

Polarized injectors for CEPC

Zhe Duan On behalf of the CEPC Polarization Working Group Institute of High Energy Physics, CAS

10 Jun - 14 Jun, 2024, San Francisco, USA, FCC Week 2024 email: duanz@ihep.ac.cn

Motivation of CEPC polarized beam program

Vertical polarization for resonant depolarization

- Essential for precision measurements of Z and W masses
- > 5% ~ 10% polarization

Longitudinal polarization for colliding beams

- Measurements of A_{FB} and A_{LR} @ Z-pole in the same experiment
- > 50% polarization with a high luminosity

Discrepancy between the most precise measurements Central value has large impact on physics predictions!

G. Moortgat-Pick's talk on CEPC Workshop EU @ Marseille, 2024 April

• Summarized as a chapter in the Appendix of <u>CEPC TDR</u>.

Self-polarization in the CEPC

- e+/e- beams become "self-polarized" via the Sokolov-Ternov effect in a storage ring
 - $\tau_{BKS} \propto E^{-5} \rho^2 R$
- Beam polarization build-up rate much slower than the beam decay rate @ Z-pole
 - Boosted with asymmetric wigglers in the Collider (FCC EPOL)
 - Hard to achieve a high-level polarization
 - In conflict with a high luminosity

CEPC CDR parameters	45.6 GeV (Z, 2T)	80 GeV (W)	120 GeV (Higgs)
Polarization build-up time w/o radiative depolarization τ_{BKS} (hour)	256	15.2	2.0
Beam lifetime $ au_b$ (hour)	2.5	1.4	0.43
			2

How to achieve a high-level polarization?

- A high-level polarization (time-averaged) P_{avg} in the Collider is attainable if
 - Top-up injection of highly polarized beam
 - Depolarization rate (τ_{DK}^{-1}) << beam loss rate (τ_{b}^{-1})

Sawtooth-shape evolution during top-up injection

$$P_{\text{avg}} = \frac{P_{\text{inj}}}{1 + \frac{\tau_b}{\tau_{BKS}} \frac{P_{\infty}}{P_{\text{DK}}}} + \frac{P_{\text{DK}}}{1 + 1/\frac{\tau_b}{\tau_{BKS}} \frac{P_{\infty}}{P_{\text{DK}}}}$$

 $P_{\rm DK}$ depends on machine imperfections, spin rotators Assume $P_{\infty} = 90\%$

P_{avg} > 50% requires a minimum value of P_{DK}

	45.6 GeV (Z)	80 GeV (W)	120 GeV (Higgs)
P _{inj} = 50%	<i>P</i> _{DK} >50%	<i>P</i> _{DK} >50%	<i>P</i> _{DK} >50%
P _{inj} = 60%	<i>P</i> _{DK} >4%	<i>P</i> _{DK} >23%	<i>P</i> _{DK} >33%
P _{inj} = 70%	<i>P</i> _{DK} >2%	<i>P</i> _{DK} >15%	<i>P</i> _{DK} >25%
P _{inj} = 80%	<i>P</i> _{DK} >1%	<i>P</i> _{DK} >11%	<i>P</i> _{DK} >20%

FCC Week 2024

Minimum Polarization

If
$$\tau_{DK} \gg \tau_b$$
, then $P_{avg} \approx P_{inj}$

 $(\tau_h + \tau_{\rm DK})/dt$

Amplitude of sawtooth ~

 $|P_{\rm inj} - P_{\rm DK}|$

time

Polarized injector for CEPC

- Polarized source
 - PES
 - Positron damping/polarizing ring

Linac & Transport lines

- spin direction matching @ injection/extraction
- helicity adjustment for e+

Booster

- free from intrinsic spin resonances

Collider

- solenoid spin rotators

W. Xia et al., Investigation of spin rotators in CEPC at the Z-pole, Radiat. Det. Tech. Meth. 6:490 (2022).

Polarized electron source

- Polarized electron source based on HV DC gun w/ superlattice AsGa/AsGaP cathode can deliver >80% beam polarization
- CEPC parameters less challenging than ILC, EIC
- R&D towards converting a HV photocathode DC gun @ PAPS to a polarized electron source

Parameter	CEPC	SLC	ILC	CLIC	EIC
Polarization [%]	>80	85	>80	>80	85
Bunch charge [nC]	3.3	9-16	3.2	1	7
Number of microbunches	1	1	1312	312	8
Repetition rate [Hz]	100	120	5	50	100
Average current from gun [µA]	0.33	1.1-1.9	21	15.6	5.6

 Table A8.2.2: Specifications of polarized electron gun for CEPC

Parameter	Specification	
Gun type	Photocathode DC gun	
Cathode material	Superlattice GaAs/GasAsP	
Voltage	150-200kV	
Quantum Efficiency	0.5%	
Polarization	>85%	
Bunch population	$2.1 imes 10^{10}$	
Drive laser	780 nm (±20 nm), 10μJ@1ns	

Positron damping/polarizing ring

FCC Week 2024

- Using the self-polarization to generate polarized e+ beams
 - For Resonant depolarization (very promising)
 - polarization build-up time ~ 14.5 min
 - extracted beam polarization @ 10min ~ 44%
 - could be designed to also pre-polarize e- beams
 - for polarized colliding beams (under study)
 - Higher energy and/or asymmetric wigglers
 - More bunches

DR V4.0	unpolarized e+	polarized e+	
Energy (Gev)	1.983		
Circumference (m)	144	.2	
Number of trains	2(4	.)	
Number of bunches/trian	1(2		
Total current (mA)	12.	4	
Dipole strength $B_0(T)$	1.9	2	
U ₀ (kev/turn)	397	.9	
Damping time $x/y/z$ (ms)	4.8/4.8	8/2.4	
Momentum compaction	0.0078		
Storage time	20 ms	10 min	
δ_0 (%)	0.0917		
ε_0 (mm.mrad)	132		
injection σ_{z} (mm)	6		
Extract σ_{z} (mm)	6.7	6.6	
ε_{ini} (mm.mrad)	2500		
$\epsilon_{\text{ext x/v}}$ (mm.mrad)	133/13	132/13	
$\delta_{ini}/\delta_{ext}$ (%)	0.18 /0.092		
RF acceptance (%)	1.85		
Longitudinal tune	0.025		

7

Linac & transport lines

- Depolarization in the linac is expected to be negligible[1,2].
- Transport lines
 - Non-interleaved horizontal & vertical bending
 - Typical errors without trajectory correction -> polarization loss < 10%

[1] G. Moortgat-Pick, et al., Polarized positrons and electrons at the linear collider, Physics Reports 460 (2008) 131-243.
[2] M. Woods, The polarized electron beam for the SLAC Linear Collider, arXiv:heps-ex/9611006v1, 1996

FCC Week 2024

ñ

Ŝ

Mismatch

at injection

Depolarization in the booster

- The spin tune $v_s \approx v_0 \approx a\gamma$ changes and could cross spin resonances $v_s = k + k_x v_x + k_y v_y + k_z v_z$
 - The spin resonances $v_0 = k$ are spaced by 440 MeV for e+/e-
- The non-adiabatic crossing could vary $J_s = \vec{S} \cdot \vec{n}$ and lead to depolarization [1]
 - Spin resonance strength ε
 - Acceleration rate $\alpha \sim 10^{-6} \frac{dE}{dt} [\text{GeV/s}]C[\text{km}]$
 - $\Delta |P| < 1\%$ in the regimes of fast crossing & slow crossing
- Previous studies suggested using Siberian snakes to maintain polarization for future 100km-scale boosters[7]

Spin resonance structure of a CEPC Booster lattice

Depolarization effects: simulation vs. estimation

CEPC TDR lattice and more optimizations

- The CEPC TDR lattice suffers from super-strong resonances before Z energy
 - Injected vertical emittance 6.5nm -> Polarization transmission~ 50% @ Z & W, 20% @ Higgs
 - Injected vertical emittance 1.5 nm-> Polarization transmission ~80% @ Z & W, 30% @ Higgs
- Potential optimization:
 - Further reduce vertical emittance of injected beam
 - Vary lattice vertical focusing
 - Study lattice sensitivity to imperfection resonances
- More to address
 - influence of the smoothed 3D closed curve of the accelerator after alignment
 - Table A8.3.1 Parameters relevant for the spin resonance structure

Parameters	TDR	CDR	Alternative
ν_y	116.83	261.2	353.28
Basic arc cell structure	TME	FODO	FODO
Vertical phase advance per arc cell	28 degree	90 degree	90 degree
P	8	8	8
M	126	97	140
η_{arc}	126/127	97/99	140/142
ν_B	78.4	194	280
РМ	1008	776	1120
ν_B/η_{arc}	79.0	198	284

Our study for FCC HEB show similar results: 179th & 182nd FCC-ee optics meeting

Beam polarization transmission in the injector

An estimate based on the CEPC TDR booster, further optimization is under way Polarized e- Polarized e+

13

Injecting pre-polarized beams to the Colliders is promising

- RD measurements w/ a few pre-polarized (e- > 50%, e+ ~ 20%) pilot non-colliding bunches, no physics deadtime, robust towards machine faults & much higher integrated luminosity (<u>J.</u> <u>Heron's talk</u>)
- Longitudinal polarization @ Z-pole: > 50% polarized e- at nominal luminosity, more powerful polarized e+ source is under study.
- Polarized beam applications towards higher energies (W, Higgs etc) can also be envisaged.

Thank you for your attention!

Two lattices studied for FCC HEB

	FODO 90 deg (provided by B. Dalena)	HFD (provided by A. Chance)
Number of arcs (P)	8	8
Number of standard arc cells (M)	175	175
Total bending angle of standard arc cells ($2\pi * \eta_{arc}$)	0.745 rad * 8 = 2π * 0.9486	0.745 rad * 8 = 2π * 0.9486
Vertical betatron tune v_y	416.29	382.29
Vertical betatron tune from standard arc cells $v_{\rm B}$	1/4 * 175 * 8 = 350	~ 40 * 8 = 320
$v_{\rm B}/\eta_{\rm arc}$	~ 369 (corresponding to a beam energy of 162.6 GeV)	~ 337 (corresponding to a beam energy of 148.5 GeV)

Note: • Superstrong intrinsic resonances are located at $v_0 = K = nP \pm v_y$ that are closest to $\frac{mPM \pm v_B}{\eta_{arc}}$

• The superstrong intrinsic resonance at the lowest beam energy is near $v_0 = v_B / \eta_{arc}$

Polarization transmission for FODO 90 degree lattice

All 79 successfully corrected seeds out of 100

- More dangerous imperfection resonances are crossed in the higher energy modes
- Assuming 100% polarization @ injection, the final polarization transmission after acceleration is typically ~90% (Z), ~60%(W), ~15%(H) and zero (top)

Polarization transmission for HFD lattice

Above figure: the curves show the strength w/ 99% polarization transmission

All 100 successfully corrected seeds out of 100

- More dangerous imperfection resonances are crossed in the higher energy modes
- Assuming 100% polarization @ injection, the final polarization transmission after acceleration is typically ~90% (Z), ~60%(W), ~15%(H) and zero (top)

A high-level longitudinal polarization @ Z-pole

- 50%-70% longitudinal polarization for e- bunches is a reasonable goal
- Over 70% injected e- beam polarization is possible.
- Polarized e+ source is challenging for CEPC [1],
 - self-polarization at a low energy e+ ring is possible, a tradeoff between the challenges & costs of the ring versus reduction injection rate & luminosity (need more study);

[1] P. Musumeci et al., Positron Sources for Future High Energy Physics Colliders, ArXiv:2204.13245 Phys. (2022).

A high-level longitudinal polarization @ Z-pole

- 50%-70% longitudinal polarization for e- bunches is a reasonable goal
- Over 70% injected e- beam polarization is possible.
- Simulated equilibrium longitudinal polarization > 70%,
 > the minimum P_{DK} =2% to attain P_{avg} > 50%
 leaving a large margin for effects not yet covered.

Simulated equilibrium polarization for an imperfect lattice w/ rotators after closed orbit correction

20

Resonant Depolarization at Z

- It's possible to inject > 20% polarized beams to enable RD measurements at Z-pole
 - No dead time for physics, a few pilot bunches
 - Polarized e+ source ? Dual-purpose damping/polarizing ring (could accommodate both e+/e- beams to gain sufficient polarization)

Approac	hes	Self-polarization in the collider	Injection of polarized beams
Hardwa re	Polarized electron gun	None	Yes
	Asymmetric wigglers	In the colliders	In the e+ damping ring or None
Polarizat	ion level	5% ~ 10%	> 70% for e-, > 20% e+
Dead tir	ne for physics	Initial 1~2 hours in each fill	None
Frequent	cy of RD ments	Every ~10 min per beam	More frequent for e- beam
RD on co	olliding beams	None	Possible at lower bunch charge

One typical design: beam energy ~ 2 GeV, circumference ~ 150 m polarization build-up time ~ 14.5 min Extracted beam polarization @ 10min ~ 44%