







#### Bmad for the FCC and Bmad-Julia collaboration for Machine Learning

Georg Hoffstaetter (for Dave Sagan and the Bmad development team) Cornell ERL / EIC group

У 🖪 🔘 🛅 @BrookhavenLab

June 13, 2024

FCC Week, San Francisco

### What is Bmad?

Bmad is an ecosystem of:

 $_{\odot}$  Open-source toolkits (software libraries) and

• Programs constructed with the toolkits.

It has been developed at Cornell for

- The operation of the CESR collider and light source
- The operation of the CBETA ERL
- The design of new accelerators (local and internationally)
- Connection to control systems (e.g., EPICS) for digital twins
- Interactive operations through Python

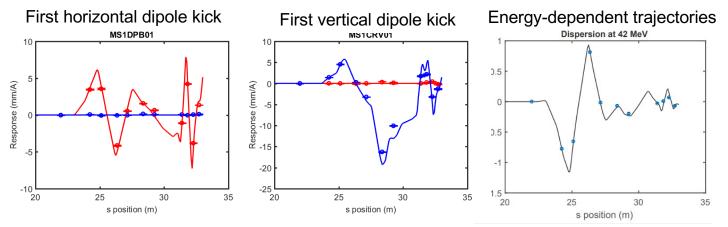
→ A large number of features for rings, linacs, ERLs, x-ray lines ...



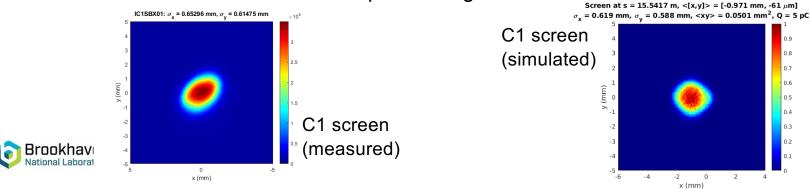
## What is Bmad?

Bmad is an ecosystem of:

- o Open-source toolkits (software libraries) and
- Programs constructed with the toolkits.


It has been developed at Cornell for

- The operation of the CESR collider and light source
- The operation of the CBETA ERL
- The design of new accelerators (local and internationally)
- → A large number of features for rings, linacs, ERLs, x-ray lines ...




## **Bmad for digital twins for CESR and CBETA**

• CBETA-V: measuring beam trajectories and compare to the digital twin in real time on control-system screens.



 Measuring bunch profiles and compare in real time with neural network models of slow space-charge calculations.



## **Bmad Community**

Bmad is open source (hosted on GitHub) and has a thriving community with a SLACK workspace for communication and regular schools and training workshops.

- IPAC'23 and IPAC'24 had Bmad community breakout meetings
- The USPAS graduate class 2023 instructed with Bmad
- Next training workshop at BNL July 29<sup>th</sup> August 2 (more than 40 registered)
- Traning workshops envisioned at SLAC 2025 and at USPAS 2026

This has enabled people at numerous labs to be able to use Bmad to simulate many machines:

- ✓ Cornell CESR ring
- ✓ CORNELL CESR injection chain.
- ✓ CBETA Cornell/BNL ERL
- ✓ CERN FCC
- ✓ CERN LHC
- ✓ Julich COSY ring
- ✓ International Linear Collider (ILC)
- ✓ BNL EIC





- ✓ BNL SSRL
- ✓ BNL RHIC
- ✓ Fermilab G-2
- ✓ Fermilab Main Injector
- ✓ KEK SuperKEK-B
- ✓ SLAC LCLS-II
- ✓ Budker VEPP-4M
- ✓ China CEPC

- ✓ Beijing High Energy Photon Source (HEPS)
- ✓ TRIUMF
- ✓ Spallation Neutron Source (SNS)
- ✓ JLab CEBAF
- ✓ JLab FEL
- ✓ Frascati linear accelerator
- ✓ Paris Synchrotron Soleil
- ✓ ... etc ...

### **Bmad Simulations**

#### Bmad has been used to study:

- Lattice design \*
- Space charge simulations \* including cathode effects.
- Beam breakup (BBU) simulations Feedback systems \*
- Coherent Synchrotron Radiation \* (CSR)
- Halo studies \*
- Microbunching evaluation \*
- Machine online modeling \*
- Spin tracking \*
- Intra Beam Scattering (IBS) \*
- Touschek scattering \*
- Wakefields \*\*
- Brookhaven National Laboratory



- Weak-strong beam-beam studies Frequency map analysis
- Phase noise on Crabbing dynamics
- Energy ramping
- Bunch merging \*
- Electron cooling \*
- Resonant extraction \*
- Spin matching \*
- Spin resonance studies \*
- Invariant spin field calculations \*
- Dynamic aperture \*
- Tune scans plots

 $\mathbf{D}1$ 

**C7** 

- Long term tracking
- Stripper foils \*
- Positron converters \*
- Injection studies \*
- Cathode laser shaping \*
- Orbit correction  $\dot{\mathbf{v}}$
- Twiss and coupling correction \*
- X-ray simulations
- Resonance strengths
- Normal form analysis
- ✤ Etc., Etc.

**D3** Septum Booster H- (protons) Injection Point **Ions Injection Point** 

NSRL

**D6** Septum

Start-to-end simulations: Bmad can simulate an entire accelerator complex including injection lines, extraction lines, dual colliding beam rings, etc.

### What can Bmad contribute to the FCC ?

#### Addendum to CERN's MOE with Cornell:

| WORK UNIT DELIVERABLE   |                                                                             |  |  |  |  |
|-------------------------|-----------------------------------------------------------------------------|--|--|--|--|
| BB-3/document           | FCC-ee ring beam dynamics                                                   |  |  |  |  |
| Cornell's deliverable:  | Report on electron self polarization in the main ring                       |  |  |  |  |
|                         | Report on dynamic aperture optimizaitons in the main ring                   |  |  |  |  |
|                         | Progress report on a Machine Learning oriented accelerator code             |  |  |  |  |
| Required delivery date: | One year after funding start – e.g., October 1, 2024 if funding starts this |  |  |  |  |
|                         | September.                                                                  |  |  |  |  |
| CERN's support (if any  | None                                                                        |  |  |  |  |
| is required)            |                                                                             |  |  |  |  |
| Required support date:  |                                                                             |  |  |  |  |
| Acceptance:             | Michael Benedickt (CERN)                                                    |  |  |  |  |

See strength and breadth of Bmad on the example of work of the Cornell's ERL/EIC group





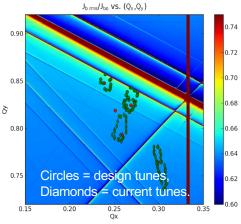
## **Bmad Toolkits**

How can Bmad simulate so many different things?

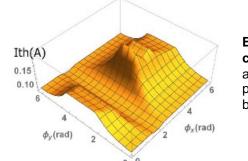
Compared to developing from scratch, the Bmad toolkits allow for the development of simulation programs

- $\checkmark$  In less time
- $\checkmark$  With fewer bugs (due to module reuse).
- ✓ Enable inter-program data communication (via common lattice and beam format, and other standardizations).
- ✓ Since programs are modular it is easier to adapt them to meet changing simulation needs






### **Bmad Programs**


#### As a result of Bmad's modular structure, a number of simulation programs that use Bmad have been developed:

- ✓ Tao
- ✓ dynamic aperture
- ✓ CesrV
- ✓ CBETA-V
- ✓ bbu
- ✓ synrad3d
- ✓ dynamic aperture
- ✓ ibs ring
- ✓ tune scan
- ✓ And many more...

- -- General purpose simulation program
- ✓ long term tracking -- Long term tracking program
  - -- Dynamic aperture program
  - -- Digital Twin for the Cornell CESR storage ring.
  - -- Digital Twin for the Cornell/BNL CBETA ERL
  - -- RF cavity induced beam breakup instability
  - -- Synch X-rays tracking within a vac chamber.
  - -- Dynamic aperture program
  - -- Intra beam scattering
  - -- Tune plane scan



Tune Scan for CESR Ring Upgrade



**BBU threshold** current for CBETA as a function of the phase advance between cavities.



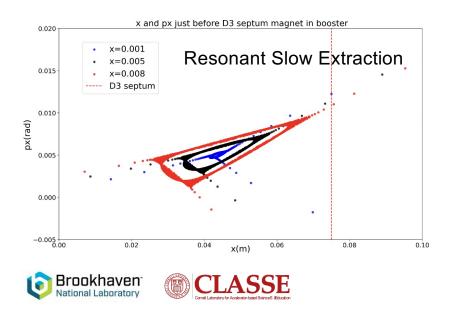
#### **Breadth of Bmad Capabilities**

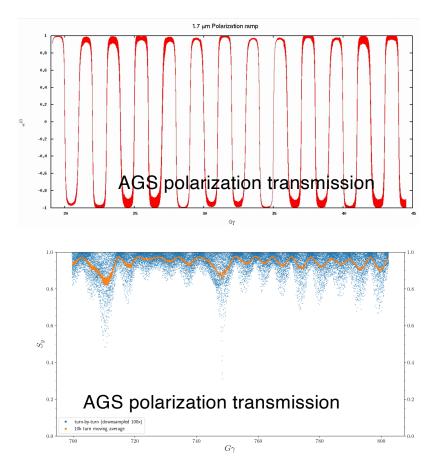


Accelerator physics codes

The Bmad ecosystem of toolkits and programs is unique among all accelerator simulation codes.

This has enabled Bmad, of all simulation codes, to have the greatest range of capabilities and allows Bmad to do simulations not possible with other codes.

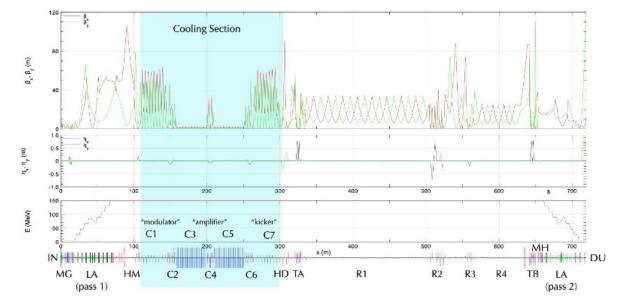




| Simulation<br>Code                          | Single<br>Particle | Spin<br>Tracking   | Taylor<br>Maps | Beam-<br>Beam<br>Interaction | Electromagnetic<br>Field Tracking | Collective<br>Effects | Synchrotron<br>Radiation | Radiation<br>Tracking | Wakefields | Extensible |
|---------------------------------------------|--------------------|--------------------|----------------|------------------------------|-----------------------------------|-----------------------|--------------------------|-----------------------|------------|------------|
| Accelerator<br>Toolbox (AT), <sup>[6]</sup> | Yes                | Yes <sup>[7]</sup> | No             | No                           | No                                | Yes                   | No                       | No                    | No         | Yes        |
| ASTRA <sup>[8]</sup>                        | Yes                | No                 | No             | No                           | Yes                               | Yes                   | No                       | No                    | Yes        | No         |
| BDSIM <sup>[9]</sup>                        | Yes                | No                 | No             | No                           | Ves                               | No                    | No                       | No                    | No         | Yes        |
| Bmad <sup>[10]</sup>                        | Yes                | Yes                | Yes            | Yes                          | Yes                               | Yes                   | Yes                      | Yes                   | Yes        | Yes        |
| COSY<br>INFINITY <sup>[11]</sup>            | Yes                | Yes                | Yes            | No                           | Yes                               | No                    | No                       | No                    | No         | No         |
| DYNAC <sup>[12]</sup>                       | Yes                | No                 | No             | No                           | No                                | No                    | No                       | No                    | No         | No         |
| Elegant <sup>[13]</sup>                     | Yes                | No                 | No             | No                           | Yes                               | Yes                   | Yes                      | No                    | Yes        | No         |
| MAD8 / MAD-X                                | Yes                | No                 | Yes            | Yes                          | No                                | No                    | Yes                      | No                    | No         | No         |
| MAD-NG <sup>[14]</sup>                      | Yes                | No                 | Yes            | Yes                          | No                                | No                    | Yes                      | No                    | No         | Yes        |
| MERLIN++ <sup>[15][16]</sup>                | Yes                | Yes                | No             | No                           | No                                | No                    | No                       | No                    | Yes        | Yes        |
| OCELOT <sup>[17]</sup>                      | Yes                | No                 | No             | No                           | No                                | Yes                   | Yes                      | Yes                   | Yes        | Yes        |
| OPA <sup>[18]</sup>                         | Yes                | No                 | No             | No                           | No                                | No                    | No                       | No                    | No         | No         |
| OPAL <sup>[19]</sup>                        | Yes                | No                 | Yes            | No                           | Yes                               | Yes                   | No                       | No                    | Yes        | Yes        |
| PLACET <sup>[20]</sup>                      | Yes                | No                 | No             | No                           | No                                | Yes                   | Yes                      | No                    | Yes        | Yes        |
| Propaga <sup>[21]</sup>                     | Yes                | No                 | No             | No                           | No                                | No                    | No                       | No                    | No         | Yes        |
| PTC <sup>[22]</sup>                         | Yes                | Yes                | Yes            | Yes                          | Yes                               | No                    | No                       | No                    | No         | Yes        |
| SAD <sup>[23]</sup>                         | Yes                | No                 | No             | Yes                          | No                                | Yes                   | Yes                      | No                    | Yes        | No         |
| SAMM <sup>[24]</sup>                        | Yes                | Yes                | No             | No                           | No                                | No                    | No                       | No                    | No         | No         |
| SixTrack <sup>[25]</sup>                    | Yes                | No                 | Yes            | Yes                          | No                                | No                    | No                       | No                    | No         | No         |
| Zgoubi <sup>[26][27]</sup>                  | Yes                | Yes                | No             | No                           | Yes                               | No                    | Yes                      | No                    | No         | Yes        |

### **Slow Extraction and AGS Polarization**

#### Bmad used for:

- Booster -> NSRL slow extraction
- AGS polarization transmission
  - -- Eiad Hamwi, Cornell






#### **ERL Cooler**

- Bmad used extensively for Xelera's SBIR project (through Phase II) to design the EIC ERL cooler, including the precooler.
- Bmad was used for the injector as well as the main lattice, including the ERL multipass optics and start-to-end simulations.
  - -- Chris Mayes, Xelera Research LLC.

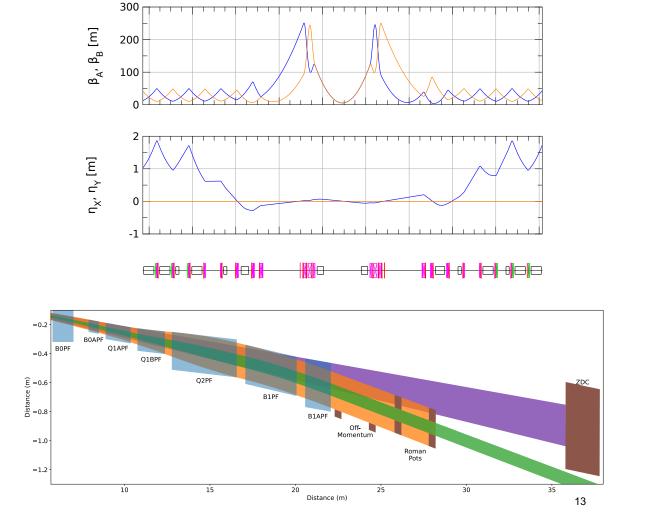




### Lattice Design

Bmad used for:

- Interaction region design (ESR and HSR, layout, matching)
- HSR ring design

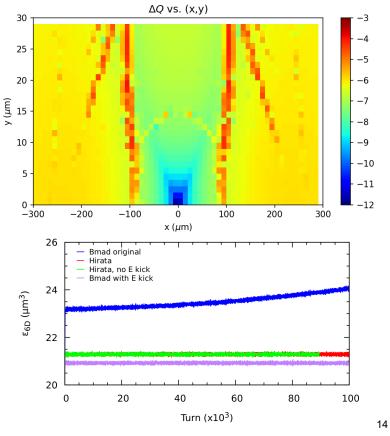

Brookhaven

National Laboratory

• Superbend calculations in the ESR (emittance and excursion vs. lengths of dipoles)

-- Scott Berg, BNL

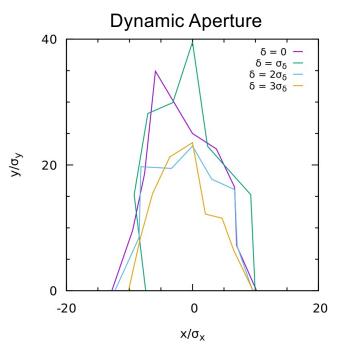
CLASSE




#### **Effects of Phase Noise and the Beam-Beam Interaction on Crabbing Dynamics**

"Theory predicts rather tight tolerances on crab cavities' phase noise. Bmad simulations were benchmarked against and confirmed the theory. Bmad is presently being used to study the effect of beam-beam interaction on the crabbing dynamics in the presence of noise and to develop and verify a feedback system. Bmad is one of the few or possibly even the only general-purpose beam dynamics code that allows for a straightforward modeling of these mechanisms. In fact, Bmad is unique in that its beam-beam model accounts for a timedependent beam-beam effect not accounted for by any other code. A paper on this aspect is to be published."

-- Vasiliy Morozov, ORNAL

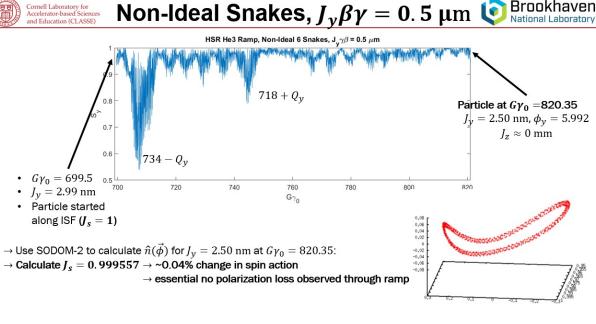





#### **Detector Solenoid Integration in the ESR and HSR**

"Detector solenoid integration faces unique requirements at the EIC due to a large beam crossing angle and a tilt of the ESR plane. One has to simultaneously account for orbit excursion, transverse and longitudinal coupling, optics and polarization. Unlike most other codes, Bmad has the tools to consider and correct all of these aspects at the same time. These tools greatly simplify integration of correction elements, design optimization and visualization of the results."

-- Vasiliy Morozov, ORNAL







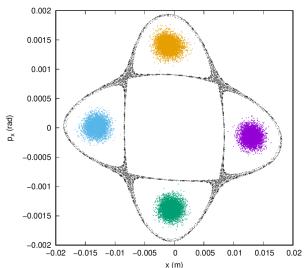

## SODOM-2

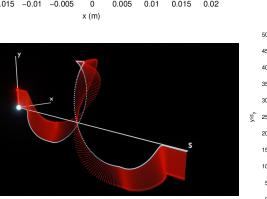
- "Last summer, major questions about hadron polarization loss during HSR ramp.
- In 1 week, used Bmad's routines to implement an Invariant Spin Field (ISF) calculating program SODOM-2.
- Program easily interfaced with long\_term\_tracking to do ramping and observe polarization loss.
- Program still used today for polarization calculations/tracking."
  - -- Matt Signorelli, Cornell



Matt Signorelli (mgs255@cornell.edu)

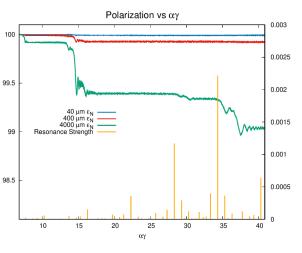
Helion Ramp Non-Ideal Snakes 22 August 2023 4

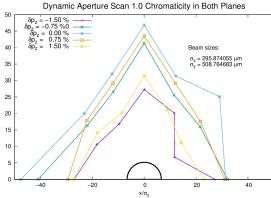




### **RCS and HSR**

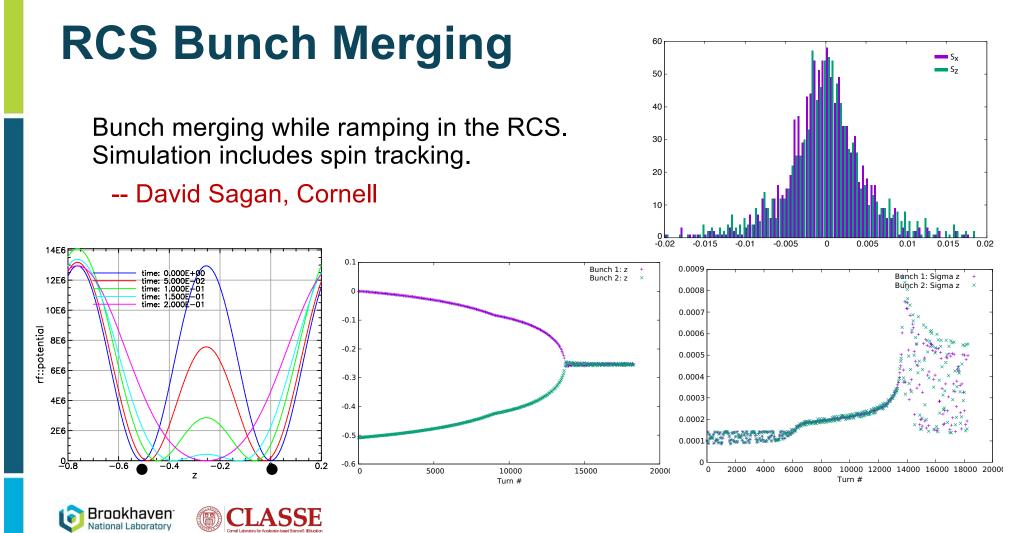
Bmad used for:

- Transition crossing in the HSR
- RCS linear and non-linear optics
- RCS DA
- RCS magnet error
- RCS damping ring
- design of HSR IR4 optics
- HSR injection optics
- HSR transition optics
- HSR 10 o'clock optics
- HSR emittance growth due to induction septum
- HSR radial shift (circumference lengthening)
- LINAC to RCS transfer line
- RCS to HSR transfer line
- 3D modeling (Bmad + Blender)
  - -- Henry Lovelace III, BNL





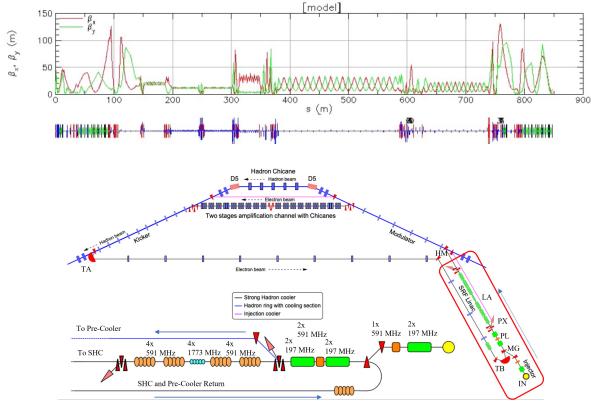


(%)

Polarization





17




#### 

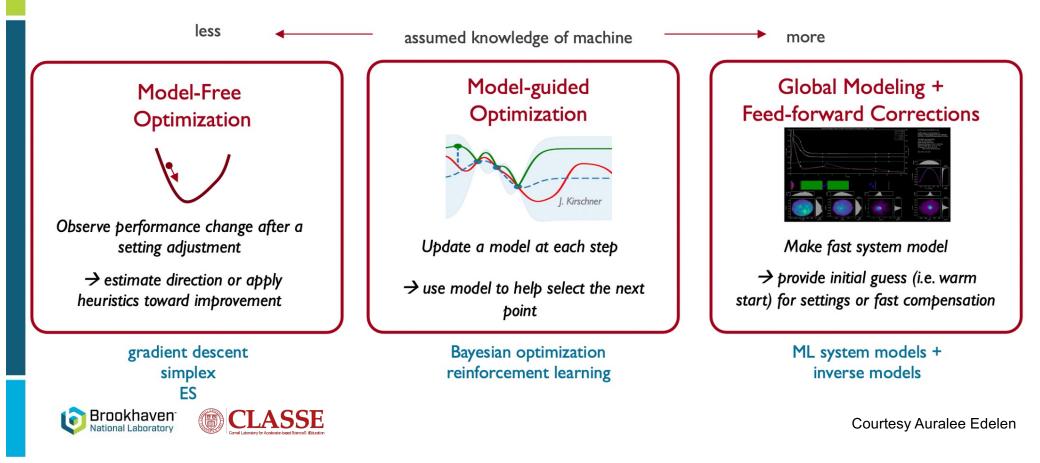
## Strong Cooling ERL

Bmad used for:

- Multiple aspects of the ERL, including overall design.
- Space charge simulations of the low energy regions.
- Simulation of the beam breakup (BBU) threshold current.
  - -- Kirsten Deitrick, JLab





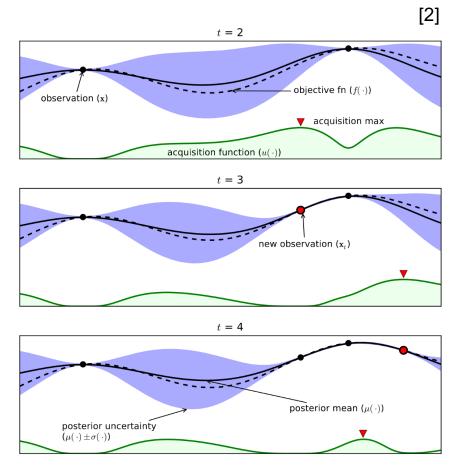



# **Bmad-Julia**



#### **One need for Machine Learning in Operations**

#### **Optimizers for different applications**




#### **Acquisition Function**

- Guide how input space should be explored during optimization
- Combine predicted mean and variance
   from Gaussian Process model
  - Probability Improvement (PI)
  - Expected Improvement (EI)
  - Upper Confidence Bound (UCB)

$$UCB(x) = \mu(x) + \kappa \sigma(x)$$

Brookhaven National Laboratory



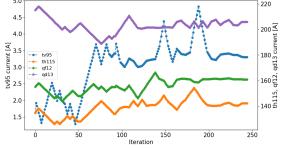
### **Advantages of Bayesian Optimization**

#### Summary of optimization methods

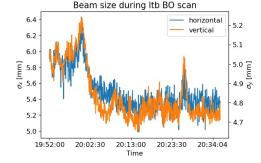
|                                                    | Nelder-<br>Mead | Gradient<br>descent | Powell /<br>RCDS            | L-BFGS      | Genetic<br>algorithm        | Bayesian optimization                |
|----------------------------------------------------|-----------------|---------------------|-----------------------------|-------------|-----------------------------|--------------------------------------|
| Sample<br>efficiency                               | Medium          | Medium              | Medium/high                 | Medium/high | Low                         | High                                 |
| Computational<br>cost of picking the<br>next point | Low/Mediu<br>m  | Low                 | Low                         | Low         | Medium<br>(e.g.<br>sorting) | High<br>(esp. in high<br>dimensions) |
| Multi-objective                                    | No              | No                  | No                          | No          | Yes                         | Yes                                  |
|                                                    |                 | (but can u          | ise scalarizatio            | n)          |                             |                                      |
| Sensitivity to local<br>minima                     | High            | High                | High                        | High        | Low                         | Low<br>(builds a <b>globa</b>        |
|                                                    |                 | (but can            | use multi-start             | :)          |                             | model of f)                          |
| Sensitivity to<br>noise                            | High            | High                | High (Powell)<br>Low (RCDS) | High        | Medium                      | Low<br>(can model<br>noise itself)   |

| Summary of optimization methods                                  |                    |                                |                                   |                                    |                                                                                                                        |                                                                                                                                                 |  |  |  |
|------------------------------------------------------------------|--------------------|--------------------------------|-----------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                                  | Nelder<br>-Mead    | Gradient descent               | Powell L-BFGS<br>/ RCDS           |                                    | Genetic algorithm                                                                                                      | Bayesian optimization                                                                                                                           |  |  |  |
| Requires to<br>compute or<br>estimate<br>derivatives of f        | No                 | Yes                            | No                                | Yes                                | No                                                                                                                     | No                                                                                                                                              |  |  |  |
| Evaluations of <i>f</i><br><i>inherently</i> done<br>in parallel | No                 | No                             | No                                | No                                 | Yes                                                                                                                    | No                                                                                                                                              |  |  |  |
| Hyper-<br>parameters                                             | Initial<br>simplex | Step size: α<br>(+momentum: β) | # fit<br>points<br>Noise<br>level | Accuracy<br>of hessian<br>estimate | <ul> <li>Population size</li> <li>Mutation rate</li> <li>Cross-over rate</li> <li>Number of<br/>generations</li> </ul> | <ul> <li>Kernel<br/>function</li> <li>Kernel length<br/>scales,<br/>amplitude</li> <li>Noise level</li> <li>Acquisition<br/>function</li> </ul> |  |  |  |






#### Ex.: Booster transfer optimization by Bayesian Learning


(1) Emittance reduction in L2B and B2A injection and Booster/AGS optics correction and re-bucketing.

#### Status:

- (a) Detailed, improved models of L2B, B2A, Booster, and AGSs were established with Bmad.
- (b) Accelerator studies of L2B injection with Bayesian Learning increases intensity and reduces beam  $\sigma_{x/y}$  during accelerator studies in March (Lucy Lin visit).



1.8 1.0 1.7 1.6 1.4 1.3 0 50 100 150 200



L2B bend & quad training →

Intensity increase

 $\rightarrow$  reduces extracted  $\sigma_{x/y}$ 

Future:

- Accel. parameters determined by ML from measured orbit responses (current exp.)

250

- Modeling of rebucketing in Booster and AGS. (near future beam exp.)
- Modeling of resonance strength correction by skew quadrupoles. (future beam exp.)



#### **Bmad-Julia: The Future of Machine Learning Focused Accelerator Modeling**

**Project Objectives:** 

- Using the experience gained with Bmad, create simulation packages using the Julia Language that has Machine Learning (ML) / Artificial Intelligence (AI) capabilities built in from the ground up.
- Neural networks as element, forward automatic differentiation embedded, e.g., for NN parameter optimization.
- The project will engage the entire accelerator community to promote sustainability and portability of the software. Currently there is participation of people from Cornell, BNL, RadiaSoft, SLAC, ANL, Berkeley Lab, JLab.
- Weekly Wise People Meeting for coordination every Thursday 4pm EST.
- This gives the Bmad-Julia project the potential to revolutionize accelerator simulation program development just as Geant4 has revolutionized the simulation of particle-matter interactions.

Due to Bmad's wide adoption and breadth of capabilities, for the foreseeable future, Bmad-Julia will not be a replacement for Bmad and both will coexist side by side.

Project Status: Started in 2023, DOE funding has been applied for, and open source packages are in development for

- ✤ Lattice instantiation and manipulation.
- Truncated Power Series Algebra (Taylor maps, in collaboration with Laurent Deniau)
- Normal form analysis including spin (in collaboration with Etienne Forest)
- Atomic and physical constants.

And much more to do...



# Conclusions



#### Conclusions

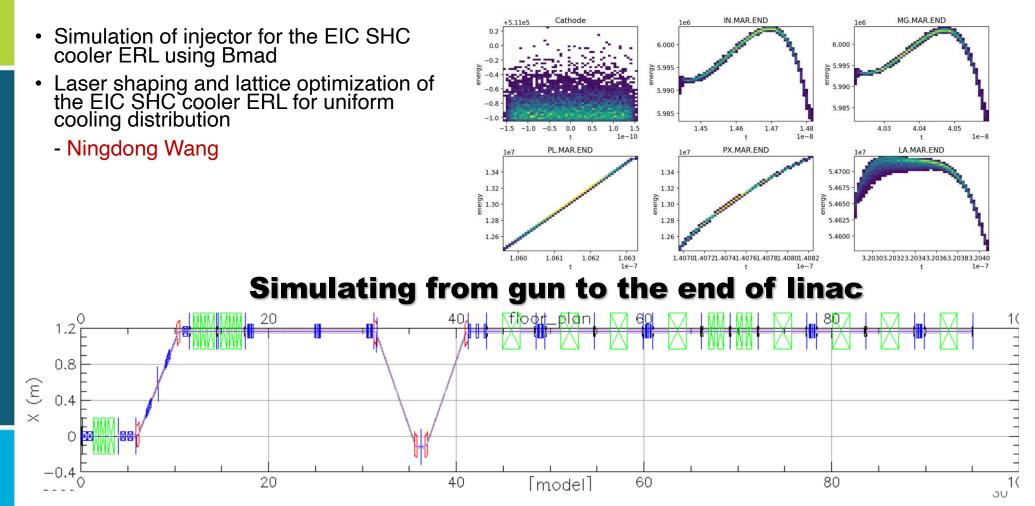
- Bmad encompasses a flexible simulation environment with extensive modeling capabilities unmatched by any other code.
- Bmad's modular design means that extending Bmad to encompass new physics requires less time and results in fewer bugs. This is especially important for projects like the EIC where modeling requirements are constantly evolving.
- > Bmad has been and remains engaged in many aspects of the EIC design.
- The Bmad-Julia project will greatly facilitate machine learning / Al simulations.
- Furthermore, Bmad-Julia has the potential to revolutionize accelerator simulation program development facilitating the creation of better simulation programs and saving countless hours of development time.



#### **Thanks To**

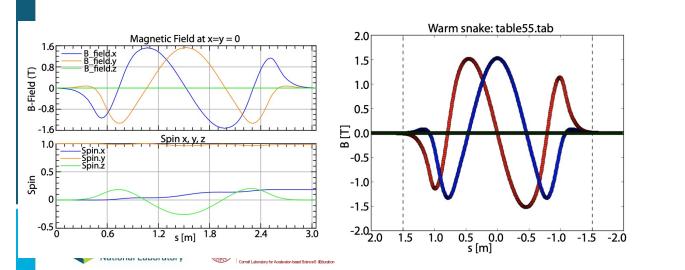
David Rubin Georg Hoffstaetter Etienne Forest Desmond Barber Jonathan Laster Mark Palmer Matt Rendina Attilio DeFalco Frank Schmidt Hans Grote Martin Berz Dan Abell Jacob Asimow Ivan Bazarov Moritz Beckmann Scott Berg Oleksii Beznosov Kevin Brown Joel Brock Sarah Buchan Avishek Chatterjee Jing Yee Chee Christie Chiu Joseph Choi Robert Cope Jim Crittenden Laurent Deniau Bhawin Dhital Gerry Dugan Michael Ehrlichman Jim Ellison Ken Finkelstein Mike Forster Thomas Glassle Juan Pablo Gonzalez-Aguilera Sam Grant Colwyn Gulliford Eiad Hamwi

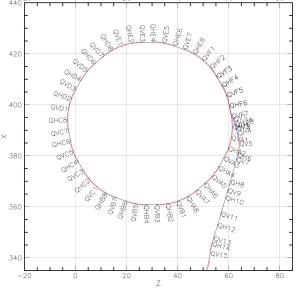
Klaus Heinemann Richard Helms Lucy Lin Henry Lovelace III Chris Mayes Vasiliy Morozov Karthik Narayan Katsunobu Oide Tia Plautz Matt Randazzo Robert Ryne Michael Saelim Jim Shanks Matthew Signorelli Hugo Slepicka Jeff Smith Jonathan Unger Jeremy Urban Ningdong Wang Suntao Wang Mark Woodley Demin Zhou






# Thank You





### **Bmad Applied to the EIC**



#### **Bmad Applied to the EIC**

Bmad is now used for constructing simulation models for the majority of the injector compound for RHIC and future EIC, including the Linac to Booster (LtB) transfer line, Booster ring, Booster to AGS (BtA) transfer line, and the AGS ring. It is used to produce simulation data for beam experiments such as orbit response matrix measurements and quadrupole scans, both as training data for machine learning algorithms, and for development of digital-twins for the accelerators. - Lucy Lin



