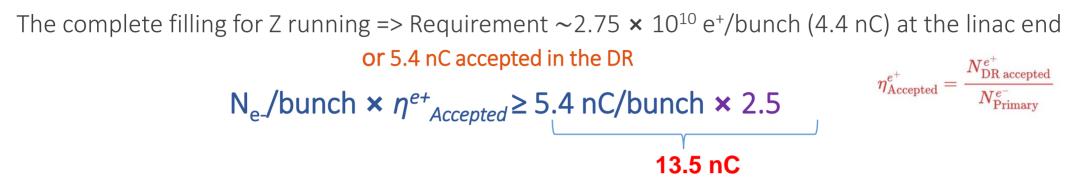


cnrs

Positron source and capture system (HTS-solenoid vs. Flux Concentrator options)

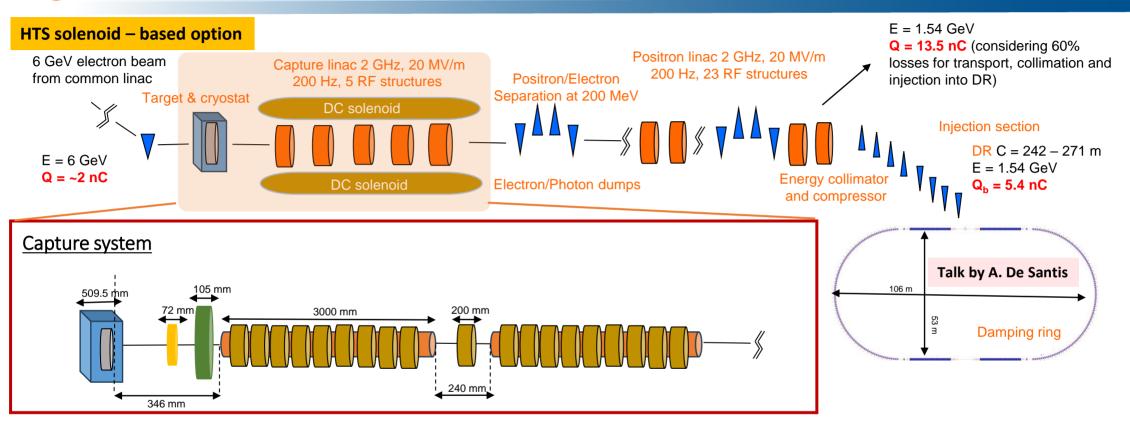
Iryna Chaikovska


Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab) CNRS, Université Paris-Saclay

on behalf of the CHART/FCC-ee Injector design collaboration (WP3)

FCC Week 2024, 10-14 June (San Francisco, United States)

*A safety margin of 2.5 is currently applied for the whole studies (50% losses for injection in the DR + 20% losses from target up to the end of the e+ linac)

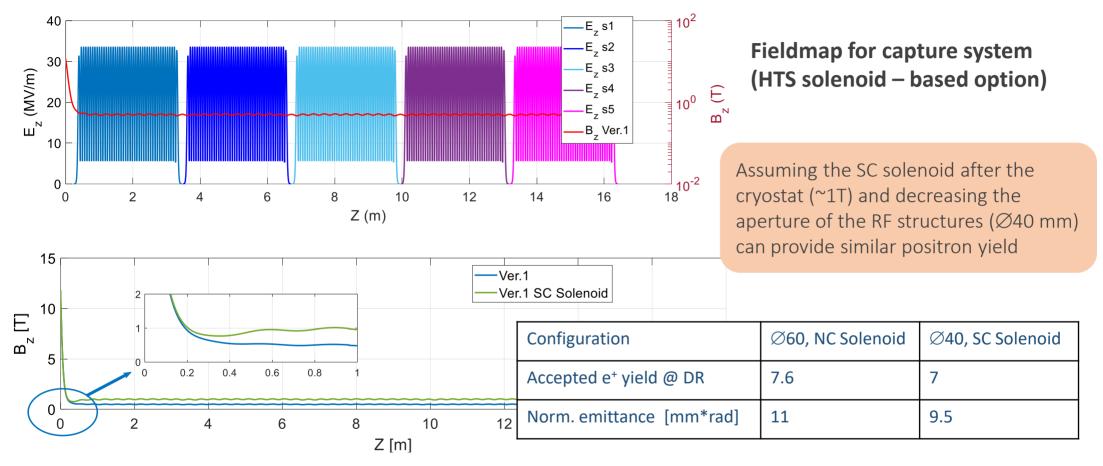

<u>Accepted e⁺ yield</u> is a function of primary beam characteristics + target + capture system + DR acceptance

beam	Beam energy	6 GeV
e be	Bunch charge	~5.6 nC (max)
drive	Bunch length	1 mm
ם הי	Bunch transverse size	≳ 0.5 mm

Nb of bunches per pulse	2
Bunch separation	25 ns
Repetition rate	200 Hz
Beam power	~13.3 kW (max)

 \rightarrow positron flux of $\sim 1.1 \times 10^{13} e^{+/s} (\times 2.5)$. Demonstrated at SLC (a world record for existing accelerators): $\sim 6 \times 10^{12} e^{+/s}$

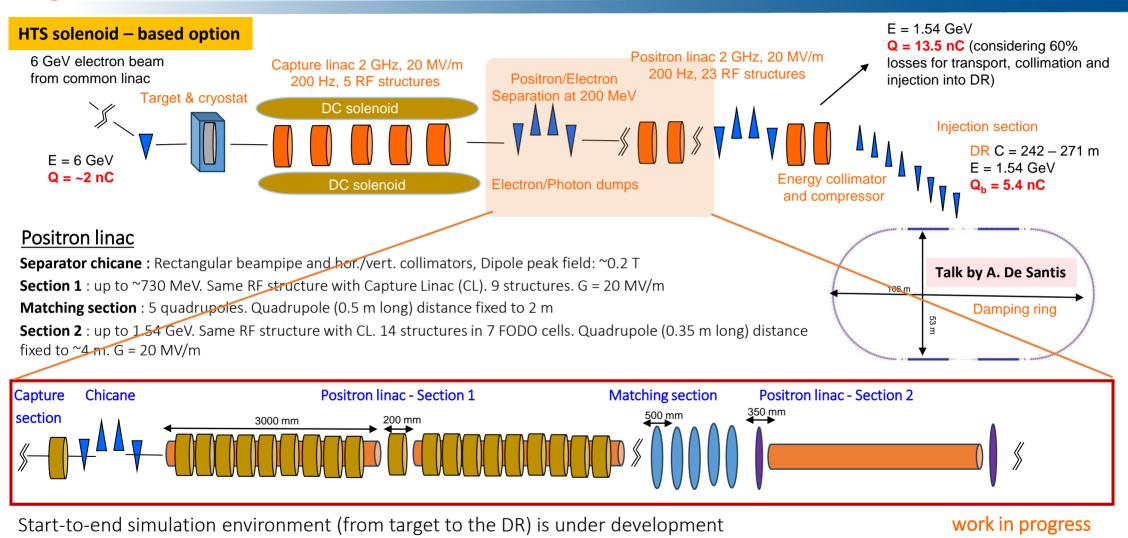
Positron source physics design (current baseline)

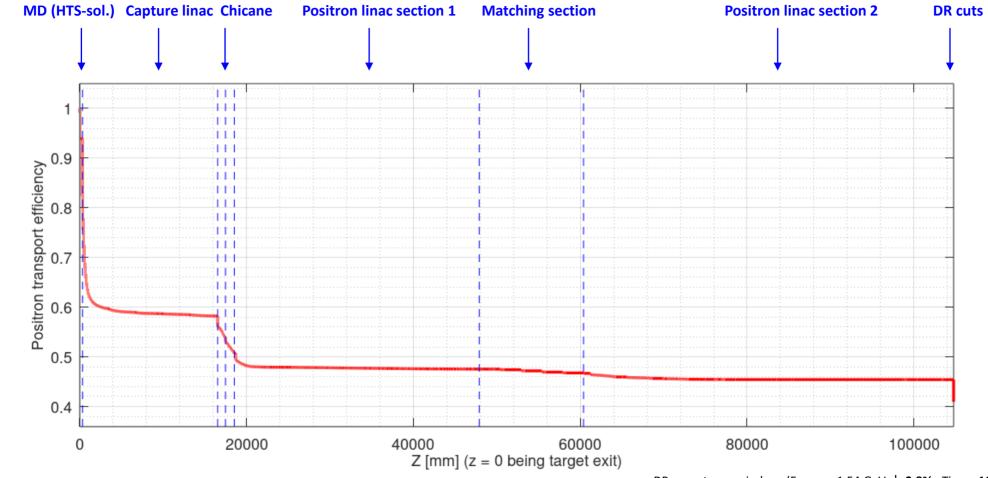

Positron production : conventional scheme (e- beam size on target = 1 mm rms). Target exit located at 40 mm w.r.t. HTS solenoid peak field.

Matching device is based on the SC solenoid (5 HTS coils, \emptyset 60 mm 72 mm bore, \emptyset 60 mm including shielding)

Capture linac is based on the L-band TW RF structures (2 GHz, \emptyset 60 mm, 3-m long)

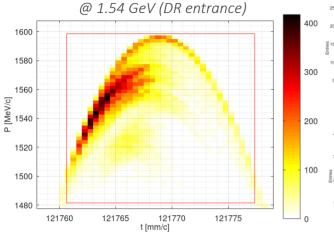
NC solenoid B = 0.5 T (realistic conventional design based on the short coils B = 0.31 T) + short "tuning" solenoid B = 0.248 T before the 1st RF structure

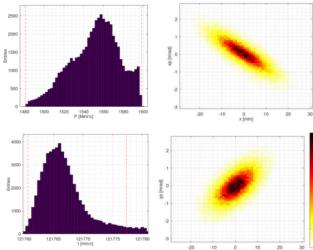

Positron capture system : toward better performance


Proposed solution could potentially decrease the power consumption of the solenoid and make more efficient the capture section RF system (smaller aperture)

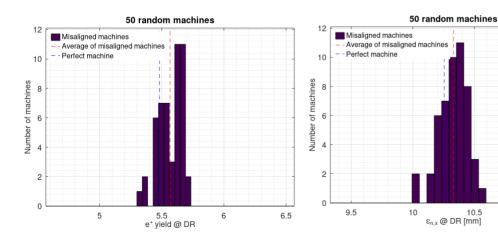
work in progress

Positron source physics design (current baseline)


Positron source overall efficiency (current baseline)



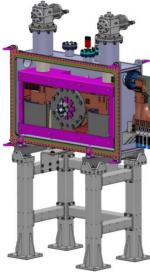
DR acceptance window: (Energy : 1.54 GeV \pm 3.8% ; Time : 16.7 mm/c)


Simulation results and error studies (HTS solenoid – based option)

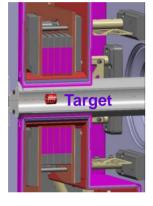
e⁺ yield @ Target	13.9
e ⁺ yield @ Capture Section	8.1 (8.0*)
e ⁺ yield @ Positron Linac	6.3 (6.2 [*])
Accepted e ⁺ yield @ DR	5.7 (5.6 [*])
ε _n x/y after DR cuts [mm.rad]	10.3/10.9
*	/ 1

*Simulations include collective effects (space charge and short-range wakefield)

Position error (x, y): $\sigma = 100 \ \mu m$ for all elements Angular error $\sigma = 100 \ \mu rad$ for all elements, except that $\sigma = 200 \ \mu rad$ for all NC solenoids and dipoles Magnetic strength error: $\sigma = 0.1\%$ for all magnets RF gradient error: $\sigma = 1\%$ for all RF structures RF phase error: $\sigma = 0.1^{\circ}$ for all RF structures Beam position jitter (x, y): $\sigma = 100 \ \mu m$ for e⁺ beam from target Beam angular jitter (x', y'): $\sigma = 100 \ \mu rad$ for e⁺ beam from target


FCC Week 2024, 10-14 June (San Francisco, United States)

11


HTS solenoid- and Flux Concentrator (FC)-based positron capture system

<u>Matching device</u> => a fast phase space rotation to transform the small size/high divergence in big sizes/low divergence beam

HTS solenoid integrated in the cryostat

The same HTS solenoid design and cryostat aperture as for P³ experiment (72 mm)

Flux Concentrator (FC) (SLAC, KEK, IHEP, LNF BINP)

innovative in application for e⁺ capture

Compared with FC

- Higher peak field (~15 T, ~12 T @Target)
- Larger aperture (\varnothing = 30-40 mm)
- Flexible target position and field profile
- Axially symmetric solenoid field
- DC operation

robust and reliable solution

Compared with HTS solenoid

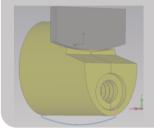
- Lower peak field (5–7 T, \leq 1–3 T @Target)
- Smaller entrance aperture (\emptyset = 7–12 mm)
- Fixed target position (2–5 mm upstream the FC)
- Challenging pulsed power source working at high rep. rate (≥100 Hz)

FCC Week 2024, 10-14 June (San Francisco, United States)

Small diameter

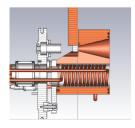
Big diameter & parallel

& divergent

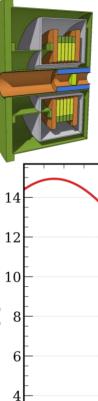


Positron capture: Flux Concentrator (FC) as a matching device

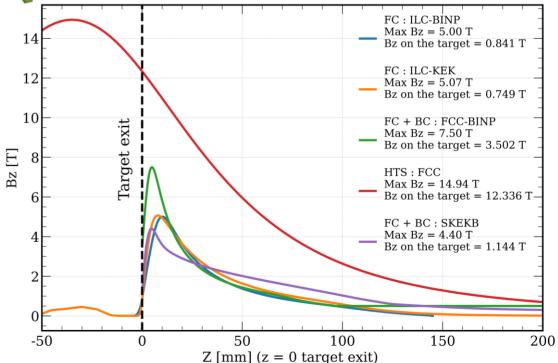
Originally designed by BINP for the FCC-ee (P. Martyshkin) => FC:FCC-BINP

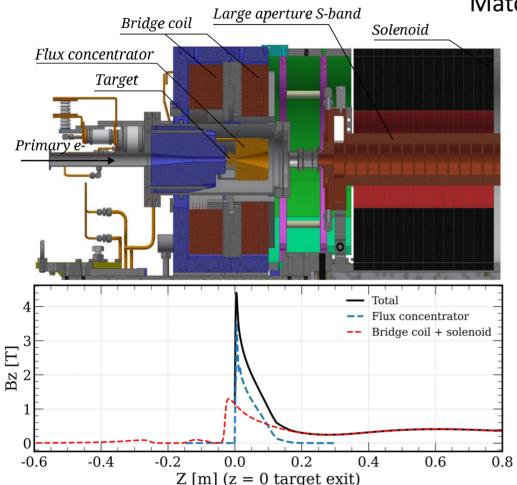

Dropped as no info and further studies

Originally designed by BINP for the ILC (P. Martyshkin) => FC:ILC-BINP Dropped as no info and further studies



Originally designed by KEK for the SuperKEKB => FC:SKEKB-KEK Under consideration for the FCC-ee (with and w/o Bridge Coils)


Designed by KEK for the ILC (Y. Enomoto) => FC:ILC-KEK

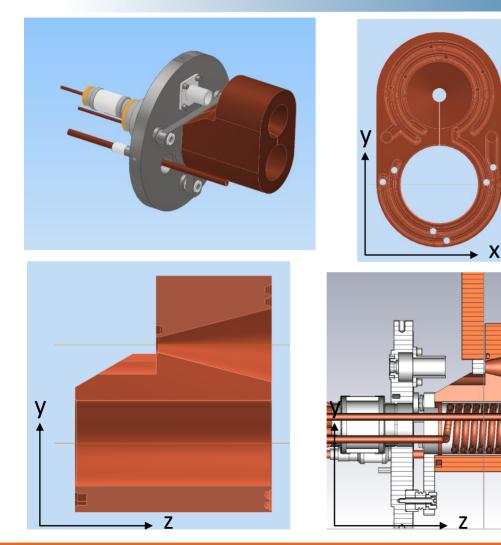

Under consideration for the FCC-ee

High-Temperature Superconducting (HTS) solenoid designed by PSI => HTS:FCC

Current baseline option

Matching device: Flux Concentrator (FC) + Bridge Coils (BC)

 FC field : 3.5 T at 12.5 kA (Pulsed, 50 Hz)

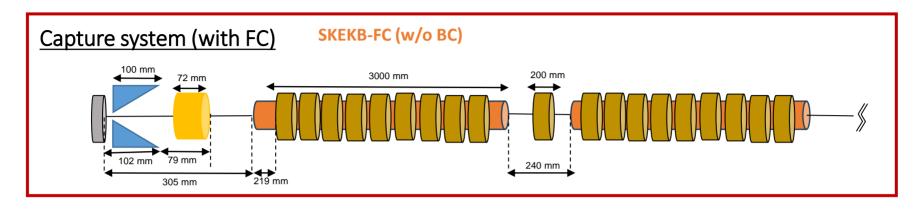

SKEKB FC			
Peak field (FC+BC)	4.4 T		
2Ri	7 mm		
2Ro	52 mm		
Length	100 mm		
Field on the target	1.14 T (with BC)		

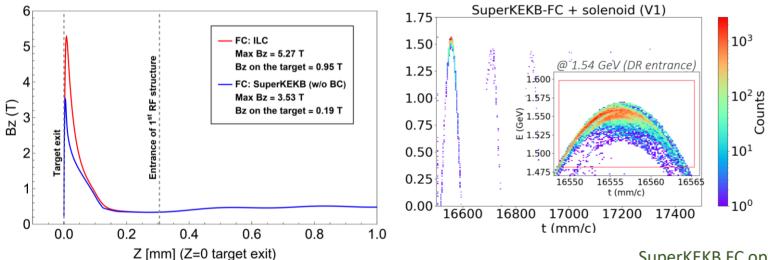
@FCC-ee

Simulations with the FC (w/o BC) and the nominal solenoid fieldmap. Simulations for (FC + BC) in progress.

ILC FC designed by KEK in application to FCC-ee

No Bridge Coils (BC) by design


Talk by Y. Enomoto


 FC is under construction now at KEK (Pulsed, ~100 Hz)

ILC FC			
Peak field	5.1 T		
2Ri	12 mm		
2Ro	64 mm		
Length	100 mm		
Field on the target FC	0.75 T		

@FCC-ee

Simulations with the FC and the nominal solenoid fieldmap

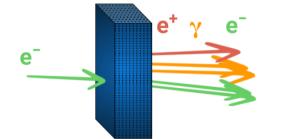
Two FC are currently considered in application to FCC-ee

- ✓ Physics design
- ✓ Positron production and capture simulations → accepted e⁺ yield
- No thermal and radiation load studies
- ✓ No integration studies

SuperKEKB FC option is now under investigation for target design

Talk by R. Mena Andrade

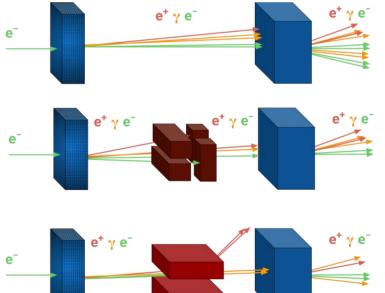
HTS solenoid vs. Flux Concentrator (FC) option for capture system


Drive beam parameters	FC-based cap	HTS- sol. based capture system	
Matching device	ILC-KEK FC	SuperKEKB FC	HTS solenoid
Matching device aperture	2a=12-64mm	2a=7-52mm	2a _{min} =60 mm
Matching device peak magnetic field (@Target) [T]	5.3 (0.95)	3.5 (0.19)	15 (12)
e- beam bunch charge [nC] / e- beam power [kW]	5.3 / 12.7	6.2 / 14.8	2.0/4.8
Target deposited power [kW] / PEDD [J/g]	3 / 7.5	3.5 / 8.8	1.1/2.8
Target deposited power [kW] / PEDD [J/g] @100Hz/4 bunches	3 / 15	3.5 / 17.6	1.1/5.6
Positron yield @Target / @CS [Ne⁺/Ne⁻]	13.9 / 3.2	13.9 /2.5	13.9/8.4
Positron yield @DR [Ne ⁺ /Ne ⁻]	2.5	2.2	6.8
Normalized emittance x/y (rms) [mm.rad]	12.4/11.7	8.9/8.9	10.4/10.9
Energy spread (rms) [%]	0.7 0.7		1.7
e+ beam bunch charge [nC]	13.5		

Crystal-based positron source for FCC-ee

Originally proposed by R. Chehab, A. Variola, V. Strakhovenko and X. Artru

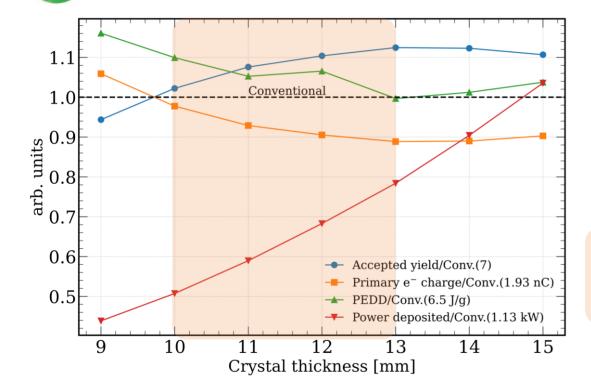
R. Chehab et al., in Proc. of the 1989 IEEE Particle Accelerator Conf., 1989, pp. 283–285

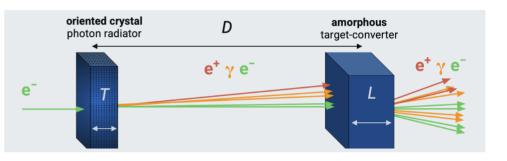


Use of lattice coherent effects in oriented crystals : channeling and over barrier motion

oriented crystalline target

→ typical angular range ~a few mrad at 6 GeV for <111> axis in W

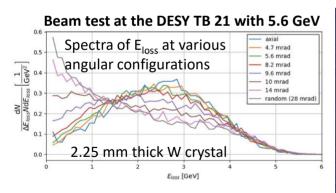

- Novel production scheme for positron sources
- Enhancement of photon generation in oriented crystals \rightarrow enhancement of pair production / positron charge
- Lower energy deposit and PEDD in target \rightarrow lower heating and thermo-mechanical stress (target reliability)



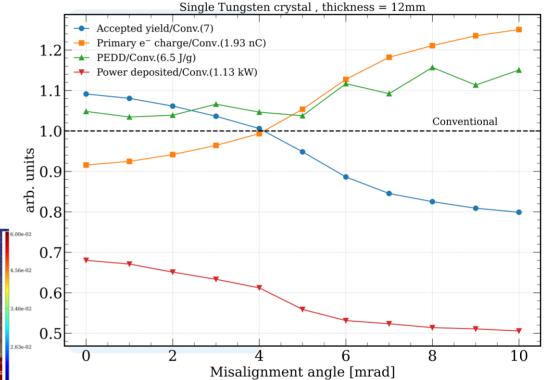
Crystal-based positron source for FCC-ee (towards conceptual design)

The simulation environment was benchmarked/validated with experiments at energies of interest for positron sources of future colliders \rightarrow optimization studies for the FCC-ee

L. Bandiera et al., Eur. Phys. J. C (2022) 82:699


Simulation studies converge to a total W thickness of about **12 mm** \rightarrow need D~0 (2 targets) or 1 thick single-crystal

The whole setup was simulated through Geant4 toolkit taking advantage of GeantG4ChannelingFastSimModel, which is based on CRYSTALRAD code *A. Sytov et al. JKPS 83 (2023)*


Integration and operation of the crystal target

- Crystal heating The photon yield drops insignificantly for temperatures ~600 °K
- Crystal alignment No goniometer. The typical precision of the pre-alignment procedure ~1 mrad Margins for improvement.
- Crystal quality The crystalline quality of 10 12 mm thick W sample is lower than for a thin sample → lower yield, but larger acceptance angles

Imaging of the sample mosaicity measured at BM05 beamline of ESRF for 10 mm thick W Courtesy of Thu Nhi Tran Caliste (INFN)

<u>At local level:</u> mosaicity is contained within 0.2 - 0.4 mrad <u>At larger scale:</u> separate crystal domains (on 10x10x10 mm³, total angular distribution of all the crystals domains is within 8.7 mrad)

Experimental studies and validation are needed ! (tests @MAMI, DESY, next week beam test @CERN, potential target design validation at P³)

Misalignment w.r.t. desired axis <111> of W crystal @590 °K

FCC Week 2024, 10-14 June (San Francisco, United States)

Summary of the simulation results: 6 GeV and 2.86 GeV injector options

Parameter	Unit	For 13.5 nC e ⁺ bunch charge			Talk by P. Craievich	
e ⁻ beam energy	GeV	6		2.86		
Number of bunches		2	4	2	4	Less
Repetition rate	Hz	200	100	200	100	Work in progress
e ⁻ bunch charge	nC	2.4		2.4 6.1		du
e ⁻ beam power	kW	5.8		7		urk i
Target thickness	mm	17.5		15		Wo
Beam size, x/y	mm	1		1		10
Positron yield @ Target	N _{e+} /N _{e-}	13.9		7.1		ults
Positron yield @ CS	N _{e+} /N _{e-}	8.1		4.1		res
Positron yield @ PL	N _{e+} /N _{e-}	6.3		6.3 3.2		ary
Positron yield @ DR	N _{e+} /N _{e-}	5.7		5.7 2.2		min
Target deposited power	kW	1.3	1.3	1.6	1.6	Preliminary results
Target PEDD	J/g	3.6	7.1	4.8	9.6	d'
e+ beam emittance, ε _n x/y	mm.rad	10.3/10.9		9.2/10.2		

- The studies on the FCC-ee positron source are well advanced: baseline design is based on use of the HTS solenoid. The accepted e⁺ yield is 5–6 N_{e+}/N_{e-}. So far, no showstoppers found that prevent a SC solenoid matching device (proof-of-principle with P³ experiment @PSI in 2026).
- Flux Concentrator-based capture system has been investigated in application to the FCC-ee e⁺ source
 - Use of a thermionic gun will probably be needed to provide the requested bunch charge of the e⁻ drive beam (≥ 5 nC), especially for 2.86 GeV injector option. Work in progress. The bunch-by-bunch intensity variation scheme to be developed.
 - FC operation at 200 Hz is very difficult (ohmic losses, power supply) → 4 bunches scheme @100 Hz is preferred option.
 - More sophisticated target design should be considered due higher drive beam power.
- The start-to-end simulations from production target to the DR using the realistic fieldmaps are underway including collective effects and machine imperfections.
- For 2.86 GeV injector option, to fulfil the requirements for positron bunch charge, higher e⁻ drive beam charge will be needed. Work in progress.
- Conceptual design studies of the crystal-based positron source for the FCC-ee are well advanced. Next steps: integration studies and beam tests with potential proof-of-principle at P³ experiment.

PSI	B. Auchmann, P. Craievich, M. Duda, J. Kosse, M. Schaer, N. Vallis, R. Zennaro	
IJCLab	F. Alharthi, I. Chaikovska, R. Chehab, V. Mytrochenko, Y. Wang	
CERN	S. Doebert, A. Grudiev, A. Latina, B. Humann, A. Lechner, R. Mena Andrade, J.L. Grenard, A. Perillo Marcone, P. Sievers, Y. Zhao	
INFN/Ferrara	L. Bandiera, D. Boccanfuso (INFN Naple) , N. Canale, O. Lorio (INFN Naple), A. Mazzolari, R. Negrello, G. Paternò, M. Romagnoni, M. Soldani, A. Sytov	
INFN-Milano	A. Bacci, M. Rossetti Conti	
КЕК	Y. Enomoto	

This work was done under the auspices of CHART (Swiss Accelerator Research and Technology) Collaboration, https://chart.ch - CHART Scientific Report 2022: https://chart.ch/reports/

FCCIS: 'This project has received funding from the European Union's Horizon 2020 research and innovation programme under the European Union's Horizon 2020 research and innovation programme under grant agreement No 951754.'

European Commission

> Horizon 2020 European Union funding for Research & Innovation

EU Horizon 2020 GA No 101004730

e+BOOST PRIN2022-2022Y87K7X

GA No ANR-21-CE31-0007

Marie Curie Global Fellowships, Project TRILLION GA n. 101032975

∓rillion

IFAST

Bando PRIN 2022

0