

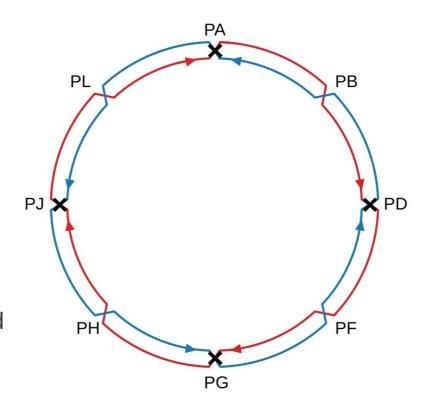
EPOL Summary

Jacqueline Keintzel, Eric Torrence and Guy Wilkinson

On behalf of the FCC-ee EPOL working group

FCC Week 2024

San Francisco, California, USA 14 June 2024



FCCIS – The Future Circular Collider Innovation Study. This INFRADEV Research and Innovation Action project receives funding from the European Union's H2020 Framework Programme under grant agreement no. 951754.

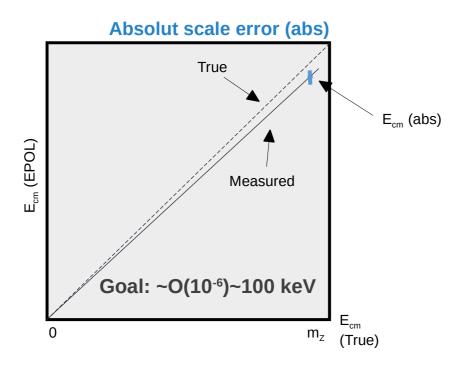
FCC-ee Overview

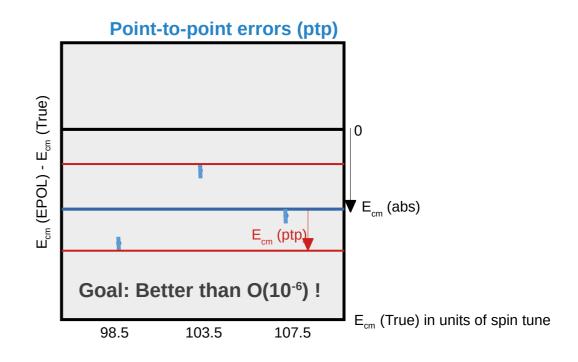
Particle Physics:

- Higgs and electro-weak factory
- 4 baseline beam energies and diverse particle physics program
 - 45.6 GeV: Z-pole
 - 80 GeV: W-pair-threshold
 - 120 GeV: ZH-production
 - 182.5 GeV: top-pair-threshold
- High number of statistics

Accelerator Physics:

- 4-fold super-symmetric layout
 - Up to 4 Interaction Points (IPs)
 - 1 RF-section per beam
 - 1 collimation section
 - 1 section for injection and dump
- Nanometer beam size at IPs
- Strong synchrotron radiation


Precision particle physics experiments (Center-of-mass energy determination



Center-of-mass Energy Uncertainty

Error between measured and true $E_{\rm cm}$

- Large effect on mass measurement
- Stems from systematic errors

Fluctuation between measurements

- Large effect on resonance width measurements
- Stems from variability of measurement conditions

Courtesy: A. Blondel

Expected Precision

Quantity	statistics	ΔE_{CMabs}	$\Delta E_{CMSyst-ptp}$	calib. stats.	σE_{CM}
		100 keV	40 keV	$200 \mathrm{keV}/\sqrt(N^i)$	$(84) \pm 0.05 \text{ MeV}$
m _Z (keV)	4	100	28	1	_
$\Gamma_{\rm Z}$ (keV)	4	2.5	22	1	10
$sin^2\theta_W^{\mathrm{eff}} \times 10^6 \text{ from } A_{FB}^{\mu\mu}$	2	_	2.4	0.1	_
$\frac{\Delta \alpha_{QED}(\mathrm{M_Z})}{\alpha_{QED}(\mathrm{M_Z})} \times 10^5$	3	0.1	0.9	_	0.05

Huge statistics → small statistical error of a **few keV for Z and W-boson**

Aim to achieve same order of magnitude for systematic (ptp) errors → Scope of the EPOL working group

EPOL: Energy calibration, polarization and monochromatization

arXiv:1909.12245

How to?

Special mode: monochromatization

Detector input

Polarization build-up

Depolarization

Polarimetry

ECM

- Resonances
- Wigglers
- Beam tests

- Resonant depolarization
- Free spin precession

- Polarimeter incl.
 - laser, Si-detectors
- e.g. EIC experience

- Systematic errrors
- Statistical errors
- Accurate models

Sessions Overview

Thursday 13:30 - 15:00

Introduction and overview Speaker: Guy Wilkinson

Polarized positron production Speaker: Joseph Grames

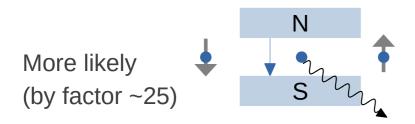
Experiments at existing facilities Speaker: Jacqueline Keintzel

The EIC polarimeter and lessons for the FCC Speaker: Dave Gaskell

Thursday 15:30 - 17:00

Simulation polarization studies at the FCC Speaker: Yi Wu

Polarized electrons at the EIC, lessons for the FCC Speaker: Georg Hoffstaetter


The FCC polarimeter Speaker: Robert Kieffer

First thoughts on the FCC depolarizer Speaker: Wolfgang Höfle

Lessons from LEP and final steps towards the final report of the FS, Speaker: Eric Torrence

Polarization Build-Up

Less likely

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

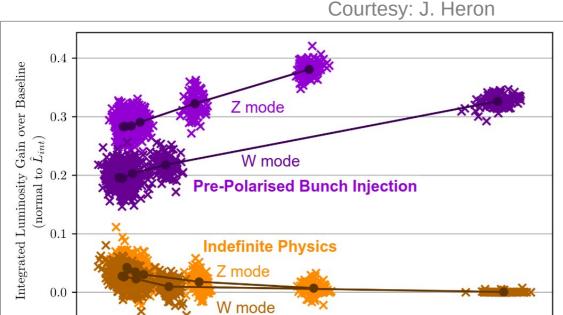
N

S

- Statistically every 10^{10th} emitted synchrotron photon flips the spin
- Probability depends on the initial spin orientation
- Leads to a natural polarization build-up over time
- Orientation is anti-parallel to the guiding magnetic field
- Maximum theoretical polarization of 92.4 %
- Spin precesses through the lattice → Spin tune

$$v = a * \gamma_{Rel}$$

a ... gyro-magnetic anomaly y_{Pal} ... Lorentz-factor


Tasks for Remainder of FS

Introduction and Overview Speaker: Guy Wilkinson

- Ensure sufficient polarisation in optics, including HSM studies at Z & WW
- Procedure, systematics and ultimate precision on RDP & FSP measurements
- Inform studies through series of measurements at KARA (and other accelerators)
- Arrive at full conceptual design of polarimeter, including infrastructure
- Full costing of EPOL related items
- Wigglers vs polarisation ring (injecting polarised e⁻/e⁺ increasingly attractive possibility – is it feasible ?)

- Requirements on depolariser and agreement on depolarisation procedure for pilot and physics bunches
- Deepen understanding of IP-specific corrections, in particular dispersion and offset effects
- Improve understanding of input from experiments, e.g. effect of higher-order corrections and detector resolutions etc. in e⁺e⁻ →ffbar(γ) studies
- Establish feasibility and expected performance of monochromatisation scheme for electron Yukawa run

Tasks for Remainder of FS

0.20

(faults per hour)

Introduction and Overview Speaker: Guy Wilkinson

arisation in optics, es at Z & WW

tics and ultimate **FSP** measurements

ah series of **ARA** ors)

tual design ding infrastructure

- 0.25 0.30 Fault rate of all systems related items
- Wigglers vs polarisation ring Injection of polarized beams could (injecting polarised e⁻/e⁺ increasingly increase integrated luminosity by attractive possibility – is it feasible ?)

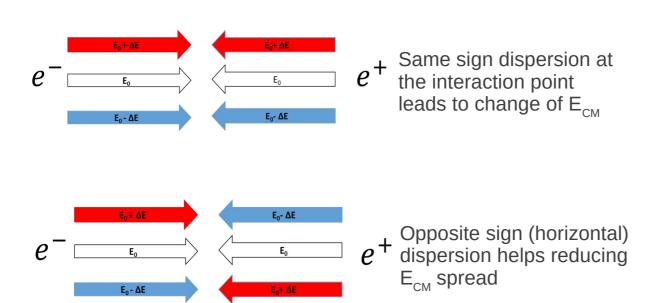
- Requirements on depolariser and agreement on depolarisation procedure for pilot and physics bunches
- Deepen understanding of IP-specific corrections, in particular dispersion and offset effects
- Improve understanding of input from experiments, e.g. effect of higher-order corrections and detector resolutions etc. in $e^+e^- \rightarrow ffbar(\gamma)$ studies
- Establish feasibility and expected performance of monochromatisation scheme for electron Yukawa run

0.10

up to ~35%

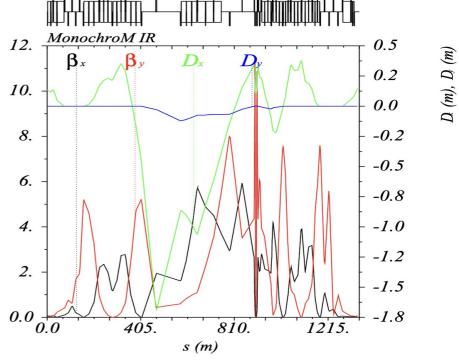
0.15

FCC accelerators: Optics alternatives & lessons


Monochromatization Tuesday, 11 June, 10:30 - 12:00

• 62.5 GeV beam energy → peak of Higgs-production

Monochromatization optics for FCC-ee Speaker: Angeles Faus-Golfe


- For minimization of collision energy spread —> monochromatization
- Trade-off between collision energy spread and luminosity production

Introducing dispersion

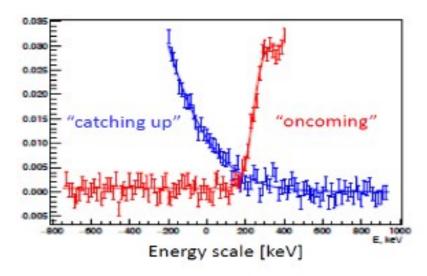
 $\beta_{s}(m), \beta_{s}(m)$ [*10**(


4 MeV spread ↔ 18 x 10³⁴ cm⁻²s⁻¹, possible optimization

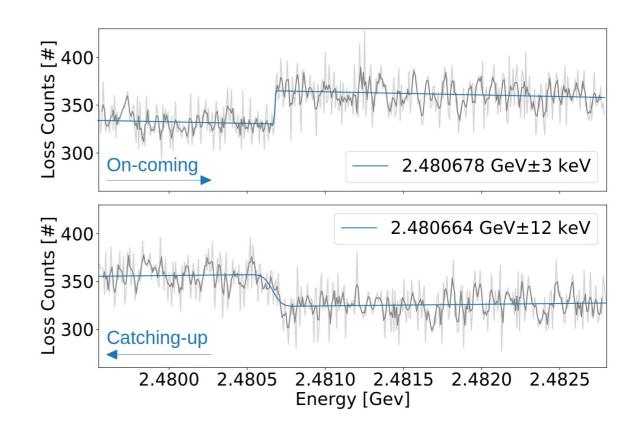
Polarized Positron Source

- Polarized Electrons for Polarized Positrons (PEPPo)
- Designed for CEBAF
- Polarized electrons based on GaAs
- Polarized positrons from polarized electrons

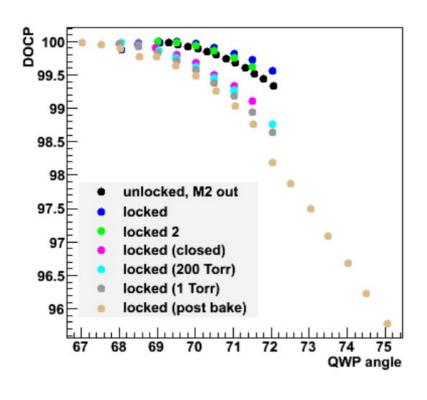
Parameter	CEBAF 12 GeV Electron Beam	Proposed 12 GeV Positron Beam	
Experiment Intensity	10 nA - 170 μA	> 50 nA (pol) > 1 μA (unpol)	
Duty Factor	100% (cw)	same	
Bunch Frequency	249.5/499 MHz	same	
Spin Polarization	>85%	>60%	
Rapid Spin Reversal	30 – 2000 Hz (Pockels cell)	same	


Polarized positron production Speaker: Josef Grames

When a longitudinally polarized e⁻ beam strikes matter, e⁺ produced in the shower carrying >50% of the e⁻ beam energy are significantly longitudinally spin polarized...


Experience at KARA

- RDP measurement campaign at KARA
- Findings consistent with simulations for FCC
- Low measurement fit error of a few keV


Courtesy: S. Nikitin, I. Koop

Experiments at existing facilities Speaker: Jacqueline Keintzel

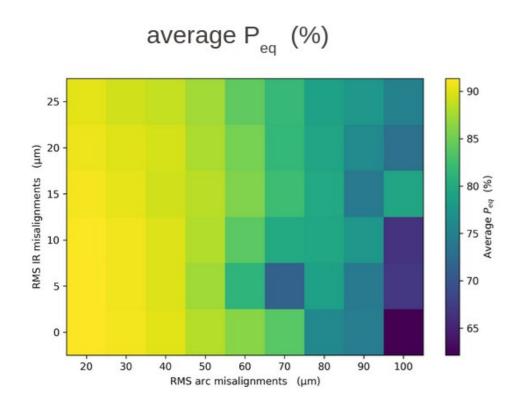


EIC and FCC Polarimeters

The EIC polarimeter and lessons for the FCC Speaker: Dave Gaskell

- Common issues:
 - Beam structure: short times between bunches
 - Synchrotron radiation issues
 - Laser diagnostics

Polarization and Misalignments


- Element misalignments increase vertical orbit and decrease theoretical achievable polarization
- Large fluctuations between various error seeds

Orbit correction and polarization studies Speaker: Yi Wu

90

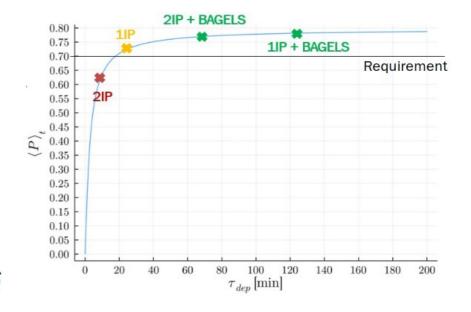
100

• 100 / 10 μ m in arcs / IRs \rightarrow 70 ± 25 % polarization

25 -[파 20 -RMS IR misalignments 0 -30

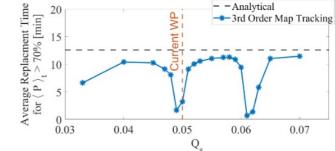
RMS arc misalignments (µm)

standard deviation of P_{eq} (%)


Polarization Lessons from EIC

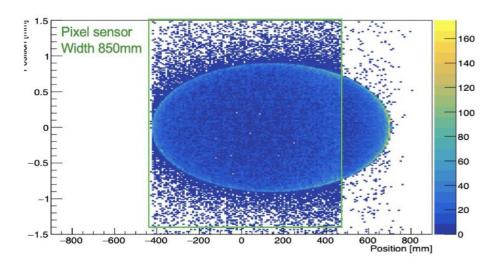
- Better polarization with errors observed
- → Best Adjustment Groups for ELectron Spin (BAGELS)

$$\begin{pmatrix} \partial \hat{n}/\partial \delta_1 \\ \vdots \\ \partial \hat{n}/\partial \delta_n \end{pmatrix}_f = \begin{pmatrix} \partial \hat{n}/\partial \delta_1 \\ \vdots \\ \partial \hat{n}/\partial \delta_n \end{pmatrix}_0 + \begin{pmatrix} \frac{\partial (\partial \hat{n}/\partial \delta)_1}{\partial \theta_1} & \dots & \frac{\partial (\partial \hat{n}/\partial \delta)_1}{\partial \theta_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial (\partial \hat{n}/\partial \delta)_n}{\partial \theta_1} & \dots & \frac{\partial (\partial \hat{n}/\partial \delta)_n}{\partial \theta_m} \end{pmatrix} \begin{pmatrix} \theta_1 \\ \vdots \\ \theta_m \end{pmatrix} + \dots \\ \frac{n \text{ bends}}{n \text{ bends}}$$


- "Eigenvectors" with **largest** "eigenvalues" have **maximum** impact on $\partial \hat{n}/\partial \delta$
- "Eigenvectors" with **smallest** "eigenvalues" have **minimum** impact on $\partial \hat{n}/\partial \delta$

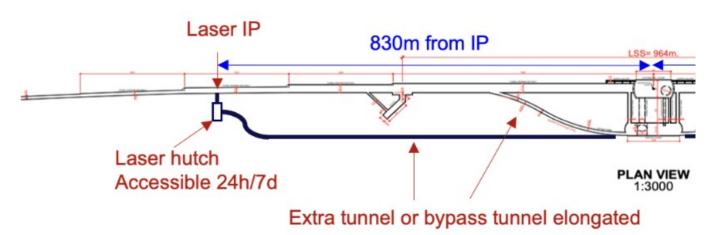
Polarized electrons at the EIC, lessons for the FCC Speaker: Georg Hoffstaetter

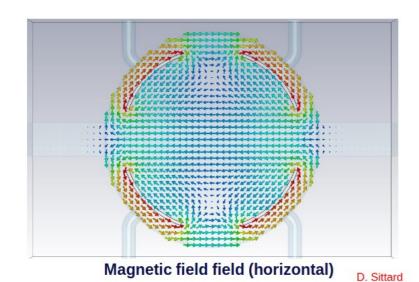
Polarization studies have changed many important features of today's ESR

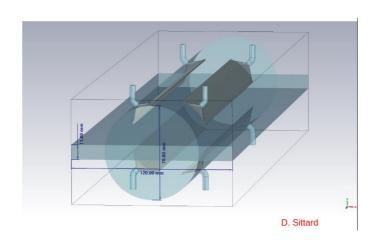

- 10 GeV Lattice Correction of 1IP/2IP Operating Energies
- ESR v5.3: Nonlinear Resonance Identified, Tunes Changed
- ESR v5.6: Partial Longitudinal Spin Match by solenoid polarity change

FCC Polarimeter

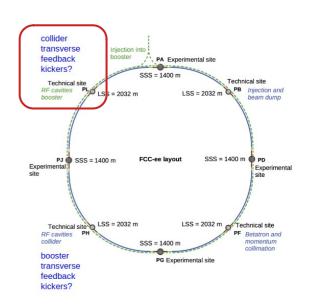
- Laser should be accessed at all times
- Baseline would require additional CE
- Separation chamber length optimized
- Extraction window optimization:


Angle and material thickness


The FCC polarimeter Speaker: Robert Kieffer

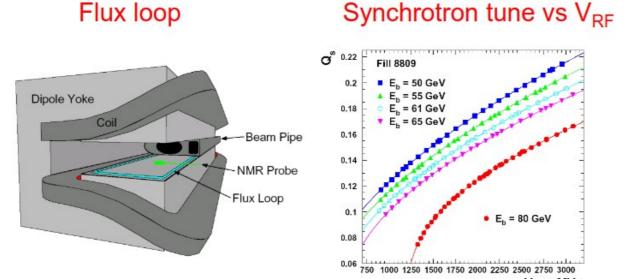

Base line: a single polarimeter per beam (2 total)

- Instrument location: both ends of LSS on each experimental IP A.
- Laser room should have a 24/7 access to insure availability.
- Needs dedicated laser hutch and access tunnels.
- Energy at IPs is inferred from one measurement point.
- Energy loss (Tapering), along the ring induce systematic errors on the energy inferred at each IP.

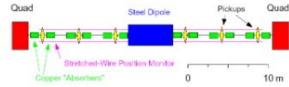

Depolarizer

First thoughts on the FCC depolarizer Speaker: Wolfgang Höfle

- First detailed thoughts on depolarizer design have started
- Combined with transverse feedback system
- Minimum 3 location required to generate closed orbit bumps
- Optimum location to be found
- 10 μrad kick at 45.6 GeV required
 - → challenging
 - → Closer to the beam
 - → Multiple depolarizers
 - → Best locations?



From LEP to the End of the FS


Redundancy for beam energy measurements

Lessons from LEP and final steps towards the final Speaker: Eric Torrence

- Especially at higher energies when RDP is more challenging
- RDP, physics measurements, free spin precession
 - LEP2 used 3 separate methods to extrapolate RDP

In-line spectrometer

Agreement lead us to believe $dE_b/E_b = 10$ MeV uncertainty

Outlook

• Presently aimed to achieve a few keV systematic (ptp) uncertainty at the Z- / W- modes -> EPOL

- Important questions aimed to be investigated in the future, for example:
 - Could/should we aim to inject already polarized bunches?
 - What are the best locations for the depolarizer and the polarimeter?

•

Regular EPOL meetings:

indico.cern.ch/category/8678/ Typically every third Thursday 16:30-18:30

Any help is welcome!

Mailing list:

fcc-ee-PolarizationAndEnergyCalibration@cern.ch

Self-subscription from:

https://e-groups.cern.ch/e-groups/EgroupsSearch.do

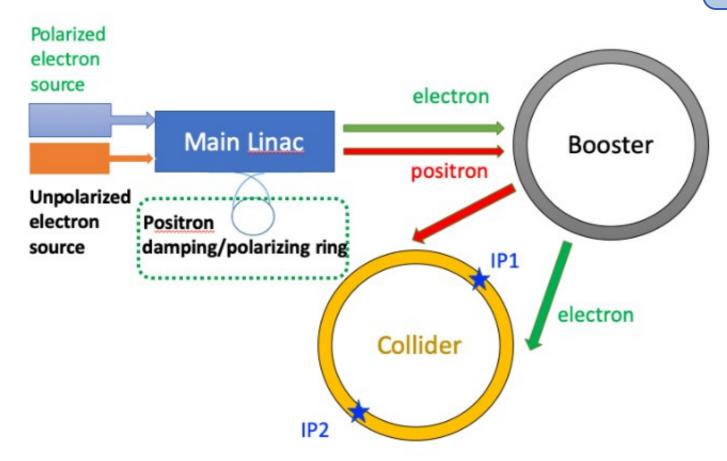
Thank you!

EPOL Summary

Jacqueline Keintzel, Eric Torrence and Guy Wilkinson

On behalf of the FCC-ee EPOL working group

FCC Week 2024


San Francisco, California, USA 14 June 2024

FCCIS – The Future Circular Collider Innovation Study. This INFRADEV Research and Innovation Action project receives funding from the European Union's H2020 Framework Programme under grant agreement no. 951754.

CEPC Polarization Scheme

Courtesy: Zhe Duan

- Injection of polarized electrons and positrons in collider rings at Z and W
 - Longitudinal polarization for physics bunches
 - Transverse polarization for pilot bunches
 - More time for physics

Possibly also polarized beams at H