Transverse Feedback Options For FCC-ee

D. Teytelman¹, J.Fox², W. Höfle³

¹Dimtel, Inc., San Jose, CA, USA ²Stanford University, Stanford, CA ³CERN, 1211 Geneva 23, Switzerland

FCC Week 2024 San Francisco, June 10-14, 2024 Transverse Feedback Options For FCC-ee

Overall Topology

Spatial Sampling

Noise, Disturbance Sources, Residual Motion

Multiple Feedback Approach

What's Next

Outline

Overall Topology

Spatial Sampling

Noise, Disturbance Sources, Residual Motion

Multiple Feedback Approach

What's Next

Transverse Feedback Options For FCC-ee

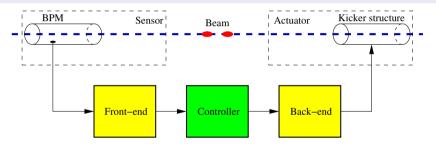
Overall Topology

Spatial Sampling

Noise, Disturbance Sources, Residual Motion

Multiple Feedback Approach

What's Next


Summary

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● のへで

Bunch-by-bunch Feedback

Definition

In bunch-by-bunch feedback approach the actuator signal for a given bunch depends only on the past motion of that bunch.

- Bunches are processed sequentially;
- Correction kicks are applied one turn later;
- Diagonal feedback computationally efficient;
- De-facto standard in synchrotrons.

Transverse Feedback Options For FCC-ee

Overall Topology

Spatial Sampling

Noise, Disturbance Sources, Residual Motion

Multiple Feedback Approach

What's Next

Summary

(日)

- Bunch-by-bunch feedback approach is extremely powerful;
- Applies the same feedback to all coupled-bunch eigenmodes independent of the fill pattern;
- In the last 20–30 years electron and positron machines have settled on a single pickup single kicker topology:
 - Kick for each bunch is generated by a linear combination of transverse position measurements from previous turns (FIR filter);
 - Feedback filter coefficients can be tuned to any fractional tune and pickup-to-kicker phase advance;
 - Compact and robust.
- FCC-ee, especially at Z, presents unique challenges for the feedback due to fast growth times;
- A spatial sampling approach takes advantage of high integer tune to generate appropriately phase correction signal in a single turn;
- More exotic schemes (sub-revolution delay) are possible, but not warranted at growth times of 3–4 turns.

Transverse Feedback Options For FCC-ee

Overall Topology

Spatial Sampling

Noise, Disturbance Sources, Residual Motion

Multiple Feedback Approach

What's Next

- Bunch-by-bunch feedback approach is extremely powerful;
- Applies the same feedback to all coupled-bunch eigenmodes independent of the fill pattern;
- In the last 20–30 years electron and positron machines have settled on a single pickup single kicker topology:
 - Kick for each bunch is generated by a linear combination of transverse position measurements from previous turns (FIR filter);
 - Feedback filter coefficients can be tuned to any fractional tune and pickup-to-kicker phase advance;
 - Compact and robust.
- FCC-ee, especially at Z, presents unique challenges for the feedback due to fast growth times;
- A spatial sampling approach takes advantage of high integer tune to generate appropriately phase correction signal in a single turn;
- More exotic schemes (sub-revolution delay) are possible, but not warranted at growth times of 3–4 turns.

Transverse Feedback Options For FCC-ee

Overall Topology

Spatial Sampling

Noise, Disturbance Sources, Residual Motion

Multiple Feedback Approach

What's Next

- Bunch-by-bunch feedback approach is extremely powerful;
- Applies the same feedback to all coupled-bunch eigenmodes independent of the fill pattern;
- In the last 20–30 years electron and positron machines have settled on a single pickup single kicker topology:
 - Kick for each bunch is generated by a linear combination of transverse position measurements from previous turns (FIR filter);
 - Feedback filter coefficients can be tuned to any fractional tune and pickup-to-kicker phase advance;
 - Compact and robust.
- FCC-ee, especially at Z, presents unique challenges for the feedback due to fast growth times;
- A spatial sampling approach takes advantage of high integer tune to generate appropriately phase correction signal in a single turn;
- More exotic schemes (sub-revolution delay) are possible, but not warranted at growth times of 3–4 turns.

Transverse Feedback Options For FCC-ee

Overall Topology

Spatial Sampling

Noise, Disturbance Sources, Residual Motion

Multiple Feedback Approach

What's Next

- Bunch-by-bunch feedback approach is extremely powerful;
- Applies the same feedback to all coupled-bunch eigenmodes independent of the fill pattern;
- In the last 20–30 years electron and positron machines have settled on a single pickup single kicker topology:
 - Kick for each bunch is generated by a linear combination of transverse position measurements from previous turns (FIR filter);
 - Feedback filter coefficients can be tuned to any fractional tune and pickup-to-kicker phase advance;
 - Compact and robust.
- FCC-ee, especially at Z, presents unique challenges for the feedback due to fast growth times;
- A spatial sampling approach takes advantage of high integer tune to generate appropriately phase correction signal in a single turn;
- More exotic schemes (sub-revolution delay) are possible, but not warranted at growth times of 3–4 turns.

Transverse Feedback Options For FCC-ee

Overall Topology

Spatial Sampling

Noise, Disturbance Sources, Residual Motion

Multiple Feedback Approach

What's Next

- Bunch-by-bunch feedback approach is extremely powerful;
- Applies the same feedback to all coupled-bunch eigenmodes independent of the fill pattern;
- In the last 20–30 years electron and positron machines have settled on a single pickup single kicker topology:
 - Kick for each bunch is generated by a linear combination of transverse position measurements from previous turns (FIR filter);
 - Feedback filter coefficients can be tuned to any fractional tune and pickup-to-kicker phase advance;
 - Compact and robust.
- FCC-ee, especially at Z, presents unique challenges for the feedback due to fast growth times;
- A spatial sampling approach takes advantage of high integer tune to generate appropriately phase correction signal in a single turn;
- More exotic schemes (sub-revolution delay) are possible, but not warranted at growth times of 3–4 turns.

Transverse Feedback Options For FCC-ee

Overall Topology

Spatial Sampling

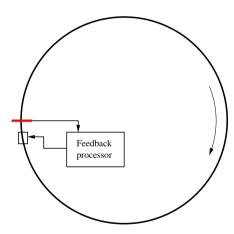
Noise, Disturbance Sources, Residual Motion

Multiple Feedback Approach

What's Next

- Bunch-by-bunch feedback approach is extremely powerful;
- Applies the same feedback to all coupled-bunch eigenmodes independent of the fill pattern;
- In the last 20–30 years electron and positron machines have settled on a single pickup single kicker topology:
 - Kick for each bunch is generated by a linear combination of transverse position measurements from previous turns (FIR filter);
 - Feedback filter coefficients can be tuned to any fractional tune and pickup-to-kicker phase advance;
 - Compact and robust.
- FCC-ee, especially at Z, presents unique challenges for the feedback due to fast growth times;
- A spatial sampling approach takes advantage of high integer tune to generate appropriately phase correction signal in a single turn;
- More exotic schemes (sub-revolution delay) are possible, but not warranted at growth times of 3–4 turns.

Transverse Feedback Options For FCC-ee


Overall Topology

Spatial Sampling

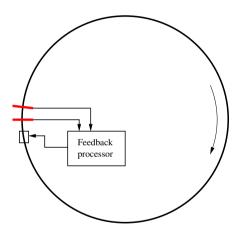
Noise, Disturbance Sources, Residual Motion

Multiple Feedback Approach

What's Next

- Start with a conventional single pickup single kicker system;
- Add another pickup at 60–120° phase advance point;
- One more;
- Four is not a limit;
- Correction kick is calculated in one turn instead of using 4 turns worth of bunch motion;
- Group delay is reduced from 3 turns to 1.

Transverse Feedback Options For FCC-ee


Overall Topology

Spatial Sampling

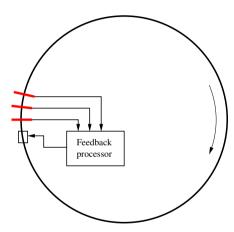
Noise, Disturbance Sources, Residual Motion

Multiple Feedback Approach

What's Next

- Start with a conventional single pickup single kicker system;
- Add another pickup at 60–120° phase advance point;
- One more;
- Four is not a limit;
- Correction kick is calculated in one turn instead of using 4 turns worth of bunch motion;
- Group delay is reduced from 3 turns to 1.

Transverse Feedback Options For FCC-ee


Overall Topology

Spatial Sampling

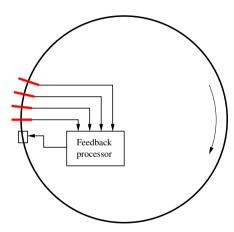
Noise, Disturbance Sources, Residual Motion

Multiple Feedback Approach

What's Next

- Start with a conventional single pickup single kicker system;
- Add another pickup at 60–120° phase advance point;
- One more;
- Four is not a limit;
- Correction kick is calculated in one turn instead of using 4 turns worth of bunch motion;
- Group delay is reduced from 3 turns to 1.

Transverse Feedback Options For FCC-ee


Overall Topology

Spatial Sampling

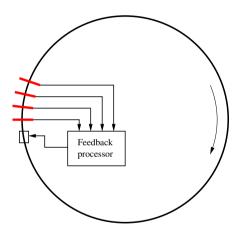
Noise, Disturbance Sources, Residual Motion

Multiple Feedback Approach

What's Next

- Start with a conventional single pickup single kicker system;
- Add another pickup at 60–120° phase advance point;
- One more;
- Four is not a limit;
- Correction kick is calculated in one turn instead of using 4 turns worth of bunch motion;
- Group delay is reduced from 3 turns to 1.

Transverse Feedback Options For FCC-ee


Overall Topology

Spatial Sampling

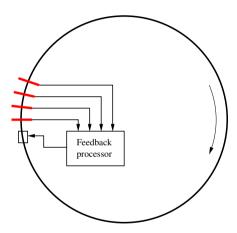
Noise, Disturbance Sources, Residual Motion

Multiple Feedback Approach

What's Next

- Start with a conventional single pickup single kicker system;
- Add another pickup at 60–120° phase advance point;
- One more;
- Four is not a limit;
- Correction kick is calculated in one turn instead of using 4 turns worth of bunch motion;
- Group delay is reduced from 3 turns to 1.

Transverse Feedback Options For FCC-ee


Overall Topology

Spatial Sampling

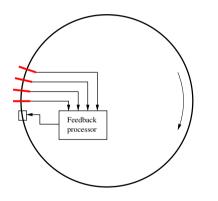
Noise, Disturbance Sources, Residual Motion

Multiple Feedback Approach

What's Next

- Start with a conventional single pickup single kicker system;
- Add another pickup at 60–120° phase advance point;
- One more;
- Four is not a limit;
- Correction kick is calculated in one turn instead of using 4 turns worth of bunch motion;
- Group delay is reduced from 3 turns to 1.

Transverse Feedback Options For FCC-ee


Overall Topology

Spatial Sampling

Noise, Disturbance Sources, Residual Motion

Multiple Feedback Approach

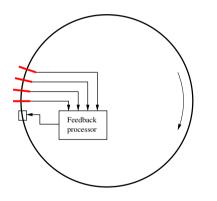
What's Next

Feedback processor must:

- Remove bunch-by-bunch DC offset (closed orbit) from each pickup signal;
- Calculate correction kick from a linear combination of the resulting signals;
- At least two non-degenerate pickups are needed, 3–4 probably provide a good balance between complexity, robustness, and performance.
- Phase advance from pickup to pickup does not need to be identical;
- Avoid cases where pickups are at $n\pi$;
- Avoid large swings in beta function from pickup to pickup.

Transverse Feedback Options For FCC-ee

Overall Topology


Spatial Sampling

Noise, Disturbance Sources, Residual Motion

Multiple Feedback Approach

What's Next

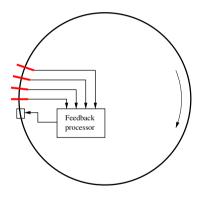
Summar

Feedback processor must:

- Remove bunch-by-bunch DC offset (closed orbit) from each pickup signal;
- Calculate correction kick from a linear combination of the resulting signals;
- At least two non-degenerate pickups are needed, 3–4 probably provide a good balance between complexity, robustness, and performance.
- Phase advance from pickup to pickup does not need to be identical;
- Avoid cases where pickups are at $n\pi$;
- Avoid large swings in beta function from pickup to pickup.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Transverse Feedback Options For FCC-ee


Overall Topology

Spatial Sampling

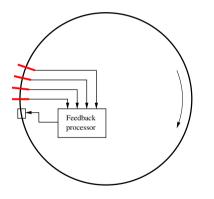
Noise, Disturbance Sources, Residual Motion

Multiple Feedback Approach

What's Next

- Feedback processor must:
 - Remove bunch-by-bunch DC offset (closed orbit) from each pickup signal;
 - Calculate correction kick from a linear combination of the resulting signals;
 - At least two non-degenerate pickups are needed, 3–4 probably provide a good balance between complexity, robustness, and performance.
- Phase advance from pickup to pickup does not need to be identical;
- Avoid cases where pickups are at $n\pi$;

Avoid large swings in beta function from pickup to pickup. Transverse Feedback Options For FCC-ee


Overall Topology

Spatial Sampling

Noise, Disturbance Sources, Residual Motion

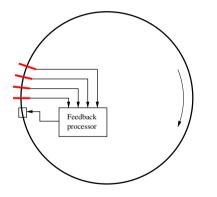
Multiple Feedback Approach

What's Next

- Feedback processor must:
 - Remove bunch-by-bunch DC offset (closed orbit) from each pickup signal;
 - Calculate correction kick from a linear combination of the resulting signals;
 - At least two non-degenerate pickups are needed, 3–4 probably provide a good balance between complexity, robustness, and performance.
- Phase advance from pickup to pickup does not need to be identical;
- Avoid cases where pickups are at $n\pi$;
- Avoid large swings in beta function from pickup to pickup.

・ロト・母ト・ヨト・ヨト ヨー シタマ

Transverse Feedback Options For FCC-ee


Overall Topology

Spatial Sampling

Noise, Disturbance Sources, Residual Motion

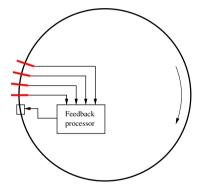
Multiple Feedback Approach

What's Next

- Feedback processor must:
 - Remove bunch-by-bunch DC offset (closed orbit) from each pickup signal;
 - Calculate correction kick from a linear combination of the resulting signals;
 - At least two non-degenerate pickups are needed, 3–4 probably provide a good balance between complexity, robustness, and performance.
- Phase advance from pickup to pickup does not need to be identical;
- Avoid cases where pickups are at $n\pi$;
- Avoid large swings in beta function from pickup to pickup.

・ロト・4日・4日・4日・日・900

Transverse Feedback Options For FCC-ee


Overall Topology

Spatial Sampling

Noise, Disturbance Sources, Residual Motion

Multiple Feedback Approach

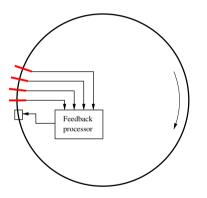
What's Next

Feedback processor must:

- Remove bunch-by-bunch DC offset (closed orbit) from each pickup signal;
- Calculate correction kick from a linear combination of the resulting signals;
- At least two non-degenerate pickups are needed, 3–4 probably provide a good balance between complexity, robustness, and performance.
- Phase advance from pickup to pickup does not need to be identical;
- Avoid cases where pickups are at $n\pi$;
- Avoid large swings in beta function from pickup to pickup.

Transverse Feedback Options For FCC-ee

Overall Topology


Spatial Sampling

Noise, Disturbance Sources, Residual Motion

Multiple Feedback Approach

What's Next

Technical Aspects

- Multiple analog receivers need to worry about gain drifts;
 - Measure difference and sum signals simultaneously to calibrate out these drifts;
- Robustness systems with 3+ pickups can adapt to pickup failure with a simple coefficient reconfiguration;
- Sensing noise scales as the \sqrt{N} ;
- ► Hardware complexity scale as *N*.

Transverse Feedback Options For FCC-ee

Overall Topology

Spatial Sampling

Noise, Disturbance Sources, Residual Motion

Multiple Feedback Approach

What's Next

- Residual dipole oscillation in collision can be converted to emittance blowup and can lead to luminosity loss;
- Without perturbation sources, residual motion under feedback control is determined by detection noise and closed-loop dynamics;
- lons in the electron ring and electron cloud in the positron ring can excite transverse instabilities;
- Unlike HOMs and resistive wall, these will also drive steady-state dipole oscillation even under feedback stabilization;
- Suppression of these perturbations may require operation at higher loop gains than optimal from the noise-only prospective;
- With the lowest betatron lines at 520–660 Hz, mechanical disturbances can drive transverse motion;
- Special care is needed when deploying local or global orbit feedback mechanisms in FCC-ee due to the Bode sensitivity integral.

Transverse Feedback Options For FCC-ee

Overall Topology

Spatial Sampling

Noise, Disturbance Sources, Residual Motion

Multiple Feedback Approach

What's Next

- Residual dipole oscillation in collision can be converted to emittance blowup and can lead to luminosity loss;
- Without perturbation sources, residual motion under feedback control is determined by detection noise and closed-loop dynamics;
- Ions in the electron ring and electron cloud in the positron ring can excite transverse instabilities;
- Unlike HOMs and resistive wall, these will also drive steady-state dipole oscillation even under feedback stabilization;
- Suppression of these perturbations may require operation at higher loop gains than optimal from the noise-only prospective;
- With the lowest betatron lines at 520–660 Hz, mechanical disturbances can drive transverse motion;
- Special care is needed when deploying local or global orbit feedback mechanisms in FCC-ee due to the Bode sensitivity integral.

Transverse Feedback Options For FCC-ee

Overall Topology

Spatial Sampling

Noise, Disturbance Sources, Residual Motion

Multiple Feedback Approach

What's Next

- Residual dipole oscillation in collision can be converted to emittance blowup and can lead to luminosity loss;
- Without perturbation sources, residual motion under feedback control is determined by detection noise and closed-loop dynamics;
- Ions in the electron ring and electron cloud in the positron ring can excite transverse instabilities;
- Unlike HOMs and resistive wall, these will also drive steady-state dipole oscillation even under feedback stabilization;
- Suppression of these perturbations may require operation at higher loop gains than optimal from the noise-only prospective;
- With the lowest betatron lines at 520–660 Hz, mechanical disturbances can drive transverse motion;
- Special care is needed when deploying local or global orbit feedback mechanisms in FCC-ee due to the Bode sensitivity integral.

Transverse Feedback Options For FCC-ee

Overall Topology

Spatial Sampling

Noise, Disturbance Sources, Residual Motion

Multiple Feedback Approach

What's Next

- Residual dipole oscillation in collision can be converted to emittance blowup and can lead to luminosity loss;
- Without perturbation sources, residual motion under feedback control is determined by detection noise and closed-loop dynamics;
- Ions in the electron ring and electron cloud in the positron ring can excite transverse instabilities;
- Unlike HOMs and resistive wall, these will also drive steady-state dipole oscillation even under feedback stabilization;
- Suppression of these perturbations may require operation at higher loop gains than optimal from the noise-only prospective;
- With the lowest betatron lines at 520–660 Hz, mechanical disturbances can drive transverse motion;
- Special care is needed when deploying local or global orbit feedback mechanisms in FCC-ee due to the Bode sensitivity integral.

Transverse Feedback Options For FCC-ee

Overall Topology

Spatial Sampling

Noise, Disturbance Sources, Residual Motion

Multiple Feedback Approach

What's Next

- Residual dipole oscillation in collision can be converted to emittance blowup and can lead to luminosity loss;
- Without perturbation sources, residual motion under feedback control is determined by detection noise and closed-loop dynamics;
- Ions in the electron ring and electron cloud in the positron ring can excite transverse instabilities;
- Unlike HOMs and resistive wall, these will also drive steady-state dipole oscillation even under feedback stabilization;
- Suppression of these perturbations may require operation at higher loop gains than optimal from the noise-only prospective;
- With the lowest betatron lines at 520–660 Hz, mechanical disturbances can drive transverse motion;
- Special care is needed when deploying local or global orbit feedback mechanisms in FCC-ee due to the Bode sensitivity integral.

Transverse Feedback Options For FCC-ee

Overall Topology

Spatial Sampling

Noise, Disturbance Sources, Residual Motion

Multiple Feedback Approach

What's Next

- Residual dipole oscillation in collision can be converted to emittance blowup and can lead to luminosity loss;
- Without perturbation sources, residual motion under feedback control is determined by detection noise and closed-loop dynamics;
- Ions in the electron ring and electron cloud in the positron ring can excite transverse instabilities;
- Unlike HOMs and resistive wall, these will also drive steady-state dipole oscillation even under feedback stabilization;
- Suppression of these perturbations may require operation at higher loop gains than optimal from the noise-only prospective;
- With the lowest betatron lines at 520–660 Hz, mechanical disturbances can drive transverse motion;
- Special care is needed when deploying local or global orbit feedback mechanisms in FCC-ee due to the Bode sensitivity integral.

Transverse Feedback Options For FCC-ee

Overall Topology

Spatial Sampling

Noise, Disturbance Sources, Residual Motion

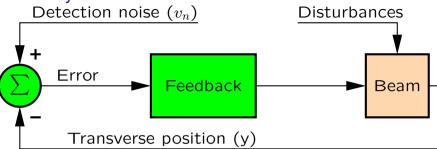
Multiple Feedback Approach

What's Next

- Residual dipole oscillation in collision can be converted to emittance blowup and can lead to luminosity loss;
- Without perturbation sources, residual motion under feedback control is determined by detection noise and closed-loop dynamics;
- Ions in the electron ring and electron cloud in the positron ring can excite transverse instabilities;
- Unlike HOMs and resistive wall, these will also drive steady-state dipole oscillation even under feedback stabilization;
- Suppression of these perturbations may require operation at higher loop gains than optimal from the noise-only prospective;
- With the lowest betatron lines at 520–660 Hz, mechanical disturbances can drive transverse motion;
- Special care is needed when deploying local or global orbit feedback mechanisms in FCC-ee due to the Bode sensitivity integral.

Transverse Feedback Options For FCC-ee

Overall Topology


Spatial Sampling

Noise, Disturbance Sources, Residual Motion

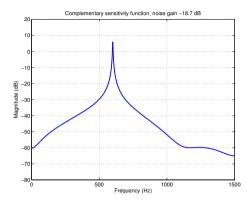
Multiple Feedback Approach

What's Next

Sensitivity and Noise

- Complementary sensitivity function T(ω) = L(ω)/(1 + L(ω)) is the transfer function between noise v_n and beam motion y;
- Assuming flat spectral density for v_n can calculate amplification or attenuation of sensing noise;
- ► Qualitatively, faster damping corresponds to wider bandwidth → higher noise sensitivity;
- Rule of thumb: closed loop damping rate should be of the same magnitude as open-loop growth rate.

Transverse Feedback Options For FCC-ee


Overall Topology

Spatial Sampling

Noise, Disturbance Sources, Residual Motion

Multiple Feedback Approach

What's Next

 Growth and damping times in turns;

•
$$\tau_{\rm ol} = \tau_{\rm cl} = 300: -18.7 \text{ dB}$$

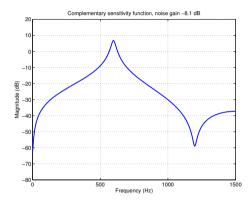
▶
$$au_{
m ol} = au_{
m cl} =$$
 30: -8.1 dB

▶
$$au_{
m ol} =$$
 30, $au_{
m cl} =$ 3.2: $-6.0~
m dB$

•
$$\tau_{\rm ol} = 5.4, \, \tau_{\rm cl} = 5.4$$
: 3.8 dB

- Fast growth rates result in higher noise sensitivity;
- Work done at CERN for the upgraded LHC and HL-LHC damping systems pushes state of the art in low-noise bunch-by-bunch sensing.

Overall Topology Spatial Sampling


> Noise, Disturbance Sources, Residual Motion

Transverse Feedback

Options For FCC-ee

Multiple Feedback Approach

What's Next

 Growth and damping times in turns;

•
$$\tau_{\rm ol} = \tau_{\rm cl} = 300: -18.7 \, {\rm dB}$$

•
$$au_{
m ol} = au_{
m cl} =$$
 30: -8.1 dB

▶
$$au_{
m ol} =$$
 30, $au_{
m cl} =$ 3.2: −6.0 dB

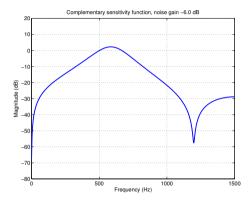
•
$$\tau_{\rm ol} = 5.4, \, \tau_{\rm cl} = 5.4$$
: 3.8 dB

▶
$$au_{
m ol} =$$
 3.3, $au_{
m cl} =$ 3.3: 6.1 dB

- Fast growth rates result in higher noise sensitivity;
- Work done at CERN for the upgraded LHC and HL-LHC damping systems pushes state of the art in low-noise bunch-by-bunch sensing.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Transverse Feedback Options For FCC-ee


Overall Topology

Spatial Sampling

Noise, Disturbance Sources, Residual Motion

Multiple Feedback Approach

What's Next

 Growth and damping times in turns;

•
$$\tau_{\rm ol} = \tau_{\rm cl} = 300: -18.7 \, {\rm dB}$$

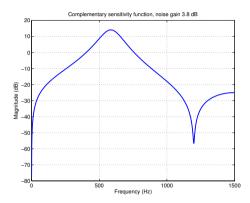
▶
$$au_{
m ol} = au_{
m cl} =$$
 30: -8.1 dB

▶
$$au_{
m ol} =$$
 30, $au_{
m cl} =$ 3.2: −6.0 dE

• $\tau_{\rm ol} = 5.4, \, \tau_{\rm cl} = 5.4$: 3.8 dB

- ▶ $\tau_{\rm ol} = 3.3, \tau_{\rm cl} = 3.3$: 6.1 dB
- Fast growth rates result in higher noise sensitivity;
- Work done at CERN for the upgraded LHC and HL-LHC damping systems pushes state of the art in low-noise bunch-by-bunch sensing.

Transverse Feedback Options For FCC-ee


Overall Topology

Spatial Sampling

Noise, Disturbance Sources, Residual Motion

Multiple Feedback Approach

What's Next

 Growth and damping times in turns;

•
$$\tau_{\rm ol} = \tau_{\rm cl} = 300: -18.7 \, {\rm dB}$$

▶
$$au_{
m ol} = au_{
m cl} =$$
 30: -8.1 dB

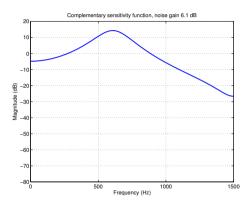
▶
$$au_{
m ol} =$$
 30, $au_{
m cl} =$ 3.2: $-6.0~
m dB$

▶
$$au_{
m ol} =$$
 5.4, $au_{
m cl} =$ 5.4: 3.8 dB

▶ $\tau_{\rm ol} = 3.3, \tau_{\rm cl} = 3.3$: 6.1 dB

- Fast growth rates result in higher noise sensitivity;
- Work done at CERN for the upgraded LHC and HL-LHC damping systems pushes state of the art in low-noise bunch-by-bunch sensing.

Transverse Feedback Options For FCC-ee


Overall Topology

Spatial Sampling

Noise, Disturbance Sources, Residual Motion

Multiple Feedback Approach

What's Next

 Growth and damping times in turns;

•
$$\tau_{\rm ol} = \tau_{\rm cl} = 300: -18.7 \ {\rm dB}$$

▶
$$au_{
m ol} = au_{
m cl} =$$
 30: -8.1 dB

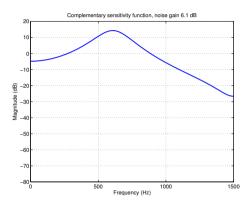
▶
$$au_{
m ol} =$$
 30, $au_{
m cl} =$ 3.2: -6.0 dB

•
$$\tau_{\rm ol} = 5.4, \, \tau_{\rm cl} = 5.4$$
: 3.8 dB

>
$$\tau_{\rm ol} =$$
 3.3, $\tau_{\rm cl} =$ 3.3: 6.1 dB

- Fast growth rates result in higher noise sensitivity;
 - Work done at CERN for the upgraded LHC and HL-LHC damping systems pushes state of the art in low-noise bunch-by-bunch sensing.

Transverse Feedback Options For FCC-ee


Overall Topology

Spatial Sampling

Noise, Disturbance Sources, Residual Motion

Multiple Feedback Approach

What's Next

 Growth and damping times in turns;

•
$$\tau_{\rm ol} = \tau_{\rm cl} = 300: -18.7 \text{ dB}$$

▶
$$au_{
m ol} = au_{
m cl} =$$
 30: -8.1 dB

▶
$$au_{
m ol} =$$
 30, $au_{
m cl} =$ 3.2: −6.0 dB

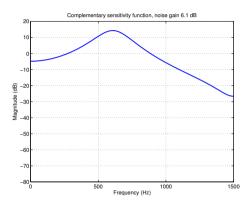
•
$$\tau_{\rm ol} = 5.4, \, \tau_{\rm cl} = 5.4$$
: 3.8 dB

▶
$$au_{
m ol} =$$
 3.3, $au_{
m cl} =$ 3.3: 6.1 dB

- Fast growth rates result in higher noise sensitivity;
 - Work done at CERN for the upgraded LHC and HL-LHC damping systems pushes state of the art in low-noise bunch-by-bunch sensing.

Transverse Feedback Options For FCC-ee

Overall Topology


Spatial Sampling

Noise, Disturbance Sources, Residual Motion

Multiple Feedback Approach

What's Next

Sensitivity Functions Compared

 Growth and damping times in turns;

•
$$\tau_{\rm ol} = \tau_{\rm cl} = 300: -18.7 \text{ dB}$$

▶
$$au_{
m ol} = au_{
m cl} =$$
 30: **-8**.1 dB

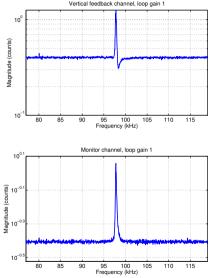
▶
$$au_{
m ol} =$$
 30, $au_{
m cl} =$ 3.2: $-6.0~
m dB$

•
$$\tau_{\rm ol} = 5.4, \, \tau_{\rm cl} = 5.4$$
: 3.8 dB

▶
$$au_{
m ol} =$$
 3.3, $au_{
m cl} =$ 3.3: 6.1 dB

- Fast growth rates result in higher noise sensitivity;
 - Work done at CERN for the upgraded LHC and HL-LHC damping systems pushes state of the art in low-noise bunch-by-bunch sensing.

Transverse Feedback Options For FCC-ee


Overall Topology

Spatial Sampling

Noise, Disturbance Sources, Residual Motion

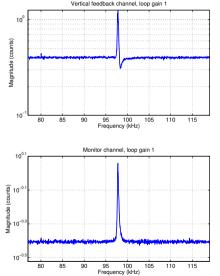
Multiple Feedback Approach

What's Next

- Two independent channels monitoring vertical motion, one in the feedback loop, one out of the loop;
 - Roughly similar sensitivities, 250 mA in 1000 bunches;
- At low feedback gain a visible residual motion line due to ion excitation;
- Double the feedback gain;
- Again;
- Again;
- Once more;
- A wider bandwidth comparison.

¹Measurements courtesy of Weixing Cheng of NSLS-II. (=)

Transverse Feedback Options For FCC-ee


Overall Topology

Spatial Sampling

Noise, Disturbance Sources, Residual Motion

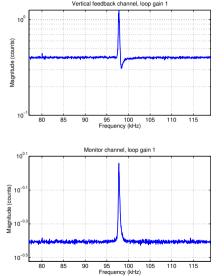
Multiple Feedback Approach

What's Next

- Two independent channels monitoring vertical motion, one in the feedback loop, one out of the loop;
- Roughly similar sensitivities, 250 mA in 1000 bunches;
- At low feedback gain a visible residual motion line due to ion excitation;
- Double the feedback gain;
- Again;
- Again;
- Once more;
- A wider bandwidth comparison.

¹Measurements courtesy of Weixing Cheng of NSLS-II.

Transverse Feedback Options For FCC-ee


Overall Topology

Spatial Sampling

Noise, Disturbance Sources, Residual Motion

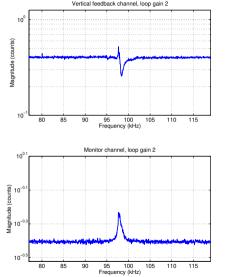
Multiple Feedback Approach

What's Next

- Two independent channels monitoring vertical motion, one in the feedback loop, one out of the loop;
- Roughly similar sensitivities, 250 mA in 1000 bunches;
- At low feedback gain a visible residual motion line due to ion excitation;
- Double the feedback gain;
- Again;
- Again;
- Once more;
- A wider bandwidth comparison.

¹Measurements courtesy of Weixing Cheng of NSLS-II.

Transverse Feedback Options For FCC-ee


Overall Topology

Spatial Sampling

Noise, Disturbance Sources, Residual Motion

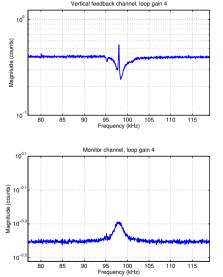
Multiple Feedback Approach

What's Next

- Two independent channels monitoring vertical motion, one in the feedback loop, one out of the loop;
- Roughly similar sensitivities, 250 mA in 1000 bunches;
- At low feedback gain a visible residual motion line due to ion excitation;
- Double the feedback gain;
- Again;
- Again;
- Once more;
- A wider bandwidth comparison.

¹Measurements courtesy of Weixing Cheng of NSLS-II.

Transverse Feedback Options For FCC-ee


Overall Topology

Spatial Sampling

Noise, Disturbance Sources, Residual Motion

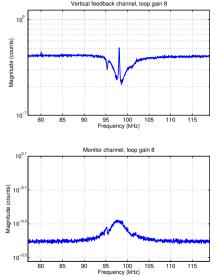
Multiple Feedback Approach

What's Next

- Two independent channels monitoring vertical motion, one in the feedback loop, one out of the loop;
- Roughly similar sensitivities, 250 mA in 1000 bunches;
- At low feedback gain a visible residual motion line due to ion excitation;
- Double the feedback gain;
- Again;
- Again;
- Once more;
- A wider bandwidth comparison.

¹Measurements courtesy of Weixing Cheng of NSLS-II.

Transverse Feedback Options For FCC-ee


Overall Topology

Spatial Sampling

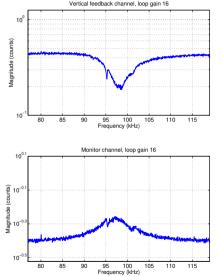
Noise, Disturbance Sources, Residual Motion

Multiple Feedback Approach

What's Next

- Two independent channels monitoring vertical motion, one in the feedback loop, one out of the loop;
- Roughly similar sensitivities, 250 mA in 1000 bunches;
- At low feedback gain a visible residual motion line due to ion excitation;
- Double the feedback gain;
- Again;
- Again;
- Once more;
- A wider bandwidth comparison.

Transverse Feedback Options For FCC-ee


Overall Topology

Spatial Sampling

Noise, Disturbance Sources, Residual Motion

Multiple Feedback Approach

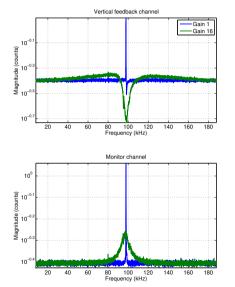
What's Next

- Two independent channels monitoring vertical motion, one in the feedback loop, one out of the loop;
- Roughly similar sensitivities, 250 mA in 1000 bunches;
- At low feedback gain a visible residual motion line due to ion excitation;
- Double the feedback gain;
- Again;
- Again;
- Once more;

A wider bandwidth comparison.

¹Measurements courtesy of Weixing Cheng of NSLS-II.

Transverse Feedback Options For FCC-ee


Overall Topology

Spatial Sampling

Noise, Disturbance Sources, Residual Motion

Multiple Feedback Approach

What's Next

- Two independent channels monitoring vertical motion, one in the feedback loop, one out of the loop;
- Roughly similar sensitivities, 250 mA in 1000 bunches;
- At low feedback gain a visible residual motion line due to ion excitation;
- Double the feedback gain;
- Again;
- Again;
- Once more;
- A wider bandwidth comparison.

¹Measurements courtesy of Weixing Cheng of NSLS-II.

Transverse Feedback Options For FCC-ee

Overall Topology

Spatial Sampling

Noise, Disturbance Sources, Residual Motion

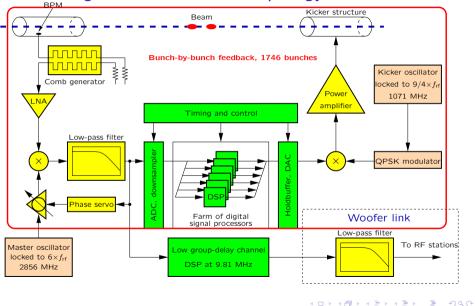
Multiple Feedback Approach

What's Next

PEP-II Longitudinal Feedback Topology BPM Kicker structure Beam \$\$ Kicker oscillator Comb generator locked to $9/4 \times f_{rf}$ Power 1071 MHz LNA amplifier Timing and control Low-pass filter DAC QPSK modulator Holdbuffer, Phase servo ADC. Farm of digital Woofer link signal processors Low-pass filter To RE stations Master oscillator Low group-delay channel locked to $6 \times f_{rf}$ DSP at 9.81 MHz 2856 MHz

Transverse Feedback Options For FCC-ee

Overall Topology


Spatial Sampling

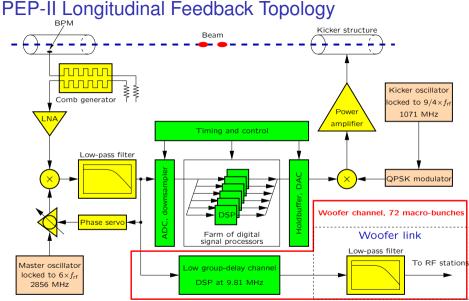
Noise, Disturbance Sources, Residual Motion

Multiple Feedback Approach

What's Next

PEP-II Longitudinal Feedback Topology

Transverse Feedback Options For FCC-ee


Overall Topology

Spatial Sampling

Noise, Disturbance Sources, Residual Motion

Multiple Feedback Approach

What's Next

Transverse Feedback Options For FCC-ee

Overall Topology

Spatial Sampling

Noise, Disturbance Sources, Residual Motion

Multiple Feedback Approach

What's Next

Summary

・ロト・4日・4日・4日・ 日・のへで

- A workshop to bring together coupled-bunch instability control, beam dynamics, and impedance experts to brainstorm and analyze ideas;
- Similar to a recent "I.FAST Workshop 2024 on Bunch-by-Bunch Feedback Systems and Related Beam Dynamics":
 - Many experts in one room interesting new ideas;
 - Experimental campaign at a real accelerator!
- Focus on FCC-ee specific challenges and proposals;
- Experiments: what can we test in the existing machines?
- Push conventional topology to maximum damping (models suggest 3-4 turns);
- Artificially increase the growth rates:
 - Steer the beam closer to the wall to increase the resistive wall growth rate;
 - Adjust normal conducting RF cavity temperature to increase the HOM rates;
- With Dimtel iGp12 hardware one could attempt a test of the 3 pickup spatial sampling approach.

Transverse Feedback Options For FCC-ee

Overall Topology

Spatial Sampling

Noise, Disturbance Sources, Residual Motion

Multiple Feedback Approach

What's Next

- A workshop to bring together coupled-bunch instability control, beam dynamics, and impedance experts to brainstorm and analyze ideas;
- Similar to a recent "I.FAST Workshop 2024 on Bunch-by-Bunch Feedback Systems and Related Beam Dynamics":
 - Many experts in one room interesting new ideas;
 - Experimental campaign at a real accelerator!
- Focus on FCC-ee specific challenges and proposals;
- Experiments: what can we test in the existing machines?
- Push conventional topology to maximum damping (models suggest 3–4 turns);
- Artificially increase the growth rates:
 - Steer the beam closer to the wall to increase the resistive wall growth rate;
 - Adjust normal conducting RF cavity temperature to increase the HOM rates;
- With Dimtel iGp12 hardware one could attempt a test of the 3 pickup spatial sampling approach.

Transverse Feedback Options For FCC-ee

Overall Topology

Spatial Sampling

Noise, Disturbance Sources, Residual Motion

Multiple Feedback Approach

What's Next

- A workshop to bring together coupled-bunch instability control, beam dynamics, and impedance experts to brainstorm and analyze ideas;
- Similar to a recent "I.FAST Workshop 2024 on Bunch-by-Bunch Feedback Systems and Related Beam Dynamics":
 - Many experts in one room interesting new ideas;
 - Experimental campaign at a real accelerator!
- Focus on FCC-ee specific challenges and proposals;
- Experiments: what can we test in the existing machines?
- Push conventional topology to maximum damping (models suggest 3-4 turns);
- Artificially increase the growth rates:
 - Steer the beam closer to the wall to increase the resistive wall growth rate;
 - Adjust normal conducting RF cavity temperature to increase the HOM rates;
- With Dimtel iGp12 hardware one could attempt a test of the 3 pickup spatial sampling approach.

Transverse Feedback Options For FCC-ee

Overall Topology

Spatial Sampling

Noise, Disturbance Sources, Residual Motion

Multiple Feedback Approach

What's Next

- A workshop to bring together coupled-bunch instability control, beam dynamics, and impedance experts to brainstorm and analyze ideas;
- Similar to a recent "I.FAST Workshop 2024 on Bunch-by-Bunch Feedback Systems and Related Beam Dynamics":
 - Many experts in one room interesting new ideas;
 - Experimental campaign at a real accelerator!
- Focus on FCC-ee specific challenges and proposals;
- Experiments: what can we test in the existing machines?
- Push conventional topology to maximum damping (models suggest 3-4 turns);
- Artificially increase the growth rates:
 - Steer the beam closer to the wall to increase the resistive wall growth rate;
 - Adjust normal conducting RF cavity temperature to increase the HOM rates;
- With Dimtel iGp12 hardware one could attempt a test of the 3 pickup spatial sampling approach.

Transverse Feedback Options For FCC-ee

Overall Topology

Spatial Sampling

Noise, Disturbance Sources, Residual Motion

Multiple Feedback Approach

What's Next

- A workshop to bring together coupled-bunch instability control, beam dynamics, and impedance experts to brainstorm and analyze ideas;
- Similar to a recent "I.FAST Workshop 2024 on Bunch-by-Bunch Feedback Systems and Related Beam Dynamics":
 - Many experts in one room interesting new ideas;
 - Experimental campaign at a real accelerator!
- Focus on FCC-ee specific challenges and proposals;
- Experiments: what can we test in the existing machines?
- Push conventional topology to maximum damping (models suggest 3–4 turns);
- Artificially increase the growth rates:
 - Steer the beam closer to the wall to increase the resistive wall growth rate;
 - Adjust normal conducting RF cavity temperature to increase the HOM rates;
- With Dimtel iGp12 hardware one could attempt a test of the 3 pickup spatial sampling approach.

Transverse Feedback Options For FCC-ee

Overall Topology

Spatial Sampling

Noise, Disturbance Sources, Residual Motion

Multiple Feedback Approach

What's Next

- A workshop to bring together coupled-bunch instability control, beam dynamics, and impedance experts to brainstorm and analyze ideas;
- Similar to a recent "I.FAST Workshop 2024 on Bunch-by-Bunch Feedback Systems and Related Beam Dynamics":
 - Many experts in one room interesting new ideas;
 - Experimental campaign at a real accelerator!
- Focus on FCC-ee specific challenges and proposals;
- Experiments: what can we test in the existing machines?
- Push conventional topology to maximum damping (models suggest 3–4 turns);
- Artificially increase the growth rates:
 - Steer the beam closer to the wall to increase the resistive wall growth rate;
 - Adjust normal conducting RF cavity temperature to increase the HOM rates;
- With Dimtel iGp12 hardware one could attempt a test of the 3 pickup spatial sampling approach.

Transverse Feedback Options For FCC-ee

Overall Topology

Spatial Sampling

Noise, Disturbance Sources, Residual Motion

Multiple Feedback Approach

What's Next

- A workshop to bring together coupled-bunch instability control, beam dynamics, and impedance experts to brainstorm and analyze ideas;
- Similar to a recent "I.FAST Workshop 2024 on Bunch-by-Bunch Feedback Systems and Related Beam Dynamics":
 - Many experts in one room interesting new ideas;
 - Experimental campaign at a real accelerator!
- Focus on FCC-ee specific challenges and proposals;
- Experiments: what can we test in the existing machines?
- Push conventional topology to maximum damping (models suggest 3–4 turns);
- Artificially increase the growth rates:
 - Steer the beam closer to the wall to increase the resistive wall growth rate;
 - Adjust normal conducting RF cavity temperature to increase the HOM rates;
- With Dimtel iGp12 hardware one could attempt a test of the 3 pickup spatial sampling approach.

Transverse Feedback Options For FCC-ee

Overall Topology

Spatial Sampling

Noise, Disturbance Sources, Residual Motion

Multiple Feedback Approach

What's Next

Summary

Control of fast resistive wall instabilities in the FCC-ee is feasible;

- Achieving sufficiently low residual motion may be challenging due to wide closed-loop bandwidth and various perturbation sources;
- Tests at existing machines are a good way to validate and improve our understanding of the problem and of the limits.

Transverse Feedback Options For FCC-ee

Overall Topology

Spatial Sampling

Noise, Disturbance Sources, Residual Motion

Multiple Feedback Approach

What's Next

Summary

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Summary

- Control of fast resistive wall instabilities in the FCC-ee is feasible;
- Achieving sufficiently low residual motion may be challenging due to wide closed-loop bandwidth and various perturbation sources;
- Tests at existing machines are a good way to validate and improve our understanding of the problem and of the limits.

Transverse Feedback Options For FCC-ee

Overall Topology

Spatial Sampling

Noise, Disturbance Sources, Residual Motion

Multiple Feedback Approach

What's Next

Summary

- Control of fast resistive wall instabilities in the FCC-ee is feasible;
- Achieving sufficiently low residual motion may be challenging due to wide closed-loop bandwidth and various perturbation sources;
- Tests at existing machines are a good way to validate and improve our understanding of the problem and of the limits.

Transverse Feedback Options For FCC-ee

Overall Topology

Spatial Sampling

Noise, Disturbance Sources, Residual Motion

Multiple Feedback Approach

What's Next