

FCC-ee collimation

G. Broggi ^{1,2,3}, A. Abramov ², K. André ², M. Boscolo ³, R. Bruce ², M. Hofer ², S. Redaelli ²

¹ Sapienza University of Rome, Italy
 ³ INFN-LNF, Frascati, Italy

² CERN, Meyrin, Switzerland

FCC week 2024 – San Francisco, CA, USA, 11/06/2024

Many thanks to:

X. Buffat, H. Burkhardt, F. Carlier, A. Ciarma, Y. Dutheil, P. Hunchak, G. Iadarola, R. Kersevan, P. Kicsiny, A. Lechner, G. Lerner, L. Nevay, M. Migliorati, M. Moudgalya, K. Oide, A. Perillo Marcone, T. Pieloni, R. Ramjiawan, T. Raubenheimer, L. van Riesen-Haupt, S. White, F. Zimmermann

Introduction

- Collimation for the FCC-ee
- FCC-ee collimation system
- FCC-ee beam losses and collimation simulations
- Updates on current studies
 - Beam halo losses
 - Collimation studies including beam-beam effects: first results
 - Collimation studies including beam-gas interactions: first results
- An alternative collimation layout to reduce impedance contribution from collimators
- FCC-ee collimation summary

Introduction

- Collimation for the FCC-ee
- FCC-ee collimation system
- FCC-ee beam losses and collimation simulations
- Updates on current studies
 - Beam halo losses
 - Collimation studies including beam-beam effects: first results
 - Collimation studies including beam-gas interactions: first results
- An alternative collimation layout to reduce impedance contribution from collimators
- FCC-ee collimation summary

Collimation for the FCC-ee

- FCC-ee is the FCC first stage e⁺e⁻ collider
 - > 90.7 km circumference, tunnel compatible with FCC-hh
 - 4 beam operation modes, optimized for production of different particles:
 Z (45.6 GeV), W (80 GeV), H (120 GeV), ttbar (182.5 GeV)
- FCC-ee presents unique challenges
 - Unprecedented stored beam energy for a lepton collider: up to 17.5 MJ in the Z operation mode (45.6 GeV)
 - Highly destructive beams: collimation system indispensable
 - > The main roles of the collimation system are:
 - Reduce background in the experiments
 - Protect the machine from unavoidable losses
 - Two types of collimation foreseen for the FCC-ee:
 - Beam halo (global) collimation
 - Synchrotron Radiation (SR) collimation around the IPs
 - Need of further local protection (e.g., experimental IRs) to be assessed

Comparison of lepton colliders

Damage to coated collimator jaw due to accidental beam loss in the SuperKEKB – T. Ishibashi (talk)

FCC-ee halo collimation system

- Dedicated halo collimation system in PF (new version compared to FCC week 2023)
 - Dedicated collimation optics (M. Hofer)
 - > Two-stage betatron and off-momentum collimation system in one insertion
 - Ensure protection of the aperture bottlenecks in different conditions
 - Aperture bottleneck at Z: 14.6σ (H plane), 85σ (V plane)
 - First collimator design for cleaning performance
 - Ongoing studies for optimizing the collimator design (G. Broggi <u>IPAC'24 paper</u>)

https://gitlab.cern.ch/mihofer/fcc-ee-collimation-lattice

FCC-ee beam halo collimator parameters and settings

Name	Plane	Material	Length [cm]	Gap [σ]	Gap [mm]	δ _{cut} [%]
TCP.H.B1	н	MoGr	25	11	6.7	8.9
TCP.V.B1	V	MoGr	25	65	2.4	-
TCS.H1.B1	Н	Мо	30	13	3.8	6.7
TCS.V1.B1	V	Мо	30	75	2.5	-
TCS.H2.B1	Н	Мо	30	13	5.1	90.6
TCS.V2.B1	V	Мо	30	75	3.0	-
TCP.HP.B1	Н	MoGr	25	18.5	4.2	1.3
TCS.HP1.B1	Н	Мо	30	21.5	4.6	2.1
TCS.HP2.B1	Н	Мо	30	21.5	16.8	1.6

Further materials will be studied in the future

FCC-ee SR collimation system

Synchrotron radiation collimators around the IPs

- 6 collimators and 2 masks upstream of the IPs
- > Designed to reduce detector backgrounds and power loads in the inner beampipe due to photon losses

FCC-ee SR collimators parameters and settings

Name	Plane	Material	Length [cm]	Gap [σ]	Gap [mm]
TCR.H.WL.B1	Н	W	10	14.1	17.0
TCR.H.C3.B1	V	W	10	13.5	16.5
TCR.V.C0.B1	V	W	10	80.1	8.0
TCR.H.C0.B1	Н	W	10	13.0	16.2
TCR.V.C2.B1	V	W	10	82.0	8.0
TCR.H.C2.B1	Н	W	10	13.1	16.0

More details in K. André, <u>Synchrotron Radiation background studies</u>, FCC week 2024 (Thu 13/06)

- Introduction
 - Collimation for the FCC-ee
 - FCC-ee collimation system
- FCC-ee beam losses and collimation simulations
- Updates on current studies
 - Beam halo losses
 - Collimation studies including beam-beam effects: first results
 - Collimation studies including beam-gas interactions: first results
- An alternative collimation layout to reduce impedance contribution from collimators
- FCC-ee collimation summary

FCC-ee beam losses

- Important to study beam loss processes and define the ones to protect against (H. Burkhardt, talk)
 - Must study equipment loss tolerances, for both regular and accidental losses
- Important loss scenarios for particle tracking studies:

FCC-ee collimation simulations

- FCC-ee presents unique challenges for collimation simulations
 - Synchrotron radiation and magnet strength adjustment (tapering) to compensate it
 - Complex beam dynamics strong sextupoles in the lattice, strong beam-beam effects (beamstrahlung)
 - Detailed aperture and collimator geometry modelling
 - Electron/positron beam particle-matter interactions
 - Large accelerator system 90+ km beamline
- Xsuite + BDSIM (Geant4) coupling
 - Developed for FCC collimation simulations (A. Abramov, IPAC'22 paper, JINST paper)

Benchmarked against - other simulation codes: MAD-X, pyAT, Sixtrack-FLUKA (A. Abramov) measured data from proton machines: SPS (T. Pugnat), LHC (G. Broggi)

- Xsuite-FLUKA coupling being set up (F. Van der Veken, <u>HB'23 paper</u>, K. Skoufaris, FLUKA team)

11/06/2023

G. Broggi | FCC-ee collimation

Ongoing effort for benchmarking Xsuite-BDSIM with data from lepton machines (SuperKEKB, DAΦNE)

- Introduction
 - Collimation for the FCC-ee
 - FCC-ee collimation system
- FCC-ee beam losses and collimation simulations
- Updates on current studies
 - Beam halo losses
 - Collimation studies including beam-beam effects: first results
 - Collimation studies including beam-gas interactions: first results
- An alternative collimation layout to reduce impedance contribution from collimators
- FCC-ee collimation summary

Generic beam halo losses

- «Generic beam halo» beam loss scenario
 - Specify a minimum beam lifetime that must be sustained during normal operation - preliminary specification of a 5 min lifetime
 - Assume a slow loss process halo particles always intercepted by the primary collimators
 - Loss process not simulated: all particles start impacting a collimator from the collimator edge to a maximum impact parameter b_{max} (R. Bruce <u>PRSTAB paper</u>)
 - > Currently assuming $b_{max} = 1 \ \mu m$
 - > Studies needed to asses the most realistic b_{max} value
 - Impact parameter scans showed monotonically worsening collimation performance with decreasing impact parameters (<u>G. Broggi, FCC-ee MDI workshop 2023 talk</u>)
 - Particles scattered out from the collimator tracked for a given number of turns (~700), and losses on the aperture are recorded → loss maps

Generic halo losses for the Z mode

- The Z mode is the current focus (Beam 1, 45.6 GeV e+)
 > 17.5 MJ stored beam energy
- 5 min beam lifetime assumed \rightarrow 58.3 kW total loss power
- Radiation and tapering included

3 cases considered: Horizontal and vertical betatron losses (B1H, B1V) Off-momentum losses (B1 -dp)

• For the off-momentum case only, the primary collimator TCP.HP.B1 is aligned to the beam envelope by applying a tilt of 63 urad

TCP.HP.B1 parallel to the closed orbit and aligned to the beam envelope

Good halo cleaning performance overall

- Losses well contained (>99%) within the collimation insertion PF
- Loss suppressed by ~4 orders of magnitude on SR collimators and by ~5-6 orders of magnitude on all the other elements outside PF

Generic halo losses for the Z mode

• The SR collimators intercept beam losses in all cases:

Highest load on C0 and BWL horizontal SR collimators, up to 16.4 W (but increases at smaller b_{max})
 Lowest load on C2 horizontal and vertical SR collimators

- Max. power load from generic halo losses much lower than the max. recorded power from SR about 200 W (K. André – <u>IPAC'24 paper</u>)
- Energy deposition and thermo-mechanical studies required for collimators and most exposed magnets
 - The need of shower absorbers in the collimation insertion needs to be assessed

Collimation studies including beam-beam effects

- Interactions at the IPs have a crucial role in FCC-ee beam dynamics
 - > Main contribution to the beam lifetime in nominal operation
 - Produce distinct beam loss distributions around the ring

 First integration of beam-beam effects (beamstrahlung, radiative Bhabha) in collimation tracking studies (A. Abramov – <u>FCCIS23 talk</u>)

۲

11/06/2023

G. Broggi | FCC-ee collimation

PRELIMINARY:

detailed checks ongoing

Collimation studies including beam-gas interactions

- Pressure profile in the FCC-ee (Z) provided by the vacuum team (R. Kersevan)
- Implementation of beam-gas scattering centers in Xsuite-BDSIM to model the interaction with residual gas in the vacuum pipe
- First integration of beam-gas interactions in FCC-ee collimation tracking studies

• More details in G. Broggi, Beam-gas beam losses and MDI collimators, FCC week 2024 (Thu 13/06)

PRFI IMINARY

detailed checks ongoing

- Introduction
 - Collimation for the FCC-ee
 - FCC-ee collimation system
- FCC-ee beam losses and collimation simulations
- Updates on current studies
 - Beam halo losses
 - Collimation studies including beam-beam effects: first results
 - Collimation studies including beam-gas interactions: first results
- An alternative collimation layout to reduce impedance contribution from collimators
- FCC-ee collimation summary

Alternative collimation layout: motivation

- Impedance team found that halo collimators significantly contribute to impedance
- The primary vertical collimator tcp.v.b1 gives the highest contribution

- More details in M. Migliorati, FCC-ee single beam collective effects, FCC week 2024 (Wed 12/06)
- Alternative collimation layout studied to increase tcp.v.b1 half-gap

Alternative collimation layout

- The current (betatron) primary collimator positions have been selected with two constraints:
 - 1) Large β -functions: to set collimator at acceptable half-gap for impedance constraints
 - 2) Small Twiss α : to minimize the angle of incidence of halo particles onto the collimator jaw

- The studied alternative collimation layout relaxes the constraint 2) and allows tcp.v.b1 to be close to the βy peak at the start of the collimation insertion
 - > Allows to gain a factor of \sim 3 on tcp.v.b1 half gap: 2.4 mm \rightarrow 6.3 mm !
 - ~20-30% gain also for vertical secondary collimators half-gap

Alternative layout: collimation performance

- Significant gain in half-gap but collimation performance significantly worsen
- However, by applying a 130 urad angular tilt to tcp.v.b1 to align it to the divergence of the beam envelope the collimation perfomance is well recovered:

• Strong indication that it is important to allow angular position control of beam halo collimators

• Studies will be performed to asses collimation perfomance vs. deviation from ideal angular position

- Introduction
 - Collimation for the FCC-ee
 - FCC-ee collimation system
- FCC-ee beam losses and collimation simulations
- Updates on current studies
 - Beam halo losses
 - Collimation studies including beam-beam effects: first results
 - Collimation studies including beam-gas interactions: first results
- An alternative collimation layout to reduce impedance contribution from collimators
- FCC-ee collimation summary

FCC-ee collimation summary

- Studies of beam losses and collimation for the FCC-ee
 - First collimation system design available, including beam halo and SR collimators
 - Simulations of beam loss scenarios ongoing
 - Beam halo losses studied for the most critical Z mode, no show-stoppers identified
 - First integrated beam-beam and collimation studies
 - First integrated beam-gas and collimation studies
 - > Collaboration with the MDI, impedance, engineering, FLUKA studies team
 - Possibility to increase the halo collimators half-gap if angular control of the collimator jaws is allowed
- Next steps
 - Study other beam loss scenarios failure scenarios, top-up injection, ...
 - Obtain input for the equipment tolerances superconducting magnets, collimators, others...
 - Energy deposition studies required for magnets, collimators, and masks
 - > Impact of beam losses on experimental background as well as detector tolerances to be studied
 - Study all beam modes
 - Sensitivity study of collimation performance vs. angular position of halo collimators

Thank you!

11/06/2023

G. Broggi | FCC-ee collimation

FCC-ee aperture

- Closed orbit tolerance: 250 µm
- Maximum beta-beating: 10%

Aperture bottleneck for Z operation mode

