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Review of FCC-hh general parameter ranges

Modifications improve:
Injection layout

,
Gustavo Pérez
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Infrastructure

High voltage source and transmission system does appear to be compatible Mario PAROD

with FCC-hh (focus has been on FCCee)

Tunnel size and layout
 Critical decision that needs to accommodate both ee and hh aurent Delprat
* Interfacing with magnets and cryogenics critical

Collimation critical — “FCC-hh beams are highly destructive” Roderik Bruce
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Cryogenics for FCC-hh

Conclusions:

* In1.9K & 4.5 K configurations distribution system
(vs FCC-ee tunnel) compatible

* At 20K, lots of unknowns, "seems compatible”

Fairly understood at 1.9K
Heat loads slightly less clear at 4.5K
Lots of unknowns at 20K
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Magnet development

Message: For Nb3Sn magnets, 14+ T
* Magnet prototypes therefore need to prove themselves at ~15-15.5T to
demonstrate adequate margin for reliable operation

Ezio Todesco

Structure of European HFM is now more clearly focused
* An effective timeline for Nb3Sn magnet development laid out
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Opportunities for HTS solutions

Bernhard Auchmann

HFM focus is on REBCO
* Primarily on design concepts leveraging conductor anisotropy
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Figure 1.10. Three different geometries for assembling a cable with ReBCO coated conductor. Also
refer to Table 1.2.
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e Superconductivity applications are a
tiny fraction of the Nb market space

e Superconductivity needs pure Nb

Cumulative data measured by vendor for MQXF strand US HL-LHC AUP data only
(Mean - Sfpec) =30c Process controlled at +3c
04l 0% log/memn = 45% e For HTS, many challenges and
opportunities
ok spec) =41 & e Bi2212 led primarily by HEP
* REBCO driven primarily by Fusion
now

350 400
Ic (15T, 4.2 K), Amperes




Magnet protection

Evolution of the LHC powering and protection strategy Emanuele Ravaioli
* Margins for protection get tighter at higher field
* CLIC provides significant flexibility, but has some drawbacks when scaled to FCChh;

* alternative concepts are under development that may address those issues
* Modeling has advanced significantly, enabling coupled physics simulations of powering circuit and
thermo-mechanical response of magnets during quench
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e “Hybrid” LTS/HTS magnets
 REBCO and Bi2212 HTS magnet technology

Complementarity of approaches mitigates risk factors:
Bi-2212 as well as CORC/Star ReBCO wires in US-MDP,
ReBCO anisotropic cables and IBS in HFM,
High-risk high-reward topics (no-protection, hydrogen) covered
in US-MDP.
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