

New simulation tools for beam-beam collisions at the interaction point

A. Formenti¹, R. Lehe¹, A. Huebl¹, C. Schroeder¹, A. Mishi¹, S. Gessner², B. Nguyen², L. Fedeli³, J.L. Vay¹

¹Lawrence Berkeley National Laboratory, Berkeley, CA, USA ²SLAC National Accelerator Laboratory, Menlo Park, CA, USA ³LIDYL, CEA-Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France

BERKELEY LAB

FCC Week 2024 San Francisco, 13th June

Office of Science

There are many designs & ideas for future Higgs factories and 10 TeV colliders

A key challenge is mitigating or embracing beam-beam effects

accurate modeling to

control these effects! 🎯 💃

Linear Breit-Wheeler

 $\gamma \gamma \rightarrow e^{-}e^{-}$

\$V2

Multiphoton Breit-Wheeler

 $\gamma + n \omega \rightarrow e^{-}e^{+}$

Bethe-Heitler

 $\gamma Z \rightarrow Z e^{-} e^{+}$

vn~

Landau-Lifshitz

 $q_1 q_2 \rightarrow q_1 q_2 e^- e^+$

- Compton
- Bhabha

hadron photoproduction

...

Particle-In-Cell + Monte Carlo simulations are the main modeling tools

The community needs new tools that can provide long term support and vision

PIC codes specific to strong-strong beam-beam collisions

GUINEA-PIG

CAIN

https://gitlab.cern.ch/clic-software/guinea-pig https://github.com/slaclab/CAIN

beams are sliced along z the slices interact subsequently

both codes are well-established in the collider community, however:

- serial
- poorly maintained: no active developer
- poorly adaptable: algorithms, initial condition
- limited diagnostics
- lack of self-consistency (pair plasmas @ 10 TeV)
- corrections will be required (rates of QED at χ>50)

WarpX, part of the BLAST toolkit, is a promising candidate for beam-beam studies

https://ecp-warpx.github.io/

open-source

OS portable: Linux, MacOS, Windows, GPU portable: NVIDIA, AMD, Intel multi-platform: multi-CPUs/GPUs flexible:

- different geometries: 1D, 2D, RZ, 3D
- many algorithms
- many diagnostics
- electromagnetic, electrostatic, magnetostatic **versatile**:
 - plasma-based accelerators
 - RF accelerators
 - fusion devices
 - laser-plasma interactions
 - astrophysics
 - .

international, cross-disciplinary & active community! WELL DOCUMENTED!!!!!!

We have a poster about BLAST this evening!

CAK RIDGE

BERKELEY LA

Argonne 🐴

ACM GORDON BELL PRIZE

presented by John West (ACM)

Pushing the Frontier in the Design of Laser-Based Electron Accelerators with Groundbreaking Mesh-Refined Particle-In-Cell Simulations on Exascale-Class Supercomputers

Our main goal: establish WarpX as a next-gen tool in the collider community

OUTLINE

- numerical challenges 2
- benchmarks 🔽
- performances 🏃
- preliminary results
- 🔹 conclusions & next steps 🏁

The numerical algorithms and resolution matter

Excellent agreement between several codes with spherical ultra-tight beams

Excellent agreement with flat ILC beams

Excellent agreement with flat asymmetric HALHF beams

WarpX can be faster and/or go to higher resolution and statistics

We are working to guarantee good performances on multiple GPUs

flat ILC beams on Perlmutter @ NERSC

1 CPU node = 128 cores AMD Milan

1 GPU node = 4 NVIDIA A100

National Energy Research Scientific Computing Center

heffee Highly Efficient FFTs for Exascale

Preliminary simulations with FCC-ee Z beams & 10 TeV plasma-based beams

Conclusions and next steps

We are working to make WarpX a next-gen code for next-gen colliders

Goal

establish WarpX as a modern high-performance tool in the extended collider community

Outline

- numerical challenges 🚲
- benchmarks
- performances 🏃
- preliminary results

Two main takeaways 🏁

WarpX agrees well with GUINEA-PIG under very different parameters

WarpX can be much faster than GUINEA-PIG

Open discussions 🎤

- what are the modeling needs of the FCC & other communities?
- how can we work synergistically with/on different tools?

Next steps

Thank you for your time :)

