

The P-cubed Experiment

FCC-ee positron source test facility

Nicolas Vallis (PSI/EPFL) FCC Week Conference, San Francisco, USA, 11 June 2024

- 1. Introduction
- 2. Key Technology
- 3. Infrastructure
- 4. Physics
- 5. Beam Diagnostics (Poster)
- 6. Conical Targets (Poster)
- 7. Conclusion

Introduction

The PSI Positron Production Experiment

- P³ or *P-cubed* is a Proof-of-principle study of a e+ source and capture system that can substantially enhance the state-of-the-art e+ yield.
- Based on the conventional principles of pairproduction-driven e+ sources, but will use novel technology (e.g. HTS solenoids).
- Integrated in FCC-ee Injector study as the FCC-ee e+ source test facility.
- Design complete and currently in construction at SwissFEL at PSI.
- Operations foreseen in 2026.

3

Introduction

Positron Sources and Injectors for Particle Colliders

- Positron sources for particle colliders are driven by pair production based on the interaction of high-energy eand a high-Z target.
 - Large e+ yield.
 - Extreme transverse emittance and energy spread.
- Positron capture linacs rely on high-field solenoid system to transport the secondary e+ beams up to a DR, where e+ have their emittance cooled.
 - Conventional solenoid systems have limited e+ capture capabilities.
 - Only e+ accepted at DR can be injected into the collider.
 - Positron Yield at the DR is the key figure of merit.
- P-cubed will test novel technology for e+ capture systems that can significantly increase the e+ capture efficiency.

4

Introduction

Rationale

- Critical factors for e+ yield at DR:
 - Primary e- energy
 - Transverse aperture
 - Solenoid strength around the target
 - Solenoid strength along RF linac

- The use of an HTS solenoid with a peak field of 12.7 T around the target can substantially increase stateof-the-art e+ yield.
- According to simulations, the enhancement would be of about an order of magitude with respect to SLC and SuperKEKB.

	SLC 1989 - 1998	SuperKEKB 2014 - Present	FCC-ee (HTS Option) 2040s – 2060s
Primary e- energy [GeV]	30 - 33	3.5	6
Transverse aperture [mm]	18	30	60
Max. Solenoid Strength at target	5.5	3.5	12.7
Avg. Solenoid Strength along linac	0.5	0.4	0.5
e+ Yield at target	~30	~8	13.77
e+ Yield at DR	2.5	0.63	6.5
Yield at DR / e- Energy [GeV -1]	0.079	0.180	1.083

1. Introduction

- 2. Key Technology
- 3. Infrastructure
- 4. Physics
- 5. Beam Diagnostics (Poster)
- 6. Conical Targets (Poster)
- 7. Conclusion

1 3 2 RF Cavities (40 mm aperture) Target 2 scintillating fibers 2 Faraday cups Target in sertion Spectrometer uevice e+ Broadband pick-ups 4 6 GeV edrive beam HTS solenoid (12.7 T) 16 solenoids (0.45 T) Broadband pick-ups **Diagnostics chamber** • • 100 [MV/m] 10¹ RF Solenoid B₂∏ Ω 100 Ν ш 100 0.5 1.5 0 2 2.5 3 -1 z [m]

Technology of the P-cubed Experiment

7

Technology of the P-cubed Experiment Target System

- P-cubed will test different different targets (baseline 17.5 mm tungsten cylinder).
- The longitudinal position of target has an impact on the e+ yield.

- CERN and PSI have developed a system that allows for:
 - Easily replacing the targets.
 - Remotely adjusting the longitudinal location of the target with a stroke of +/50 mm with respect to the optimal point.

PSI

FCC

8

Technology of the P-cubed Experiment HTS Solenoid

- 12.7 T peak field goal achieved thanks to "cryogen-free" operation at 15 K.
- Made of 5 non-insulated ReBCO tape coils.
- Prototype has been successfully wound, soldered, and stacked at PSI.
- In-house tests have demonstrated "cryogenfree" operation at 15 K and 2 kA, measuring peak magnetic fields of 18 T on-axis.

PSI

) FOC

Technology of the P-cubed Experiment RF Linac (2 RF Structures + 16 NC Solenoids)

- RF structures in S-band are based on a novel standing-wave solution that provides a large transverse aperture (40 mm) but reasonably high shunt impedance (13.9 MΩ/m).
- S-band choice determined by the availability of commercial components.
- **16 NC Solenoids** will create a 0.45 T magnetic channel. Each solenoid has a strength of 0.213 T.

- 1. Introduction
- 2. Key Technology
- 3. Infrastructure
- 4. Physics
- 5. Beam Diagnostics (Poster)
- 6. Conical Targets (Poster)
- 7. Conclusion

Infrastructure of the P-cubed experiment Operation with e+ at SwissFEL

- SwissFEL is a free electron laser facility at PSI.
- Has the required space for a e+ source.
- It can provide a 6 GeV primary e- beam for e+ production.
- P³ will use a significantly lower drive beam current:
 - Does not affect beam dynamics
 - SwissFEL radiation protection limits must be met

	FCC-ee	P ³ (SwissFEL)	
Energy [GeV]	6		
σ _E	0.1%		
σ _t [ps]	3.3		
σ _x , σ _y [mm]	0.5		
σ _{px} , σ _{py} [MeV/c]	0.06		
Target Length [mm]	17.5		
Bunch charge [nC]	1.7 – 2.4	0.2	
Rep. Rate [Hz]	200 1		
Bunches/pulse	2 1		

- 1. Introduction
- 2. Key Technology
- 3. Infrastructure

4. Physics

- 5. Beam Diagnostics (Poster)
- 6. Conical Targets (Poster)
- 7. Conclusion

Physics studies e+ Production at the Target

 e+ beam dynamics dominated by the transverse momentum (which translates into transverse emittance) and energy spread.

	Primary e-	Secondary e+	
Charge	200 2754		рС
Yield	-	13.77	
σ _x , σ _y	0.5	1.1	mm
σ _{px} , σ _{py}	0.06	7.1	MeV/c
ε _{x,norm} , ε _{x,norm}	-	11676	π mm mrad
σ _t	3.3	5.7	S
Energy (mean)	6000	50.5	MeV
Energy (median)	6000	18.9	MeV
Energy (mode)	6000	4	MeV
σ _E	6	122.8	MeV

Based on Geant4 simulations

Physics studies

Transverse Beam Dynamics

- Transverse e+ capture relies on an adiabatic matching device (AMD), a high-acceptance capture system ideal for high-emittance and high-energy spread beams.
- The AMD for P³ is based on an arrangement of an HTS solenoid delivering a 12.7 T field around the target and 16 NC solenoids that create a nearly flat 0.45 T magnetic channel along the linac.
- AMDs transform the e+ transverse profile at the source (moderate σ(x) and large σ(p_x)) to fit the acceptance of the linac (large σ(x) and moderate σ(p_x)).

Physics studies Transverse Beam Dynamics (II)

	Target exit	Secondary e+	
Charge	2754	2334	рС
Yield	13.77	11.67	
σ _x , σ _y	1.1	6.2 (<20)	mm
σ _{px} , σ _{py}	7.1	2.7	MeV/c
ε _{x,norm} , ε _{x,norm}	11676	12016	π mm mrad
σ _t	5.7	11.3	S
σ _E	122.8	122.8	MeV

Based on ASTRA simulations

Physics studies Longitudinal Beam Dynamics

First FOM: Total e+ output at 2nd RF structure.

- It is a real, measurable quantity that can be detected by the Faraday cups.
- Max. 1246 pC (or 6.23 e+ per primary e-) at at $\phi = (120, -70)$.

Second FOM: e+ yield at the FCC-ee ramping ring (DR).

- Sets an equivalence with FCC-ee based on simulations.
- The calculation method is consistent with FCC-ee simulations:
 - Particle tracking up to 200 MeV (10 RF structures).
 - Analytical transformation up to 1.54 GeV.
 - Longitudinal window of one RF bucket and +/-3.8% in energy (current FCC-ee DR baseline).
- Max. 4.64 e+ at DR per primary e- at $\phi = (70, -110)$.

Physics studies Longitudinal Beam Dynamics (II)

Entrance of FCC-ee DR

Second RF Working Point of interest:

Max. 4.64 e+ at DR per primary eat $\phi = (70, -110)$.

First RF Working Point of interest:

Highest capture efficiency

at $\phi = (120, -70)$:

Max. 1246 pC (or 6.23 e+ per primary e-) at

Not the best energy compression

- Not the highest capture efficiency
- Best energy compression

- 1. Introduction
- 2. Key Technology
- 3. Infrastructure
- 4. Physics
- 5. Beam Diagnostics (Poster)
- 6. Conical Targets (Poster)
- 7. Conclusion

Diagnostics (Poster)

- The diagnostics will help researchers optimize the operation of the e+ source and provide a proof-of-principle demonstration of the e+ yield.
- The setup will measure the charge and longitudinal profile of the e+ and e-

Diagnostics (Poster) Faraday Cups

- Two Faraday cups will measure the e+ and e- output from the RF cavities.
- The Faraday cups are based on different measurement principles.
- According to simulations the Faraday Cups will detect up to 1079 pC (or 5.64 e+ per primary e-) at the RF working point of maximum e+ charge output.

At Phi = (120, -70):

- 1246 pC expected
- 1079 pC measured
- Error = -13.4 %

22

Conical Targets (Poster)

- Study of tungsten targets with a finite transverse radius, comparable to that of the e+ beam, and a conical profile to enhance the baseline e+ yield.
- Two optimal geometries are proposed for the two beam size options for FCC-ee, $\sigma_x = 0.5$ mm and $\sigma_x = 1$ mm, which could nearly duplicate the e+ production at the target and enhance the e+ yield at the FCC-ee DR by 70 %.
- Research includes thermo-mechanical studies with FCC-ee beam and mechanical implementation toward future tests during the P-cubed experiment.

PS

- 1. Introduction
- 2. Key Technology
- 3. Infrastructure
- 4. Physics
- 5. Beam Diagnostics (Poster)
- 6. Conical Targets (Poster)
- 7. Conclusion

Conclusion Key performance figures

- Our research has developed one of the most advanced e+ source designs worldwide and provided a significant amount of data that supports its feasibility.
- The expected e+ yield normalized to the drive linac energy is about 4-5 times higher than SuperKEKB's e+ source. In the case of SLC, the enhancement would be of nearly an order of magnitude.

	SLC 1989 - 1998	SuperKEKB 2014 - Present	FCC-ee (HTS) 2040s – 2060s	P-cub (ca. 20	oed 026)
Primary e- energy [GeV]	30 - 33	3.5	6	6	
e+ Yield at target	~30	~8	13.77	13.7	77
e+ Yield at DR	2.5	0.63	6.5	5.64(*)	4.64(*)
Yield at DR / e- Energy [GeV ⁻¹]	0.079	0.180	1.083	0.94	0.773

(*) Measured by Faraday Cups (**) Estimation of Yield at DR based on simulations.

Conclusion Current Status

- The installation works at SwissFEL are progressing smoothly:
 - parts of the dedicated extraction line and the HV klystron-modulator system accommodated in the tunnel.
 - procurement and assembly of most accelerator and diagnostics components is progressing on schedule.
 - operation of the HTS solenoid, which is arguably the most critical component of the experiment, has been successfully demonstrated at PSI.
- Based on the current progress, the major part of the installation work is expected to conclude by the end of 2025, making it possible to start the operation with e+ in 2026.

Conclusion

Impact

- P-cubed design published in *Physical Review Accelerators and Beams*. Selected as an editors' suggestion.
- Research featured in *Physics World* magazine and described as a potential "boost" for future colliders.

=	physics world	Q	Magazine Latest 🕶 Physics Wo
			Audio and video 👻
ACCEL	ERATORS AND DETECTO	RS RESE	ARCH UPDATE
New	positron sour	ce cou	ld give lepton
colli	ders a boost		
09 Feb	2024		

P-cubed team

P. Craievich, D. Hauenstein, M. Schär, N. Strohmaier, N. Vallis, R. Zennaro, M. Zykova

PSI collaborators

B. Auchmann, M.I. Besana, H.H. Braun, M. D'Amico, M. Duda, R. Fortunati, R. Gaiffi, H. Garcia Rodrigues, R. Ischebeck, E. Ismaili, P. Juranic, J. Kosse, A. Magazinik, F. Marcellini, U. Michlmayr, S. Muller, M. Pedrozzi, S. Reiche, R. Rotundo, G.L. Orlandi, M. Seidel, W. Tron

External collaborators

G.L. Grenard, R. Mena Andrade, A. Perillo Marcone, B. Humann, Y. Zhao, A. Latina, A. Lechner (**CERN**), F. Alharthi, I. Chaikovska, R. Chehab (**Paris-Saclay University**), Y. Enomoto (**SuperKEKB**)

This work was done under the auspices of the CHART collaboration (Swiss Accelerator Research and Technology)

