calculation is in progress
- Monochromatization optics design for CEPC
- Experimental proof of monochromatization concept in running e⁺e⁻ low energy colliders

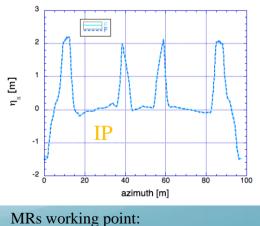
Interaction Region



New Crab-Waist ring optics:

- symplified focusing structure in the RCR,
- 2 QUADs where beams pass off-axis are switched off, thus eliminating spurious component in the QUADs magnetic field,
- Same optics parameters in the IR.

New optics improves closed orbit correction allowing to reduce the total strength of the used steering magnets, thus also contributing to minimize vertical dispersion


	DAΦNE native	DAΦNE Crab-Waist
Energy (MeV)	510	510
θ _{cross} /2 (mrad)	12.5	25
ε _x (mm•mrad)	0.34	0.28
β _x * (cm)	160	23
σ _x * (mm)	0.70	0.25
DPiwinski	0.6	1.5
β _y * (cm)	1.80	0.8
σy* (μm) low current	5.4	3.0
Coupling, %	0.5	0.2
Bunch spacing (ns)	2.7	2.7
I _{bunch} (mA)	13	15
σ _z (mm)	25	15
h	120	120

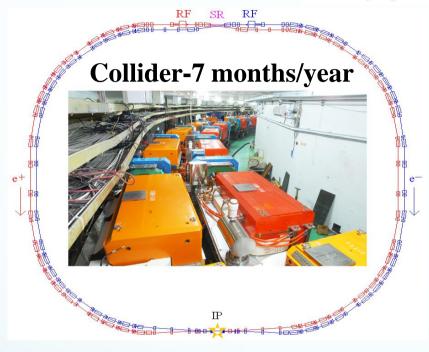
 $C \approx 97 \text{ m}$

 $E_{CM} = 1.02 \text{ GeV} (\Phi)$

RCR

$Q_x^- = 0.103$ $Q_x^+ = 0.114$ $Q_y^- = 0.162$ $Q_y^+ = 0.180$

DAFNE Accelerators Lavout



BEPCII- Upgrade

中國科學院為能物現研究所 Institute of High Energy Physics

- BEPCII has achieved or exceeded design parameters
- Detailed design for **BEPCII upgrade** has been finished
- The upgrade is optimized at **2.35 GeV** with tripled luminosity, and with maximum beam energy of 2.8 GeV

Beam Energy: 2.35GeV

BEPCII	BEPCII-U
3.5	11
1.5	1.3
7.1	7.5
56	120
110	250
0.029	0.036
147	152
0.53	0.35
0.0069	0.011
1.54	1.04
1.69	1.3
1.6 MV	3.3 MV
	 3.5 1.5 7.1 56 110 0.029 147 0.53 0.0069 1.54 1.69

Nikko

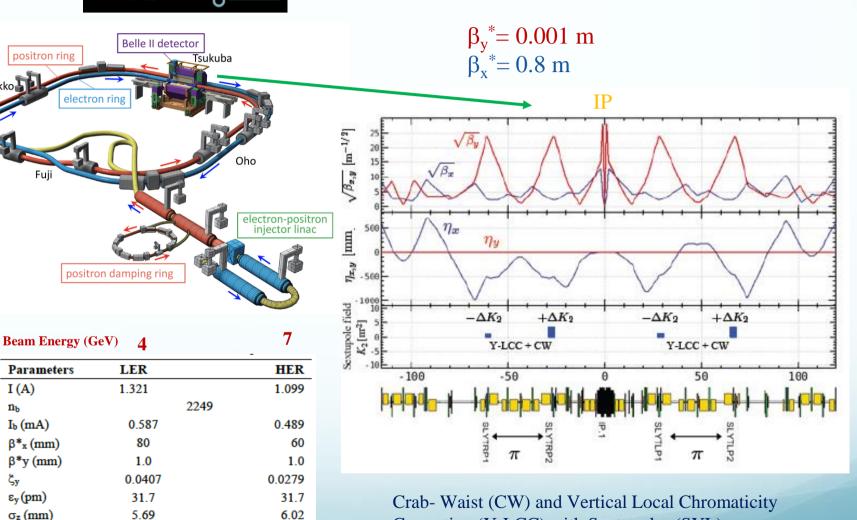
I (A)

 n_b

ζv

CW ratio (%)

L (cm⁻²s⁻¹)


80

4.65 x 10³⁴

40

Interaction Region

- β_{y}^{*} = 1 mm at present ٠ operation, while the final target is $\beta^*_{\nu} = 0.3$ mm.
- Operation with $\beta_{y}^{*}=0.8$ mm • was carried out for short-term trial. The achievable bunch currents is smaller than of β^*_{v} = 1 mm, case due to poor injection efficiency.
- **Improvement** of the • injection efficiency is a major issue in both squeezing β^*_{y} and increasing stored beam current.

Correction (Y-LCC) with Sextupoles (SYL)

FUTURE CIRCULAR COLLIDER

Innovation Study