FCO

SUMMARY OF ACCELERATORS TECHNICAL DESIGN AND SRF TECHNOLOGIES

JP. Burnet, M. Morrone, I. Karpov, S. Mazzoni Presented by: T. Raubenheimer

FCC Week 2024

June 14, 2024

5 sessions on Accelerator Technical Design

- 5 sessions on Technical Infrastructures
- 3 sessions on SRF technology

Accelerator Technical Design

SRF technology

Accelerators Technical Design Session 1 : Synergies & innovation

FCC-ee / ILC / EIC Synergies: Machine Detector Interface (MDI)

Physics requirements

- detector stay clear (L* and forward angle)
- interplay with accelerator performance optimization

Mechanical engineering requirements

- beam pipe design (warm/cold transitions)
- · cryostat support (from detector or external)
- · detector installation and access requirements
- utility interfaces (cryogenics, leads etc.)

Overlapping requirements

- vibration mitigation (including interactions with beam-based trajectory feedback systems)
- instrumentation (luminosity and beam position monitors)
- radiation shielding (beamstrahlung and radiative Bhabhas)
- space constraints

Brookhaven

Collective experience in past and future colliders is critical in advancing MDI optimization. 12

M. Minty - FCC Week, 10-14 June 2024

Presented by M. Minty, BNL

- Direct Wind magnet technology (adapts to compact spaces, CCT-like local field adjustment)
- · Collared magnet technology (warm e-beampipe, field crosstalk low)
- Complex magnet systems (integrate: 4.5K, 1.9K and warm systems, BPMs, current leads, low vibration supports)
- · Development, prototyping, manufacturing, quench protection, testing

Proposal of HTS coils for dipole with permanent current

Presented by V. Kashikhin, FNAL

HTS Dipole Parameters

HTS Dipole short model pats, June 2024

14 V. Kashikhin | HTS Lepton Collider Magnets

Parameters	Units	Values
Dipole peak field	mT	57
Dipole length	m	24
HTS coil ampere-turns	A	3800
HTS REBCO 12 mm, Ic at 77K	A	550
Number of HTS 6 mm wide loops		20
HTS 12 mm tape length/magnet	m	480
Primary Cu conductor #12 dimensions	mm	2.05 x 2.05
Primary Cu coil current	A	100
Primary Cu coil number of turns		38
Primary coil resistance at 77 K	Ohm	0.22
Primary coil power losses at RRR=10	kW	1.2
Outer dimension height	mm	136
Outer dimension width	mm	450

DIPOLE MAGNET

HTS Dipole flux density in Tesla at 3800 A coil current. HTS coils are assembled from the stack of HTS 12 mm wide tapes, which slit in the middle beside ends forming a shortcircuited coil.

6/11/2024 **Cermilab**

HTS Magnets Powering Diagram

Magnets primary coils powering diagram. PSD, PSQ – dipole and quadrupole power supplies, D – dipoles, QF and QD – focusing and defocusing quadrupoles, SW -switches.

18 V. Kashikhin | HTS Lepton Collider Magnets

6/11/2024 **Fermilab**

Proposal of HTS quadrupole/sextupole magnets

Advantages of C³ Technology for the Injector Linacs

Presented by Emilio Nanni, SLAC

Possible Synergies with FCC-ee

FCC-ee High Energy Linac

- Injector linac operates with closely spaced bunches – up to 5.5 nC
- Initial study with a/wl = 0.125 (conservative, average for HE linac concept is 0.12)
- Gradient 22.5 MeV/m
- Baseline: 6 MW/m, 3 microsecond

Shunt impedance 300 K (77 K): 58.5 MΩ/m (146-158 MΩ/m) a/wl = 0.125 Emax/Ea = 4.35 Sc max = 242mW/um^2 Period: 53.5 mm Aperture: 13.4 mm Nose Cone Gap: 41.1 mm Height: 42.9 mm R/Q: 3.04 Q: 19250 (300 K) Power Dissipated @ 21.9MeV/m = 440 kW

Linac Properties										
Charge (nC)	0-5.5 nC									
Number Bunches	1-4									
Bunch Spacing	25 ns spacing									
Initial Energy	6 GeV									
Final Energy	20 GeV									

Accelerators Technical Design Session 2 : magnets

Cheaper with aluminum but more losses

FCC

Collider Dipole parameters

Presented by J. Bauche, C. Eriksson, CERN

- Main changes: aluminium busbar at higher current density
- Power dissipation is ~80% larger than 2023 Cu BB design, but the increased OPEX is far outweighted by the reduced CAPEX, with an overall lower TOTEX* over the lifetime!
- Busbar geometry adjusted to make more room for trim coils (adjusted current density) and match cooling requirements
- Total circuit voltage stays < 1kV

*see presentations B. Wicki on <u>Tuesday 16:14</u> and <u>Wednesday 14:06</u>

Parameter	Unit	Value 2023	Value 2024
Max strength	mT	61	61
Magnetic length (average)	m	21.15	21.15
Busbar material		Copper	Aluminium
Max current in busbars	А	3628	3665
Conductor dimensions	mm ²	66 x 55	62 x 33
Cooling diameter	mm	7	8.1
Current density	A/mm ²	1.01	1.85
Voltage drop per magnet	V	1.2	2.2
Resistance per magnet	mΩ	0.34	0.62
Power per magnet	kW	4,4	8.2
Number of water circuits	-	1	1
Water temperature rise	°C	11.2	14.2
Cooling water speed	m/s	2.4	2.7
Pressure drop	bar	5	5
Reynolds no.	-	23745	30380

FCC

Magnet circuits power consumption

TWh

Presented by J. Bauche, C. Eriksson, CERN

11

Magnet circuits vs. FCC-ee full machine (mid-term report)												
		Units	Z	W	н	tt	Total					
	Years of operation	у	4	2	3	5	14					
	Duty cycle of magnet powering over one year of operation			0,53								
	Collider magnet circuits power in beam operation (RMS)	MW	6	17	39	<mark>8</mark> 9						
Arc	Booster magnet circuits power in beam operation (RMS)	MW	1	3	5	11						
magnets	B+C magnet circuits total power in beam operation (RMS)	MW	7	20	44	100						
	B+C magnet circuits energy consumption	TWh	0.1	0.2	0.6	2.3	3.2					
FCC-ee	Machine power during beam operation	MW	222	247	273	357						
full	Machine average power / year	MW	122	138	152	202						

- Power of the FCC-ee magnets at tt_{bar} is comparable to the CERN SPS main dipoles (~90 MW peak)
- The arc magnet circuit integrated power consumption over the project lifetime is 3,2 TWh
 - This is only 17% of the full FCC-ee machine (booster + collider)
 - 70% of this consumption is for the tt_{bar} phase only

Courtesy J.P. Burnet

machine Machine energy consumption

With the set of parameter presented today:

4.3 2.4 4.0 8.8 **19.5**

- RMS power of collider magnets would scale up by +33% (119 MW @ ttbar)
 - 3.2 TWh → 4.3 TWh of total magnet integrated power consumption
 - 17% \rightarrow 22% of FCC-ee full machine integrated power consumption
- Magnet circuit TOTEX would scale down by -15%

FCC

Short prototype magnet production & test plan

Presented by H. Deveci, L. von Freeden, CERN

The number of turns is increased in the model magnet for convenience

The length of the model magnet is determined as 500 mm

Valid representation of the baseline dipole M270-50A steel coils are provided

Yoke is optimised for the entire tt_ cycle to minimize the distortions in the field quality caused by the hysteretic effect

Number of Circuit – Collider's Alternative

OPEX

Presented by B. Wicki, CERN

FCC

Horizontal Correction with Dipole's Auxiliary Coil Vertical Correction with Quadrupole's Auxiliary Coil

Even More overall Number of Circuits CAPEX Smaller Granularity for Dipole and Quadrupole Tapering Even More space for main coil in Sextupole CAPEX

Collider Magnets	N° Magnets	N° Circuits									
Dipole	2'840	16									
Quadrupole	2'840	32									
Sextupole	5'080	706									
Sub-Total	10'760	754									
Dipole Tapering	2'840 32 5'080 706 10'760 754 Achieved with Horzontal Corrector Achieved with Corrector Achieved with 5'680 0 5'680 5'680 11'360 11'360 2'924 2'924										
Quadrupole Tapering	Achieved with V	ved with Vertical Corrector									
Sub-Total	0	0									
Horizontal Corrector	5'680	5'680									
Vertical Corrector	11'360	11'360									
Quadrupole Corrector											
Skew Quadrupole	2'824	2'824									
Sub-Total	19'864	19'864									
Straight Section	?	?									
Total	30'624	20'618									

Controllability

Controllability : -100% to +100%

Polarity of group can be reversed during run

 $N_{cable} = 2N_{circ}$

Power converters are too big to be put in the arcs.

 $N_{cable} = N_{circ} + 1$

Close to half the space by using cable sharing.

 $N_{cable}=2$

$+(N_{circ}+1)$

Only one converter in the alcoves.

The trimmers + cabling in the arc section, closest to magnets.

But need of Radiation hard trimmers

Audrey PICCINI – EN/MME CERN

What will be installed in the 1:1 Mock-up?

Girder = PAEC collaboration

Presented by A. Piccini, CERN

Representative wooden magnets that can evolve into prototypes

(example SPS wooden magnets)

The envelope will consist of arches reinforced by beams and closed by plates/sheets

Install real structures for booster and collider supports

Courtesy M. Rouchouse

Test of final focus quadrupole prototype

Presented by M. Koratzinos, PSI

Cryostat supporting 1.9K superfluid helium

- Training campaign
- Measurement of splice resistance
- Measurement of quenchback
- Measurement of RRR

Field quality - cold

Accelerators Technical Design Session 3 : Injection & Instrumentation

Booster and Collider challenges for septa and separators

Presented by J. . Borburgh, CERN

- Update on tech choice and topology for septa for Booster and Collider injection, extraction and dump and EM separator for ttbar.
- Septum tech at forefront of technology but **no showstoppers**. Present baseline mature enough for implementation in FCC
- EM separator for ttbar needed to ensure beams pass in the centre of RF cavity with no synchrotron light hitting the cavity. Based on longitudinal matching of B and E field for cancellation on incoming beam only. Several challenges: heat deposition, impedance budget, field matching tolerance unknown at present. Studies needed

Overview and challenges for fast pulsed beam transfer system

Presented by G. Favia, CERN

- Tech for **magnet and generator** for damping inj + extr, booster inj+extr+ dump, collider inj+dump studied. Optimal choice identified for all cases
- **No showstoppers** but challenges identified (highlighted in table)
- Point B (booster to collide extraction, booster and collider dump) would require **additional service area** to keep cable length short (blue arrows). Booster injection integration to be verified as well.

	Damping Ring	Booster injection	Booster extraction	Booster dump	Collider injection	Collider dump	10000 - Collider beam Booster to collider transfer line Collider dump beam
Energy [GeV]	1.54-2.86 (tbc)	20	45 - 182.5	45 - 182.5	45 - 182.5	45 - 182.5	8000 - Booster dump beam
Beam line length [m]	tbc	5.5	15	15	15	15	6000 electrons
Total kick angle [mrad]	3	0.09	0.429	0.3	0.072	0.3	E 4000 - I kickers
Aperture (beam stay clear) (∅) [mm]	30	30	60	60	60	60	× 2000
Rise / fall time [ns]	82	25	1100	1100	1100	1100	0
Flat top length [µs]	0.08	0.08	30 – <mark>304</mark> (tbc)	<mark>304</mark>	30 – <mark>304</mark> (tbc)	<mark>304</mark>	-2000 -
Flat top quality [%]	±0.5 (tbc)	±0.5 (tbc)	±0.5 (tbc)	5 (tbc)	±0.5 (tbc)	5 (tbc)	
Repetition rate [Hz]	200-100 (tbc)	200-100 (tbc)	10 (tbc)	1	10 (tbc)	0.1	z [m] 660 m

Studies on an electro-optical longitudinal bunch profile monitor

Presented by M. Reissig, KIT

- FCC-ee required bunch by bunch, < 100 fs resolution, non-interceptive bunch length measurement. Electro-optic spectral decoding method fulfils requirements.
- E-O detector installed and operational in Karlruhe Research Accelerator. **New design for FCC being developed**. Prototype is under test, positive first validation in tests at CERN.
- Preliminary impedance check of protruding crystal for Z mode OK. Many studies needed: heat load and radiation resistance of crystal, integration in FCCee

Impedance at KARA vs. FCC-ee concept

Transverse beam size monitoring

Presented by D. Butti, CERN

- Combination of synchrotron radiation-based techniques likely to fulfil FCCee requirements (high precision bunch by bunch, occasional high accuracy)
- **Pinhole** lines (robust, few % precision, OK for RMS size > 50 um) combined with **interferometric** techniques (few um RMS size) use similar infrastructure: possibility to have both in same extraction line. Studies ongoing at ALBA light source
- Integration in FCC-ee ongoing: dedicated wiggler (nice to have), dipoles downstream of interaction points

BPM design studies

Presented by E. Howling, U. Oxford and CERN

- Arc button BPMs shall provide measurement with 0.1 um (orbit) / 10 um (turn by turn) resolution. Challenges are impedance (10000 BPMs!), rad tolerance, alignment and stability.
- Simulations and experimental validation ongoing at CERN for choice of optimal button size and gap. 8 mm radius current compromise between signal and wakeloss. Work ongoing.
- IR BPMs must have **1 um** single pass resolution. At present, integration of BPMs in IR is very challenging (space reservation, presence of BPMs between segmented quads)

Accelerators Technical Design Session 4 : Vacuum & Radiation

FCC-ee vacuum design status

Additional shielding is integrated around the SRA.

Flange connection

absorber

Synchrotron radiation absorber design

Presented by M. Moorone, CERN

The SR absorber is a complex 3D-printed copper-alloy component welded into a dedicated aperture of the vacuum chamber and connected to the cooling channels running on the chamber's winglets.

Radiation and shielding in the FCC-ee arcs

Presented by A. Lechner, CERN

Material selection is a trade-off between:

What target dose values should we aim for?

- The exact shielding requirements need to be elaborated further in the Radiation and Shielding WG
- A first few considerations:
 - For machine components (e.g. dipole busbar insulation) or equipment near the machine (e.g. cables and cable connectors for BPMs, vacuum gauges, pumps), rad-hard solutions are likely unavoidable even with radiation shielding; nevertheless the shielding is still beneficial for these components
 - It seems possible to reduce the cumulative ionizing dose for most cable trays to <100 kGy for the full collider lifetime (<10 kGy per year for ttbar), which shall allow the use of Cat 1 cables
 - For electronics (e.g. racks for beam instrumentation, vacuum equipment), it is still unclear if dose levels compatible with COTS-based systems are in reach (which would require <1kGy for the full collider lifetime, or <100 Gy per year of ttbar)
 - We will explore locally shielded volumes at quadrupoles possibly integrated into the girder
 - In any case, need an integral approach to FCC-ee electronics design, as shown in the sketch

Accelerators Technical Design Session 4 : Beam Intercepting Devices

Beamstrahlung dump concepts, design, considerations & R&D roadmap

Presented by M. Calviani, CERN

Proposal of a pure liquid Pb absorber

Beamstrahlung monitor

Presented by Dmitri Liventsev, Wayne State

- Monitor developed for SuperKEKB
- Applicable for FCC?

Light extraction

- Beamstrahlung from IP intercepted through vacuum mirror and extracted through a special window
- Optical channel (~10m) brings the light out of the radiation region
- Two optical channels (up/down) for each ring (e^+/e^-)

FCC Week 2024 - June 13, 2024

Requirements for Collimation System and R&D paths

120 mm

Presented by A. Perillo-Marcone, CERN

SuperKEKB Collimators

Main features

- Short jaws
- Geometry "optimised" for SuperKEKB Terui et al. (https://doi.org/10.1016/j.nima.2023.168971)
- · Openable/repairable (jaws can be replaced)
- · Other absorbing material options being assessed
- High Z metals are good in terms of impedance and cleaning efficiency but are destroyed in case of accidental scenarios^(*)

358 mm

Holes for fi

(*) ~100 times less beam stored energy than FCC

Design Features

- · Robust/reliable design
- Openable tank, fully dismountable
- Jaws shall be replaceable
- Repairs
- Efficient thermal management
- Diffusion-bonded interfaces may be required
- · Flexible elements (bellows) in the direction of movement (more reliable in the long term)
- · Removable bellow (as opposed to welded to the tank)

Overview of the FCC-ee alignment and monitoring study

Presented by Léonard WATRELOT, CERN

First goal is to study the alignment error propagation as it impacts :

- Marking
- Initial installation
- Monitoring
- Adjustment
- Resources
- Cost
- Time spent

SRF technology

SRF R&D, in prototyping and in the development of high-efficiency RF sources.

Unchanged RF design of the three cavity types. HOM power extraction scheme proposed for the module. Mechanical design can start. Types of RF power sources identified, with novel approach for high efficiency klystron at ~MW level.

Presented by I. Karpov, CERN

Scenario	56 1-cell cav.	56 2-cell cav.	132 2-cell cav.
Beam loading compensation	Fixed FPC coupling with moderate Q_L	Wide-range of FPC coupling	Wide-range of FPC coupling + extremely low Q_L
CBI due to fundamental mode	Strong RF feedback	Strong RF feedback	Strong RF feedback Small margin (factor of 4)
Longitudinal CBI	No trapped HOMs	0-mode strong damping and/or longitudinal feedback	0-mode strong damping and/or longitudinal feedback
Transverse CBI	Weak TFB system is useful	TFB system with 100-turn damping time	TFB system with 50-turn damping time
Higher-order-mode power	"2-coax concept" needs demonstration	"2-coax concept" needs demonstration + 40% HOM power increase	"2-coax concept" needs demonstration + 40% HOM power increase
Availability challenges	Longitudinal feedback s	ystem (main RF system as kick	er) + ~10% RF power margin

The 2-cell design seems feasible for the nominal current at Z, but challenging Reverse phase operation mode is in the air

Presented by M. Liepe, Cornell

Towards Applications: Practical Nb₃Sn Cavities

CEBAF-style quarter module using

Fermilab: 9-cell 1.3 GHz cavities

>15 MV/m with Q₀~10¹⁰ at ~4K on accelerator structures!
=> Becoming an option for first accelerator projects!

Transfer of performance from single-cell to full-scale cavities is well underway.

591MHz 1-cell cavity prototype at JLab

R75mm beampipe with flanges brazed, FPC ports e-beam welded

R75mm beampipe welded to half cell

Nb small beampipe with pulled FPC ports

Presented by J. Guo, Jlab

Cavity subassemblies stacked together (some welds pending)

The ESR 1-cell prototype cavity is close to complete, with vertical testing expected in a few months. The first article cryomodule is funded and scheduled to complete is about 2 years.

400 MHz HiPIMS: results

Presented by C. Pereira Carlos, Univ. Geneva

Very promising result:

- PC04 is not a seamless substrate
- Treated by SUBU instead of EP.
- Coating done with Bipolar HiPIMS (HiPIMS + PP, DC biasing was not yet possible)
- HiPIMS coating validated, yet to be optimized (power supply limitation)

Continue fundamental study on samples and 1.3 GHz cavities to optimize coating recipe -> Prioritize coatings and RF measurements of 400 MHz cavities

QCM Preliminary Qualification Test Results

Presented by A.-M. Valente-Feliciano, Jlab

Cavity	CMTF f(MHz) @ 4 K	CMTF f(MHz) @ 2 K	VTA Emax (MV/m) @ 4 K	CMTF Emax (MV/m) @ 4 K	Eop (MV/m) 1 h run @4 K FE-free	VTA Emax (MV/m) @ 2 K	CMTF Emax (MV/m) @ 2 K	Eop (MV/m) 1 h run @ 2 K FE-free
5C75-RI-NbSn01	1496.56	1496.59	13.6	13.3	12.6	18.5	13.2	12.4
5C75-RI-04	1496.41	1496.44	9.0	7.9	7.5	9.2	8.7	8.5

- Accelerating gradients close to vertical test at 4 K
- Frequency difference between two cavities ~150 kHz
- Second cavity tuned to match the first one at 2 K- no degradation

First demonstration of >10 MeV Nb₃Sn cryomodule

Q_0 in the Linac

- Due to the strong coupling in the CM, Q₀ is measured cryogenically
- Full CM average Q₀ results look promising
- Across the linac an average of 2.8x10¹⁰ has been observed, exceeding the spec of 2.7x10¹⁰
- Low performers can likely be improved by additional CM degaussing

Demonstrates High Q₀ in an installed linac for the first time

800 MHz 5-cell cavity

- Fabricated at JLab, currently at FNAL
- High-power RF cold-test plan (Spring 2024):

Presented by K. McGee, FNAL

1. Baseline cold-test (EP, last tested 2018, see Figure 4)

2. First mid-T (300-350C) baking treatment (High-Q development)

Figure 4: Combined VTA results for the five-cell and single-cell cavity as measured at 2 Kelvin. F. Marhauser et al. <u>802 MHz ERL Cavity Design and Development (cern.ch)</u> IPAC 2018 **THPAL146**

400 MHz Cryomodule

Heat loads and margins

Presented by K. Canderan, CERN

	Z(*)	W/H/tī	Static heat loads to the cold mass: Derived from experimentally measured values of LHC superclub (with active thermal shield extraction)
	Collider	Collider	Cryomodule (With active inermal shield correction) Dynamic losses: Power dissipation per cavity indicated in the baseline
Static HL at 4.5K/CM [W]	131	131	Heat loads to thermal shield: Derived with conservative assumptions and a simplified design of
Dynamic HL at 4.5K/CM [W]	36	516	Nominal the CM
HL to thermal shield at 50K/CM [W]	218	218	Values • Liquefaction capacity necessary for the active cooling of the FPC
Required liquefaction capacity/CM [mg/s]	320	320	
	Z(*)	W/H/tī	• 50% margin on the static heat loads – due to the preliminary design maturity
	Collider	Collider	• 8% operational margin on the dynamic loads – for the scenario with only 90%
Static HL at 4.5K/CM [W]	197	197	operational cavities operating at higher E _{acc} with a consequent increase of 20% on th
Dynamic HL at 4.5K/CM [W]	43.2	236.4	Margins dynamic heat load.
HL to thermal shield at 50K/CM [W]	327	327	on RF side • 50% margin on the liquefaction capacity – to grant flexibility on the helium flowrate.
Required liquefaction capacity/CM [mg/s]	480	480	
	Z(*)	W/H/tī	
	Collider	Collider	Static heat loads at 4.5K: sum of the contributes of all the CM
# CM	28	66	• Dynamic heat loads at 4.5K: sum of 90% of the total number of cavities
Static HL at 4.5K [kW]	5.5	13	Heat loads to the thermal shield at 50K: sum of the contributes of all the CM
Dynamic HL at 4.5K [kW]	1.1	36.7	
Total HL at 4.5K [kW]	6.1	49.7	
HL to thermal shield at 50K [kW]	9.2	21.6	
Required liquefaction capacity [g/s]	13.5	32	

Definition of a heat loads budget and margins for the cryogenic system + a preliminary cryogenic scheme for 400 MHz & 800 MHz

Preliminary design of FCC 800MHz Cryomodule

Presented by D. Passarelli, FNAL

- The FCC 800 MHz CM design is based on SSR2 and HB650 PIP-II CMs with the following main differences:
 - Heat exchangers and valves are integrated into the Cryogenic Distribution System (CDS).
 - A "Jumper" will be used to interface with CDS through welded connection into the tunnel (no u-tubes).
 - Couplers are actively cooled with helium.

"Final Design of the Pre-Production SSR2 Cryomodule for PIP-II Project at Fermilab", V. Roger et al., Proceedings of LINAC 2022 "Design of the 650 MHz High Beta Prototype Cryomodule for PIP-II at Fermilab", V. Roger et al., Proceedings of SRF 2021

The experience gained in designing, assembling, and testing PIP-II cryomodules has substantially expedited the design phase of the 800 MHz cryomodule.

	Fermilab																																
	CERN																																
												Pre-	TDF	2				TDR Phase															
			CY 2	024			CY 2	025			CY	CY 2026				CY 2027		CY 2		2028			CY 2029		1	CY		2030			CY 20	CY 2031	
		Q1	Q2	Q3 (Q4	Q1	Q2	Q 3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2 (23 Q4	
	Design																																
R&D 1-cell cavities	Nb procurement																																
Not 1-cell cavities	Cavities Fabrication (qty. 4)																																
	Processing studies and cold tests																																
R&D 5-cell JLab cavity	Processing studies and cold tests																																
	RF design																																
	Mechanical design																																
	Final Design Review																																
Prototype 5&6 cells	Nb procurement																																
cavities	Fabrication																																
	Processing and cold testing w/ unity coupler																																
	Procurement of RF source (SSA ?)																																
	Cold testing with HPC, HOM, tuner (facility?) LLRF stu	dies																															
	RF design																																
	Mechanical design																																
Coupler and HOM	Final Design Review																																
coupler and noiw	Fabrication																																
	RF testing at room temperature																																
	Preparation for assembly on cavity (in cleanroom)																																
	Design																																
	Final Design Review																																
Tuner	Fabrication																																
	Room temperature testing																																
	Preparation for assembly on cavity																																
	Finalize Specicification																																
	Design of cryomodule																																
	Design of tooling for string assembly (cleanroom)																																
	Design of tooling for coldmass/CM assembly																																
	Design of handling/transportation tooling																																
	Final Design Review																																
Cryomodule	Procurement and fabrication of CM parts and tooling																																

Preliminary ideas for joint Fermilab-CERN collaboration on 800 MHz RF

Many thanks to all the speakers

Yes we can!

Many thanks to all chairpersons