Physics Summary

June 10-14, 2024 FCC Week, San Francisco

Christoph Paus, MIT

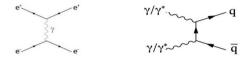
Parallel Presentations

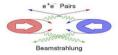
Monday	Monday		Tuesday				Wednesday						
Plenary	Board Room	Parallel 1	Parallel 2	Parallel 3	Parallel 4	Board Room	Plenary	Parallel 1	Parallel 2	Parallel 3	Board Room	Plenary	Parallel
Colonial	Yorkshire	Elizabethan A	Elizabethan B	Elizabethan C	Elizabethan D	Yorkshire	Colonial	Elizabethan A	Elizabethan B	Elizabethan C	Yorkshire	Colonial	Elizabeth A
Welcome coffee (I	Italian)		Welcome coff	fee (California	East & West))		Welcome cof	fee (California	East & West)		We
1) Welcome remarks 2) CERN plans 3) A view from CERN Council 4+5) NSF and DOE Opening Remarks		Physics Case & Th. Calculations (i)	PCC-ee baseline des an & optics top- up	Safety				Detector Requirement s (i)	Collective Effects	Sustainability and impact generation			Detecto Requirem s (ii)
Coffee break (Ita	alian)		Coffee Brea	k (California E	East & West)		Coffee Break (California East & West)						С
1) Key Note 2) FCC FS status 3) FCC Collaboration status		Physics Case & Th. Calculations (ii)	Optics alternatives & Inssons	Transport, logistic and Survey	Synergies and innovation			Software	FCC-ee optics correction & tuning	Sustainability and impact generation			Machin Detectc Interface
Lunch break (California East & West)			Lunch (California E			Governance meeting		(Cali	Lunch break fornia East & '				((
1) Implementation scenario 2) Civil Engineering		Detector Concepts (i)	FCC-ee injector incl. booster (i)	Civil Engineering	Directions for R&D	neeting		Machine Detector Interface (i)	SRF Technology (ii)	Magnets			EPOL (

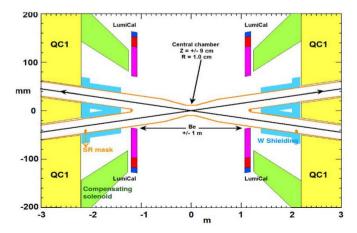
Parallel Presentations

		Version: 2.0		Date:	04.06.2024																					
Day	Sunday	Monday				Tuesday			Wednesday			Thursday														
Time SFO	Front desk	Plenary	Board Room	Parallel 1	Parallel 2	Parallel 3	Parallel 4	Board Room	Plenary	Parallel 1	Parallel 2	Parallel 3	Board Room	Plenary	Parallel 1	Parallel 2	Parallel 3	Parallel 4	Board Room							
Room	Georgian	Colonial	Yorkshire	Elizabethan A	Elizabethan B	Elizabethan C	Elizabethan D	Yorkshire	Colonial	Elizabethan A	Elizabethan B	Elizabethan C	Yorkshire	Colonial	Elizabethan A	Elizabethan B	Elizabethan C	Elizabethan D	Yorkshire							
08:00-08:30		Welcome coffee (It	alian)		Welcome coff	ee (California	East & West)		Welcome coffee (California East & West)			Weicope coffee (California East & West)														
08:30-09:00		1) Welcome remarks 2) CERN plans		Physics	FCC-ee					Determine				- (Detector	FCC- e code			g g							
09:00-09:30		3) A view from CERN Council		Case & Th. Calculations	caseline casign & optics, top-	Safety			/	Detector Requirement s (i)	Collective Effects	Sustainability and impact generation			Requirement s (ii)	development and other		RF and Cryo	vernar neetin							
09:30-10:00		4+5) NSF and DOE Opening Remarks		(1)	h					- ()					- (-)	thimes			<u> </u>							
10:00-10:30		Coffee break (Ital	lian)		Cofee Brea	k (California E	ast & West)			Coffe	ee Break (Cali	fornia East &	West)		Confe	e Break (Cali	fornia East & V	West)								
10:30-11:00				Physics	Optics	Transport,	Synergies				FCC-ee	Sustainability			Machine		Injection &									
11:00-11:30		1) Key Note 2) FCC FS status 3) FCC Collaboration		Calculations	Calculations	Calculations	Calculations	Calculations	Calculations	Calculations	Calculations	alternatives & essons	logistic and Survey	and innovation	1		Software	contics correction & uning	and impact generation			Detector Interface (ii)	FCC-hh design	instrumentati on	Utilities	
11:30-12:00		status									uning															
12:00-12:30					Lunch	break		ance ing			Lunch break					Lunch break			-							
12:30-13:00		Lunch break			(California E			Governance meeting		(Cali	fornia East &	West)			(Calif	fornia East & \	West)									
13:00-13:30		(California East & V	West)																							
14:00-14:30		1) Implementation		Detector	FCC-ee	Civil	Directions	ting		Machine	SRF Technology	Magnets			EPOL (i)	high-field magnets for	Vacuum	AIML mini								
14:30-15:00		scenario 2) Civil Engineering		Concepts (i)	tooster (i)	Engineering	for R&D	meetir		Interface (i)	(ii)	Magneta			21 02 (i)	FCC-hh 1	Vacuum	workshop	δĽ							
15:00-15:30		 Accelerator status Technologies & TI 		Coffe	e Beak (Calif	ornia East & V	Vest)	nance		Coffee Brea	ak (California I	East & West)			Coffee Brea	k (California E	East & West)		meetir							
15:30-16:00	am on	Coffee break (Italian	room)					Goverr											nance							
16:00-16:30	Registration s from 07:30am c Monday	1) Super KEKB status and	<u>8</u>	Detector Concepts (ii)	FCC-ee injector incl.		SRF Technology		Plenary: US Session						EPOL (ii)	high-field magnets for	Beam Intercepting	AIML mini workshop	Goven							
16:30-17:00	Reg from M	plans 2) The Physics at FCC	ernar	(")	booster (ii)	and services	(1)									FCC-hh 2	devices									
17:00-17:30	+ 8	3) Detectors requirements and benchmarks	S S S S							8																
17:30-18:00		4) Planning for upcoming workshops 5+6) US Plans FCC-PED,				g ce				Governance meeting		Early Career Researchers			Detector Requirement											
18:00-18:30		FCC-ACC		Detector Concepts (iii)	FCC-ee hjector incl. booster (iii)	Governance meeting				Gov					s (iii)											
18:30-19:00				(18)	booster (III)	²																				

Physics&Detector Summary

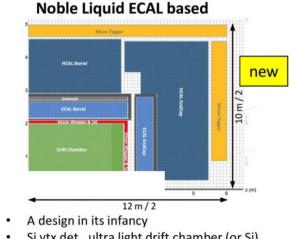

June 10-14, 2024 FCC Week, San Francisco

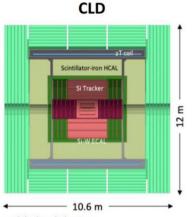

Christoph Paus, MIT


Basic Detector Requirements

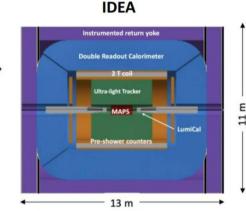
Detector requirements - general considerations

- Requirements for Higgs and above have been studied to some extent by LC:
 - we want a detector that is able to withstand a large dynamic range:
 - in energy (√s = 90 365 GeV)
 - in luminosity (L = $10^{34} 10^{36} \text{ cm}^2/\text{s}$)
- most of the machine induced limitations are imposed by the Z pole run:
 - large collision rates ~ 33 MHz and continuous beams
 - no power pulsing possible
 - large event rates ~ 100 kHz
 - fast detector response / triggerless design challenging (but rewarding)
 - high occupancy in the inner layers/forward region (Bhabha scattering/γγ hadrons)
 - o beamstrahlung
- complex MDI: last focusing quadrupole is ~ 2.2m from the IP
 - magnetic field limited to B = 2T at the Z peak (to avoid disrupting vertical emittance/inst. Lumi via SR)
 - limits the achievable track momentum resolution
 - o "anti"-solenoid
 - limits the acceptance to ~ 100 mrad




Basic Detector Designs

Detector Benchmarks


ALLEGRO

- Si vtx det., ultra light drift chamber (or Si)
- High granularity Noble Liquid ECAL as core
 - Pb/W+LAr (or denser W+LKr)
- CALICE-like or TileCal-like HCAL;
- Coil inside same cryostat as LAr, outside ECAL
- Muon system.
- Very active Noble Liquid R&D team
 - Readout electrodes, feed-throughs, electronics, light cryostat, ...
 - Software & performance studies

- Well established design
 - ILC -> CLIC detector -> CLD
- Full Si vtx + tracker;
- CALICE-like calorimetry;
- Large coil, muon system
- Engineering still needed for operation with continuous beam (no power pulsing)
 - Cooling of Si-sensors & calorimeters
- Possible detector optimizations
 - σ_p/p, σ_E/E
 - PID (O(10 ps) timing and/or RICH)?

- A bit less established design
 - But still ~15y history
- Si vtx detector; ultra light drift chamber w powerful PID; compact, light coil;
- Monolithic dual readout calorimeter;
 - Possibly augmented by crystal ECAL
- Muon system
- Very active community
 - Prototype designs, test beam campaigns, ...

Computing / Software are crucial ingredient

Assumptions and baseline needs¹

- Integrated luminosities
 - Nominal: {90, 12, 5, 0.2, 1.5} ab^{-1} at $\sqrt{s} = {91.2, 160, 240, 350, 365} GeV$
 - # of evts: 3×10^{12} visible Z decays, 10^8 WW events, 10^6 ZH events, 10^6 tt events
- Baseline event sizes / processing time for hadronic evts at Z
 - DELPHES: 7.5 kB/evt, 0.4 s/evt
 - Full stat sample sizes: 30 PB, ≈ 10¹⁰ s/core ≈ 0.5 MHS06²
 - Full sim: CLD reference: 1 2 MB/evt, 10 s/evt
 - Full stat sample sizes: 3 EB, ≈ 3 · 10¹³ s/core ≈ 10-15 MHS06² / detector ³

LHC is similar in scope.

- 1. See also: GG, C Helsens: EPJ Plus (2022) 137:30
- 2. If done over a year, assuming similar number per each detector benchmark
 - a. CERN Openstack Core = 10-15 HEPSpec06 (HS06)
 - b. CERN OpenStack node used for tests: 16 cores, 32 GB RAM
- 3. Not applying to DELPHES, because in principle one sample can be re-adapted to other detector concepts

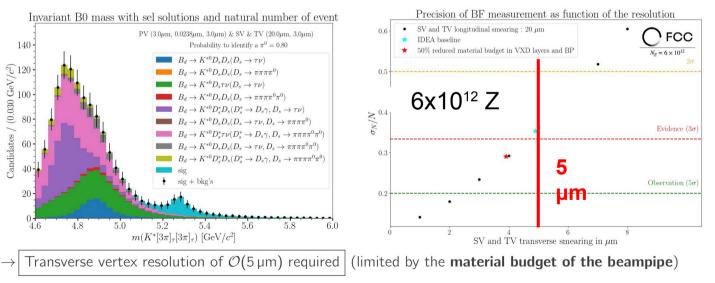
Help is always welcome in computing/software!

Basic Measurements

Marina Nogueria, Ang Li, Michele Selvaggi, Lars Röhrig, Fabrizio Palla, Nicola De Filippis

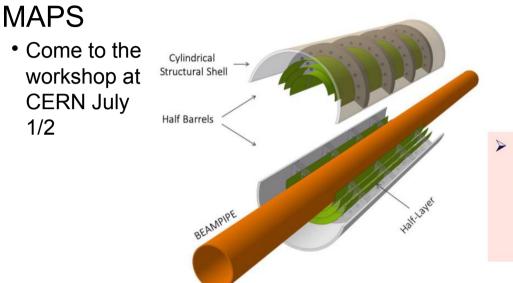
B Physics to benchmark vertex

Vertex resolution


• Requires 5 µm

And BTW

- FCC-ee has ~20 times more b and tau pairs than BelleII
- And the b/tau pairs are boosted

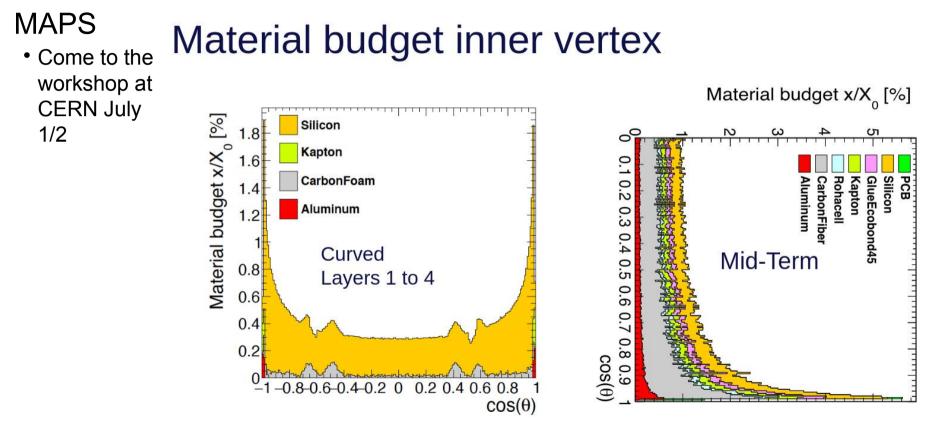

Vertex requirements: setting the stage with $b \to s\tau^+\tau^-$ **EW penguin transitions** of *b* quark in the SM very rare \to good laboratory to stress the SM Third generation transitions in $B^0 \to K^*\tau^+\tau^-$ couplings experimentally less well known

 $\rightarrow\,$ Feasibility depends on neutrino reconstruction $\checkmark\,\rightarrow$ depends on vertex precision

C T. Miralles & S. Monteil Ref.

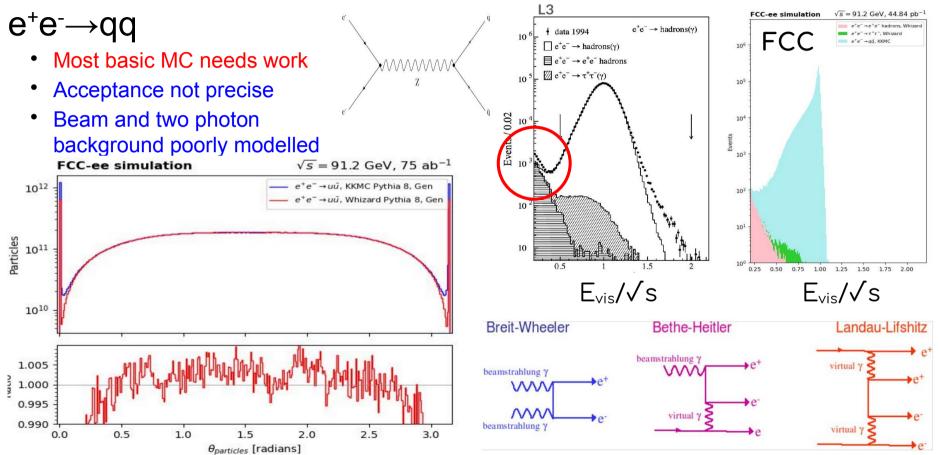
Benchmark Vertex measurements

A mini-workshop on vertex detector technologies (including system integration and mechanical aspects) will be held at CERN on July 1 and 2, with a lot of discussions:


https://indico.cern.ch/event/1417976/

Lightweight layout using an ALICE ITS3 inspired design

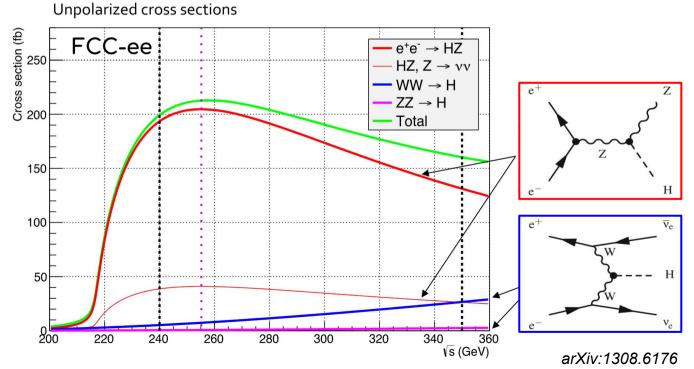
(~0.05 % X/X_0 material budget per layer – 5 times less than the Mid-Term one)


After fruitful discussions with C. Gargiulo, A. Junique, G. Aglieri Rinella, W. Snoeys

Benchmark Vertex measurements

~ 5 µm resolution

Most copiously recorded process at FCC



Higgs Physics at e⁺e⁻ Colliders

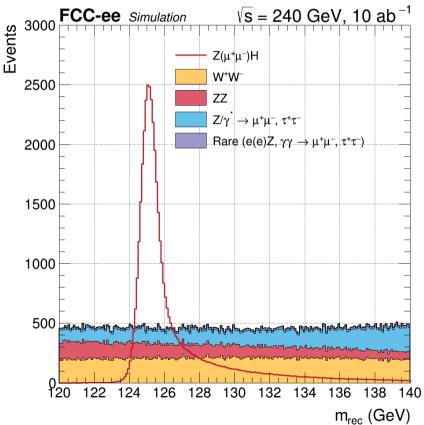
ZH Threshold turns on at 91 + 125 GeV = 216 Ge reaches a maximum at around 255 GeV

Vector boson fusion rises steadily but is small

FCC-ee: most Higgses at 240 GeV for FCC-ee considering lumi profile

Higgs Physics at e⁺e⁻ Colliders

Leading strategy


- Tag the Z boson (leptons or jets)
- Recoil mass peaks sharply at Higgs mass

 $m_{recoil}^2 = \left(\sqrt{s} - E_{ff}\right)^2 - p_{ff}^2$ $= s + m_Z^2 - 2E_{ff}\sqrt{s} \approx m_H^2$

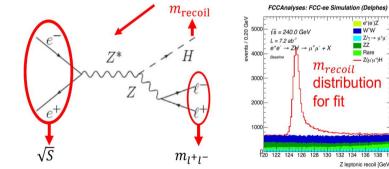
- Direct Higgs reconstruction not required, model independent σ_{ZH} measurement
- Dominant background: WW, ZZ and Z/ γ^*

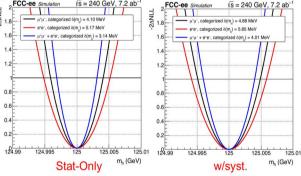
Challenges

- Detectors: resolution, tracking, vertexing, timing, angular
- Flavour tagging for Higgs couplings
- Jet reconstruction algorithms

This plot does not work at hadron colliders.

Basic Higgs Properties


Higgs mass


- Basic SM parameter
- Not a limiting factor for radiative corrections
- Essential for producings Higgs directly e⁺e⁻→H
- Widths 4.1 MeV

Higgs mass

- ***** Current best from LHC $\delta m_H \sim 100 \text{ MeV}$
- At FCC-ee, Higgs mass will reach MeV level accuracy, ($\Gamma_H \sim 4.1 \text{ MeV}$)
- **Constant Section and Muons final states:** $e^+e^- \rightarrow ZH \rightarrow l^+l^- + XX$, $(Z \rightarrow \mu^+\mu^-, e^+e^-)$
- ★ M_{recoil} from the Z production without measuring the Higgs production final state

 $m_{\rm recoil}^2 = (\sqrt{s} - E_{l\bar{l}})^2 - p_{l\bar{l}}^2 = s - 2E_{l\bar{l}}\sqrt{s} + m_{l\bar{l}}^2$

 $\sqrt{s} = 240 \text{ GeV}$

 $L = 7.2ab^{-1}$

Gregorio Bernardi

Jan Eysermans

DOI 10.17181

Ang Li

Uncertainty Stat-Only, and w/ systematics: → Higgs mass: 3.1 MeV → 4.0 MeV

Higgs mass, Fit with analytic shape

- Signal Shape: 2 Crystal-Ball with Gaussian core
- Backgrounds modelled as polynomial (3rd order)
- > Signal and background injected in Combine, m_H as POI

Dominant Syst. Unc. : Centre-of-mass with ~ 2 MeV

Basic Higgs Properties

350

√s = 240 GeV

Muon final state Z(u+u−)⊢

- IDEA perfect resolution

IDEA CLD silicon tracker

IDEA

Higgs mass

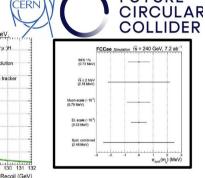
- Basic SM parameter
- Not a limiting factor for radiative corrections
- Essential for producings Higgs directly e⁺e⁻→H
- Widths 4.1 MeV

Higgs Mass – Detector Requirements

Extended studies performed regarding detector/accelerator effects on the Higgs mass

 \rightarrow Looking at impact on $\rm m_{H}$ uncertainty stat. (stat.+syst.) in MeV

Nominal configuration Crystal ECAL to Dual Readout


Nominal 2 T \rightarrow field 3 T

IDEA drift chamber \rightarrow CLD Si tracker

Impact of Beam Energy Spread uncertainties

Perfect (=gen-level) momentum _ resolution

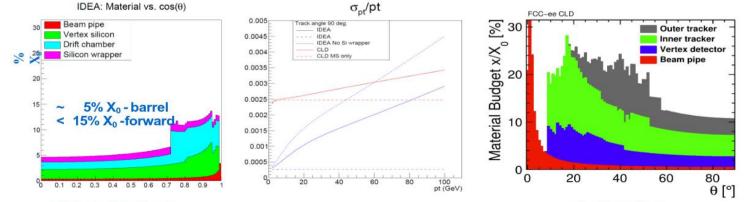
$\mu^+\mu^-$ channel	e^+e^- channel	combination
4.10 (4.88)	5.17(5.85)	3.14 (4.01)
4.84(5.53)	6.16(6.73)	3.75(4.50)
4.10 (4.88)	5.98(6.49)	3.32(4.11)
3.38(4.28)	4.30(5.00)	2.60(3.54)
$5.51 \ (6.07)$	6.20 (6.70)	4.01 (4.66)
4.10(5.01)	5.17(6.10)	3.14(4.09)
2.27(3.42)	3.11 (4.04)	1.80(2.99)
2.89(3.95)	3.89(4.56)	2.39(3.33)
4.10 (4.88)	5.17(5.85)	3.14(4.00)
3.37(4.34)	3.85(4.80)	2.49(3.56)
	4.10 (4.88) 4.84 (5.53) 4.10 (4.88) 3.38 (4.28) 5.51 (6.07) 4.10 (5.01) 2.27 (3.42) 2.89 (3.95) 4.10 (4.88)	4.10 (4.88) 5.17 (5.85) 4.84 (5.53) 6.16 (6.73) 4.10 (4.88) 5.98 (6.49) 3.38 (4.28) 4.30 (5.00) 5.51 (6.07) 6.20 (6.70) 4.10 (5.01) 5.17 (6.10) 2.27 (3.42) 3.11 (4.04) 2.89 (3.95) 3.89 (4.56) 4.10 (4.88) 5.17 (5.85)

FUTURE

Momentum resolution

Minimal material matters

- TDC is very light
- Silicon detectors could be as light?
- Larger radius improves resolution ...
- Higher magnetic field improves resolution: 2T to 3T improves momentum 50% and mass by 14%


Requirements on track momentum resolution

The IDEA Drift Chamber is designed to cope with transparency

- a unique-volume, high granularity, fully stereo, low-mass cylindrical
- gas: He 90% iC₄H₁₀ 10%
- inner radius 0.35m, outer radius 2m
- length L = 4m

The CLD silicon tracker is made of:

- six barrel layers, at radii ranging between 12.7 cm and 2.1 m, and of eleven disks.
- the material budget for the tracker modules is estimated to be 1.1 – 2.1% of a radiation length per layer

For 10 GeV (50 GeV) μ emitted at an angle of 90° w.r.t the detector axis, the p_T resolution is

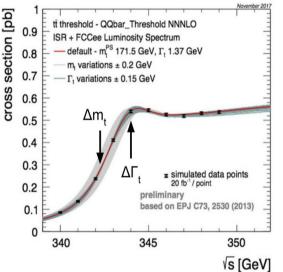
- about 0.05 % (0.15%) with the very light IDEA DCH
- about 0.25% (0.3%) with the CLD full silicon tracker, being dominated by the effect of MS

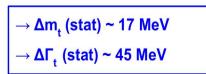
Basic Top Properties

Top mass Top Threshold

- Basic SM parameter
- Hadron colliders have problemtic definition of mass
- Theoretically much cleaner access at lepton colliders

•


- Current run plan at the top threshold
 - 1 year threshold scan 340–350 GeV: total ~ 1.4 ab⁻¹
 - 4 years at 365 GeV: total ~ 2.3 ab^{-1}


Threshold scan to extract the Top mass and width (similar as WW)

- Relative large uncertainty on top mass (+/- 0.5 GeV from HL-LHC)
- Need to constrain shape in optimal way
- Possible to constrain backgrounds (below) and ttH (above)
- Multipoint scan in 5 GeV window [340, 345], each ~ 25 /fb to be studied

At 365 GeV, with 2.3 ab⁻¹

- Top properties
- Higgs properties (ee $\rightarrow \nu\nu$ H): total cross-section, couplings, width

COLLIDER

Higgs Couplings beyond the third generation fermions

David d'Enterria, Francis Petriello, Loukas Gouskos, Michele Selvaggi, Daniel Elvira, Xunwu Zuo

Why measure Higgs couplings?

BSM O(1TeV): Impact on H-couplings

Model	$b\overline{b}$	$c\overline{c}$	gg	WW	au au	ZZ	$\gamma\gamma$	$\mu\mu$
MSSM [40]	+4.8	-0.8	- 0.8	-0.2	+0.4	-0.5	+0.1	+0.3
Type II 2HD [42]	+10.1	-0.2	-0.2	0.0	+9.8	0.0	+0.1	+9.8
Type X 2HD [42]	-0.2	-0.2	-0.2	0.0	+7.8	0.0	0.0	+7.8
Type Y 2HD [42]	+10.1	-0.2	-0.2	0.0	-0.2	0.0	0.1	-0.2
Composite Higgs [44]	-6.4	-6.4	-6.4	-2.1	-6.4	-2.1	-2.1	-6.4
Little Higgs w. T-parity [45]	0.0	0.0	-6.1	-2.5	0.0	-2.5	-1.5	0.0
Little Higgs w. T-parity [46]	-7.8	-4.6	-3.5	-1.5	-7.8	-1.5	-1.0	-7.8
Higgs-Radion [47]	-1.5	- 1.5	+10.	-1.5	-1.5	-1.5	-1.0	-1.5
Higgs Singlet [48]	-3.5	-3.5	-3.5	-3.5	-3.5	-3.5	-3.5	-3.5

<u>1708.08912</u>

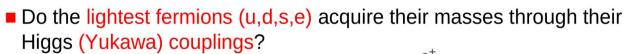
 v^2 6% Λ^2 Λ^2 (TeV

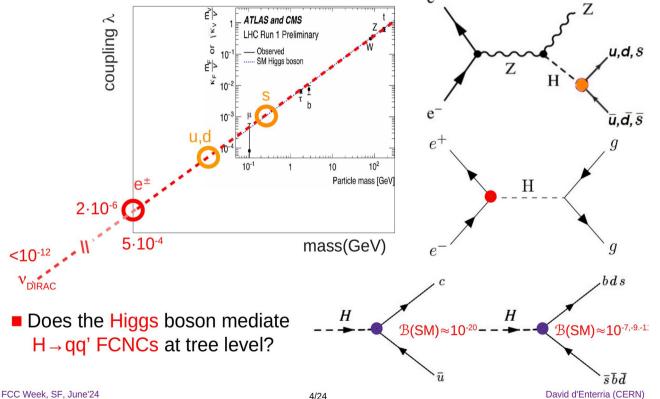
e.g. Λ=1 (5)TeV→~5 (0.1)%

• HL-LHC:

- ◆ Direct searches: O(5) TeV
- H-couplings:
 - Bosons/ 3rd-Gen fermions @ few %
 - 2nd Gen fermions: maybe evidence of H→cc
 - Self-coupling~50%

■ Future e⁺e⁻ collider:

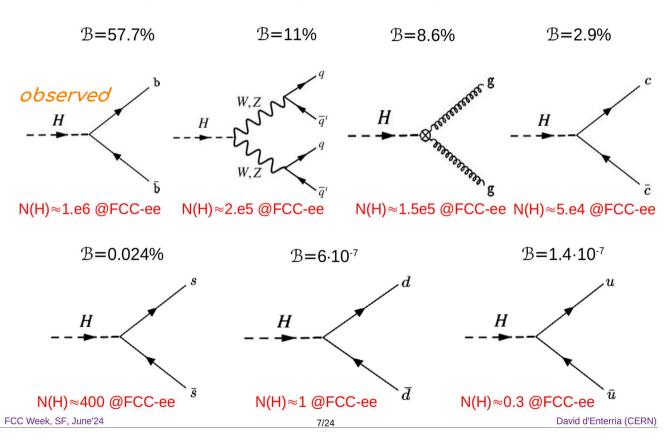

 Measure H-couplings at O(0.1)% level


Higgs to first generation

UnresolvedDo the lightest fer
Higgs (Yukawa) cHiggs decay2

modes

- Muons are only second generation seen
- Lighter fermions are very difficult

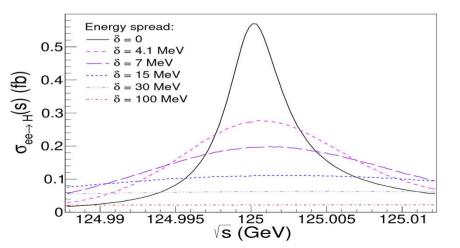

Hadronic final states dominate

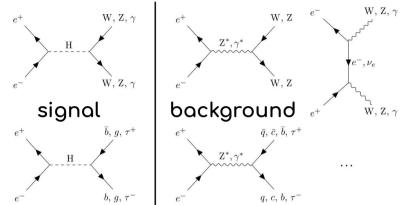
■ 80% of the Higgs decays are fully hadronic. Mostly measurable at FCC-ee!

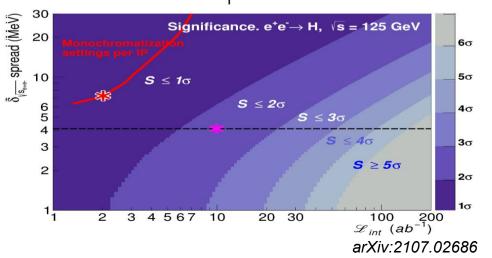
Why is this important?

 At LHC those are often hopeless – background

 FCC-ee offers cleaner environment, more handles and data calibration




Higgs Electron Yukawa Coupling


Measure $e+e- \rightarrow H \rightarrow e^+e^-$: how?

- $\Gamma_{\rm H}$ is 4.1 MeV, measure m_H at MeV level
- Dial collider E_{CM} to m_H
- Monochromatize energy: ~ 4 MeV spread
- Signal is tiny and background is very large

• 1.3 std significance per IP and per year

Higgs to gluon gluon

Gluon tagging

- Major progress in tagging makes it feasible
- $H \rightarrow gg$ has no continuum background
- But can we distinguish well enough between u,d,s and gluons?

- No e⁺e⁻ background can generate 2 true gluon jets !
- Analysis performances assumed: 2 gluon-tagged jets (with 70% effic. each) u,d,s mistagging rate: ~1% Challenging, but not impossible (see next) Retains 50% of $\sigma(H \rightarrow qq) = 24$ ab signal
- BDT MVA result (removing jet vars. potentially already used in g-uds discrimination):

Signal reduction ~50% Backgd. reduction: x17

Svere Spread (Me) For \mathcal{L}_{int} =10 ab⁻¹: $S/\sqrt{B} = 55/\sqrt{2500} \approx 1.1$ Significance $\approx 1.1\sigma$ (1.3 σ , other decays)

With current best monochromatization: $y_{e} < 2.5 \times y_{eSM}$ (95% CL) per year & per IP FCC Week, SF, June'24 16/24

[DdE.Poldaru/Woicik arXiv:2107.02686]

(ab

David d'Enterna (CERIN

$e^+e^- \rightarrow Higgs$ with polarized beams **Transverse spin asymmetries** polarization

• Transverse is more obvious

Beam

- 80% not unreasonable
- Longitudinal much less clear
- Needs polarimeter: expensive
- Can work: 30%?

•The idea is to use transverse spin asymmetries to increase the sensitivity to the electron Yukawa coupling. We consider the following observables in our study.

LEFT RIGHT

 $A = \frac{N}{D}$

Electron polarized, positron unpolarized (SPo):

Electron transversely polarized, positron longitudinally polarized (DP):

Electron transversely polarized, positron longitudinally polarized (SP⁺):

Electron transversely polarized, positron longitudinally polarized (SP-):

 $N = \frac{1}{2}(\sigma^{+0} - \sigma^{-0})$ $D = \frac{1}{2}(\sigma^{+0} + \sigma^{-0})$ $N = \frac{1}{4}(\sigma^{++} - \sigma^{+-} - \sigma^{-+} + \sigma^{--})$ $D = \frac{1}{4}(\sigma^{++} + \sigma^{+-} + \sigma^{-+} + \sigma^{--})$ $N = \frac{1}{2}(\sigma^{++} - \sigma^{-+})$ $D = \frac{1}{2}(\sigma^{++} + \sigma^{-+})$ $N = \frac{1}{2}(\sigma^{+-} - \sigma^{--})$ $D = \frac{1}{2}(\sigma^{+-} + \sigma^{--})$

$e^+e^- \rightarrow Higgs$ with polarized beams

Single Spin Asymmetry

- Imaginary part in amplitude: interference
- Requires resonance (Higgs)

•The structure of transverse SSAs is dictated by the discrete symmetries of the SM.

Two key points:

$$S_T \cdot p_q = = \beta_q \frac{\sqrt{s}}{2} \sin(\theta) \cos(\phi),$$

$$\epsilon(p_e, p_{\bar{e}}, p_q, S_T) = -\beta_e \beta_f \frac{s^{3/2}}{4} \sin(\theta) \frac{\sin(\phi)}{4}$$

$$\begin{array}{ll} S_T \cdot p_q & \Rightarrow \mathsf{P} \ \mathsf{odd}, \mathsf{A_t} \ \mathsf{even} \\ & \epsilon(p_e, p_{\bar{e}}, p_q, S_T) & \Rightarrow \mathsf{P} \ \mathsf{even}, \mathsf{A_t} \ \mathsf{odd} \end{array}$$

1. These two structures have different azimuthal dependence (orientation between final-state bottom quark and transverse spin direction); they can be separated by weighting the final-state phase-space integral

2. To get a structure odd under A_t we need an imaginary part in an amplitude. At tree-level this can only come when we are on a particle resonance

$$\frac{1}{s - M^2 + iM\Gamma}$$

$e^+e^- \rightarrow Higgs with polarized beams$ Application to the ee \rightarrow bb process

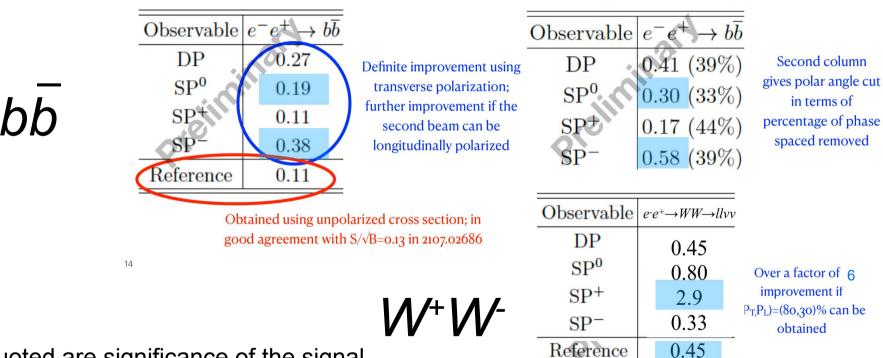
• ZH interference

Origin

 Does not work for H→gg

 Term is proportional to mass!

• Azimuthal structure is different!

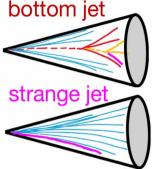

•Study the structure of the asymmetry numerator (DP in this example). Three diagrams contribute at tree-level: s-channel photon, Z-boson, and Higgs exchange.

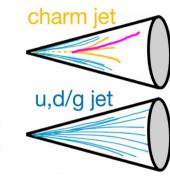
$$N = \frac{1}{2s} \int d\text{LIPS} \left\{ \frac{R_{\gamma\gamma}}{s^2} + \frac{R_{ZZ}}{(s - M_Z^2)^2} + \frac{R_{\gamma Z}}{s(s - M_Z^2)} + \frac{R_{\gamma H}(s - M_H^2)}{s[(s - M_H^2)^2 + M_H^2\Gamma_H^2]} + \frac{R_{ZH}(s - M_H^2) + I_{ZH}M_H\Gamma_H}{(s - M_Z^2)[(s - M_H^2)^2 + M_H^2\Gamma_H^2]} \right\}$$

- $$\begin{split} R_{\gamma\gamma} &= 96e^4 Q_e^2 Q_q^2 m_e(S_T \cdot p_q)(t-u) \\ R_{ZZ} &= 96m_e(S_p \cdot p_b) g_Z^4 g_{ve}^2 (g_{vq}^2 + g_{aq}^2)(t-u) + 192m_e(S_T \cdot p_q) g_Z^4 g_{ve} g_{ae} g_{vq} g_{aq} s \\ R_{\gamma Z} &= 192e^2 g_Z^2 Q_e Q_q m_e(S_T \cdot p_b) g_{ve} g_{vq}(t-u) + 96e^2 g_Z^2 Q_e Q_u m_e(S_p \cdot p_q) g_{ae} g_{aq} s \\ R_{\gamma H} &= -96e^2 Q_e Q_q y_e y_q(S_T \cdot p_q) m_q \\ R_{ZH} &= -96g_Z^2 g_{ve} g_{vq} y_e y_q(S_T \cdot p_q) s \\ I_{ZH} &= -192g_Z^2 g_{ae} g_{vg} y_e y_q m_q \epsilon(p_e, p_{\bar{e}}, p_q, S_T). \end{split}$$
- Comes from the imaginary part of the Higgs propagator and is enhanced by a factor of $M_{H\!/}$ $\Gamma_{H\!.}$
- All terms are suppressed **linearly** by the electron mass; this structure is directly proportional to the electron Yukawa couplings
- Can be isolated due to its different azimuthal structure, which follows from the discussion on the previous slide

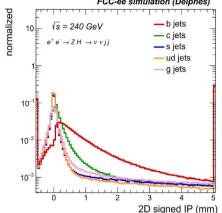
$e^+e^- \rightarrow Higgs$ with polarized beams

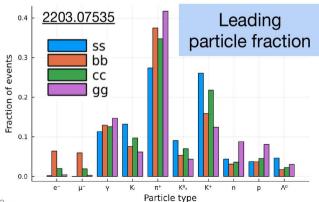
10 MeV from resonance invariant mass cut


Quoted are significance of the signal. Major improvements of up to factors of 6 possible for bb and WW


Obtained using unpolarized cross section; $S/\sqrt{B}=0.53$ in 2107.02686, likely due to use of BDT rather than simple cuts

Jet tagging


- Key to quarks and gluons
- Very different from LHC
- Huge Z and W boson decay samples to calibrate
- PID is crucial input
- Charm, strange gluon tagging works
- Seeing H→ ss is least obvious, but should be possible



- Bottom/charm tagging
 - Large lifetime
 - Displaced vertices/tracks
 Non-isolated e/µ
- Strange tagging
 Enhanced Kaon fraction
 Large momentum fraction

Loukas Gouskos

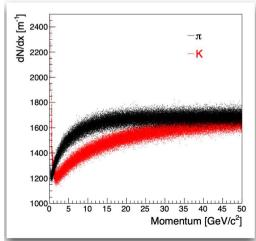
FCC Week 202-

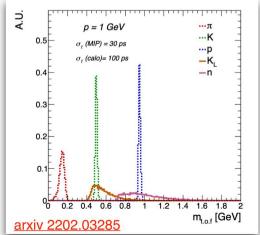
Strange Tagging needs PID

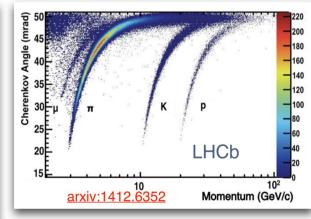
Handles for PID

dN/dx or dE/dx,

- Ionization cluster count or energy per path length
- Good separation in wide momentum range
- "Blind" region around 1 GeV
- Currently assume 2% resolution

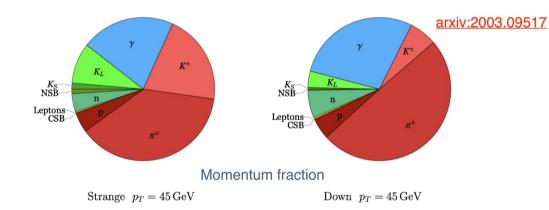

Time of flight

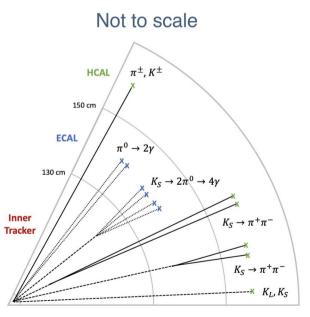

- Good separation at low momentum (~1 GeV)
- Requires ~100 ps resolution to cover PID ~1 GeV
- Current studies assume 30 ps
 resolution



RICH

- Good separation in a wide momentum range
- Need enough radiation length for good PID




Tagging Challenge: strange

Strange jet tagging

- Higher fraction of momentum carried by kaons
 - K^+/π^+ separation is the key
- Neutral kaons and s-baryons are long-lived
 - $c\tau(b/c) \approx 0.5 \text{ mm}, c\tau(s) \approx 50 \text{ mm}$
 - Requirement on vertexing, see talk by L. Roerig

s-baryons Λ, Σ, Ξ have $c\tau \approx 1-10~{\rm cm}$

Tagging Challenge: Higgs→ss

Jet tagging

- Key to quarks and gluons
- Very different from LHC
- Huge Z and W boson decay samples to calibrate
- PID is crucial input
- Charm, strange gluon tagging works
- Seeing H→ ss is least obvious, but should be possible

TOF + dN/dx

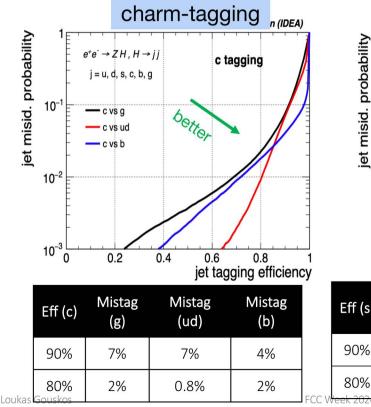
Strange tagging: Particle ID

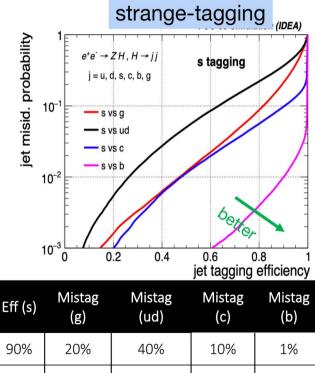
Momentum [GeV

- Big effort to design optimal PID detectors and algorithms to exploit their full potential [e.g., ECFA H→ss team, Wiki]
 - IDEA detector:

Achieve $3\sigma \pi/K$ separation for up to ~30 GeV momenta

But:


We need to carefully access impact of detector proposals to the full Higgs [and not only] physics program in general [more later]


FCC Week 2024

Jet tagging

- Key to quarks and gluons
- Very different from LHC
- Huge Z and W boson decay samples to calibrate
- PID is crucial input
- Charm, strange gluon tagging works
- Seeing H→ ss is least obvious, but should be possible

20%

6%

9%

0.4%

Tagging Challenge: Higgs→ss

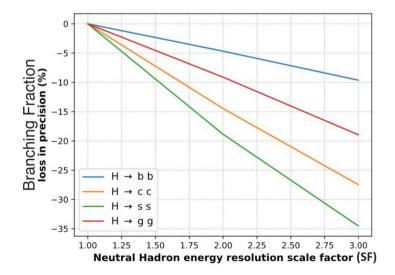
Jet tagging

- Key to quarks and gluons
- Very different from LHC
- Huge Z and W boson decay samples to calibrate
- PID is crucial input
- Charm, strange gluon tagging works
- Seeing H→ss is least obvious, but should be possible

Decay mode	Z(→LL)H(→jj) [%]	Z(→vv)H(→jj) [%]	Z(→jj)H(→jj) [%]	Combination
H→bb	0.55	0.24	0.20	0.15
Н→сс	3.35	1.77	2.38	1.20
H→ss	280	93	296	80
H→gg	1.86	0.75	1.63	0.65

 $E_{CM} = 240 \text{ GeV} [10.8 \text{ ab}^{-1}, 4 \text{ IP}]$

E_{CM} = 365 GeV [2.3 ab⁻¹, 4 IP]


Decay mode	Z(→LL)H(→jj) [%]	Z(→vv)H(→jj) [%]	Z(→jj)H(→jj) [%]	Combination
H→bb	1.23	0.68	0.52	0.39
Н→сс	8.20	3.95	4.68	2.83
H→ss	1153	214	664	201
H→gg	4.24	2.51	4.15	1.92

Calorimeter resolution matters ...

Reconstruction of Higgs hadronic final states

(Case study 1)

Higgs \rightarrow 2 jets signal ID in HZ events relies on the calorimeter (and vertex detector) performance: Mass resolution of Higgs and recoil system, flavor tagging efficiency Study to measure impact of variation in neutral hadron resolution by a factor of 2 (3) with respect to the baseline) on H \rightarrow jet-jet, with jet = b, c, s, g, with Z \rightarrow lepton-lepton

Precision of $H \rightarrow s \bar{s}$ degrades by 20% (35%)

 A bit larger than similar degradation in the number of ionization clusters per unit length (*dN/dx*) – IDEA gas chamber (*dN/dx* provides particle ID)

FUTURE

The effect the Hcc, Hgg, Hbb couplings is smaller

Increases as the s/b decreases

SF=1 (dual readout calorimeter: $30\%/\sqrt{E}$)

- 2 (ATLAS type-calorimeter: 50%/VE)
- 3 (CMS-type calorimeter: 100%/VE)

Calorimeter technologies match

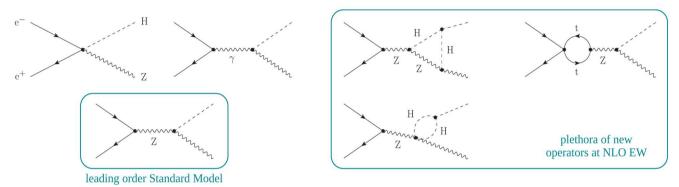
Single particle, jet, and invariant mass resolution

Expected energy resolution for the different technologies: measurements when available, otherwise obtained from (DELPHI) simulation. Those values marked with "?" are estimates since neither measurement nor simulation exists

그는 것은		E.m. energy res. stochastic term	E.m. energy res. constant term	ECAL & HCAL had. energy reso- lution (stoch. term for single had.)	had. energy reso-	Ultimate hadronic energy res. incl. PFlow (for 50 GeV jets)	
Highly granular Si/W based l	15 – 17 % [12,20]	1 % [12,20]	45 - 50% [20,45]	$\approx 6\%$?	4% [20]		
Highly granular Noble liquid	8-10% [24,27,46]	< 1 % [24,27,47]	$\approx 40\%$ [27,28]	≈ 6% ? 4–5% <mark>[49]</mark>	3-4%?		
Dual-readout Fibre calorimet	11 % [48]	< 1 % [48]	≈ 30 % [48]		3-4%?		
Hybrid crystal and Dual-read	lybrid crystal and Dual-readout calorimeter		< 1 % [30]	≈ 26 % [<mark>30</mark>]	5-6% [30,50]	3-4 % [50]	
IDEA [48] JINST 15 C06015	CLD [20] LCD-Note-2019-001	Calos for FCC-h		Crystal Calos for FCs [30] J. Instrum. 15 , P11005–P11005 (202			

Traditionally, the physics drivers for the "ultimate" ~3-4% PFlow jet energy resolution

- High efficiency for W/Z/H boson mass separation
- Separation of boosted objects (at higher energies)


SMEFT (at NLO) Generically beyond SM

Konstantin Asteriadis

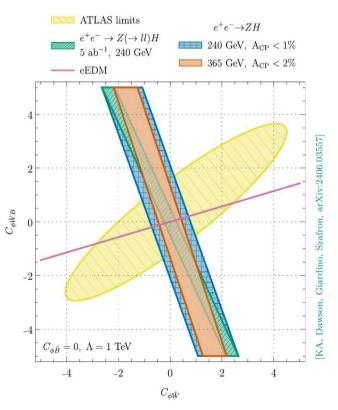
Higgstrahlung in the SM and SMEFT

SMEFT @ NLO

- Well studied on LEP data but LO only
- NLO opens up number of new operators
- Precision from FCC-ee is essential

- SM results available at NLO EW [Fleischer, Jegerlehner '83; Kniehl '92, Denner, Kublbeck, Mertig, Bohm '92; Bondarenko, Dydyshka, Kalinovskaya, Rumyantsev, Sadykov, Yermolchyk '19]
 - ... many pieces known at NNLO accuracy [Sun, Feng, Jia, Sang '17; Gong, Li, Xu, Yang, Zhao '17; Song, Freitas '21; Chen, Guan, He, Li, Liu, Ma '22; Freitas, Song, Xie '23]
- SMEFT at LO extensively studied using LEP data \rightarrow precision of future lepton collider might allow the indirect study of operators not present at LO
- Next step: SMEFT at NLO in the electro-weak expansion (first studies published KA, Dawson, Giardino, Szafron, arXiv:2406.03557 ... more to come soon)

SMEFT @ NLO


- Additional CP violating operators from NLO
- virtual corrections can develop imaginary contributions
- Instead of using full differential cross sections asymmetries should be sufficient
- LHC/FCC-ee complementary
- eEDM adds orthogonal very precise contribution

CP Violation in Higgstrahlung

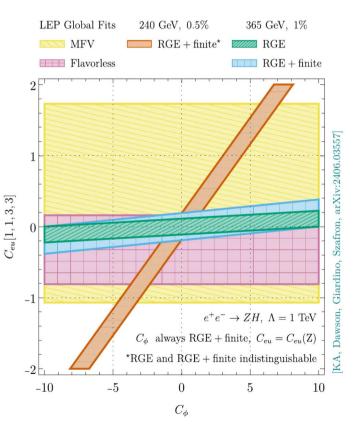
• Define CP violating asymmetry

 $A_{\rm CP} = \frac{\sigma(\cos\theta < 0) - \sigma(\cos\theta > 0)}{\sigma_{\rm SM,NLO}}$

- Expected precision for the total cross section at FCC-ee might be as low as ~ 0.5% at 240 GeV (365 GeV ~ 1%) → Assume half the precision
- Consider $C_{\phi \tilde{W}}$ and $C_{\phi \tilde{W}B}$ (other Wilson coefficients set to 0)
- Limits from H \rightarrow 4 lepton decay at LHC [ATLAS, JHEP 05, 105 (2024)]
- Strong limits from electron electric dipole moment (eEDM) that also depends on SMEFT coefficients [ACME, Nature 562, 355 (2018)]
- Potential limits through angular observables [JHEP 03, 050 (2016)]

Higgs Tri-linear and Top Quark Couplings

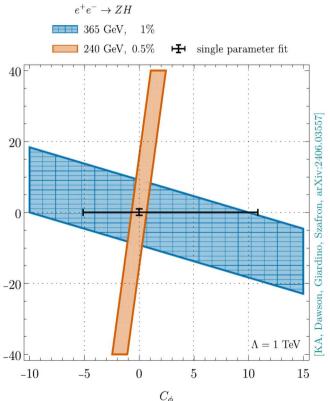
• Constraints on Higgs trilinear and electrontop coupling operators largely benefit from measurements at different E_{CM}


SMEFT @ NLO

 Different contributions have different dependence on the E_{CM}

- ^o Consider Higgs self-interaction C_{ϕ} and electron-top 4-fermion operator $C_{eu}[1, 1, 3, 3]$
- SMEFT Wilson coefficients are regulated in $\overline{\text{MS}} \rightarrow \text{Scale}$ dependent contributions $\overline{\Delta}_i$ can be obtained from RGE evolution [Jenkins, Manohar, Trott '13 '14; Alonso, Jenkins, Manohar, Trott '14]

$$\frac{\sigma_{\rm NLO}}{\sigma_{\rm SM,NLO}} = 1 + \sum_{i} \frac{C_i(\mu)}{\Lambda^2} \bigg\{ \Delta_i + \bar{\Delta}_i \log \frac{\mu^2}{s} \bigg\}$$

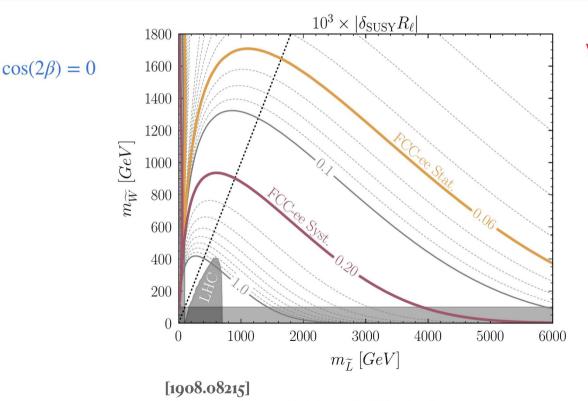

• Finite contributions Δ_i only from exact higher order computations

 $C_{u\phi}[3,3]$

SMEFT @ NLO Higgs Tri-linear and Top Quark Couplings

- Systematic framework and evaluating all different operators
- SMEFT community is catching up and will join the fun
- Consider Higgs self-interaction C_{ϕ} and anomalous top-Yukawa coupling $C_{u\phi}[3,3]$
- Single parameter limits from global fit to LHC Higgs data [JHEP 04, 279 (2021)] and HH searches [ATLAS, arXiv:2404.05498]
- Measurement at two energy scales complementary

Beyond the Standard Model Physics


Kevin Langhoff, Chris Verhaaren, Zeynep Demiragli

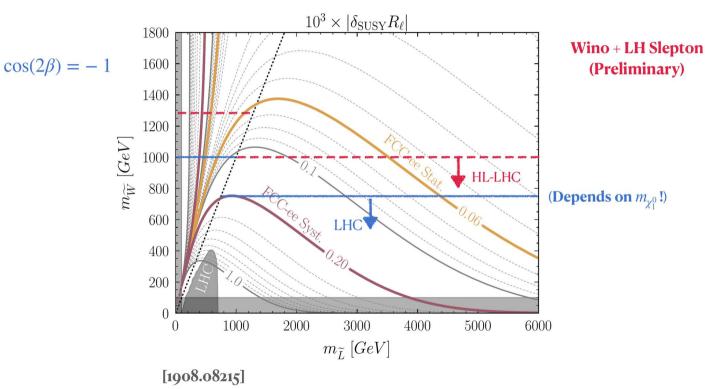
SUSY has still open phase space Results

 For certain areas of the phase space there is still room

SUSY

 Careful with older plots as the LHC might do better than indicated but ... there is room

Wino + LH Slepton (Preliminary)


Kevin Langhoff - SUSY at Tera-Z

SUSY has still open phase space Results

 LHC might do better than indicated but ... there is room

SUSY

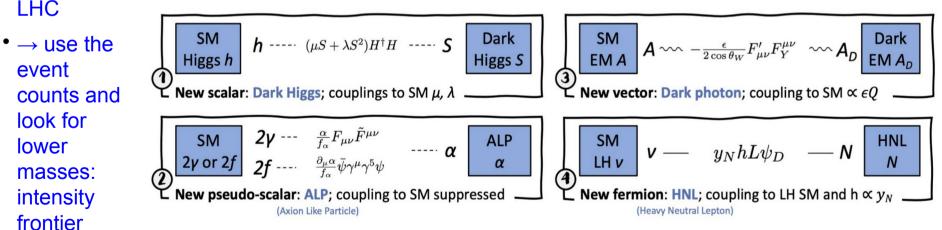
- Systematic uncertainties at FCC-ee are very important
- Theorists need to review the options, experimentalist the uncertainties

Kevin Langhoff - SUSY at Tera-Z

Dark Sector: Axion-Like Particles

Going to

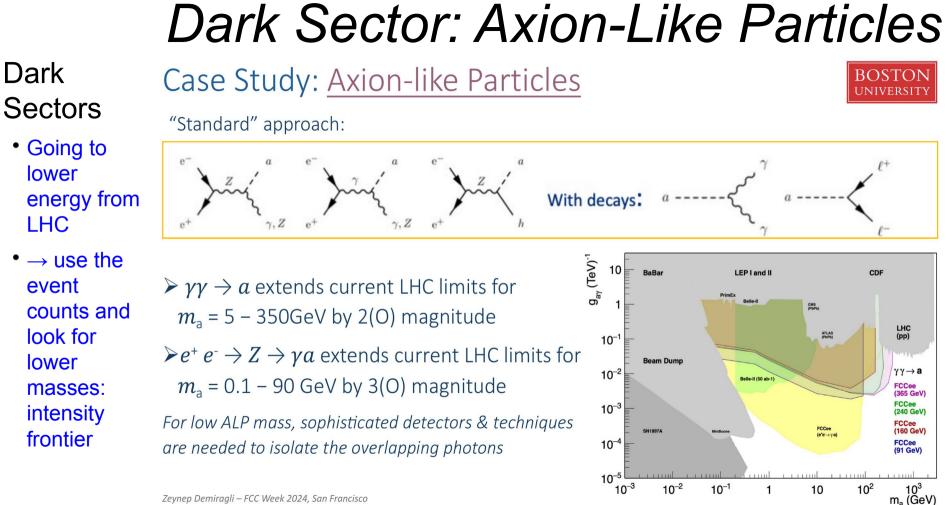
energy from


lower

LHC

Personal Favorite Motivator: Dark Sector

While the dynamics of the dark sector could be complicated... to observe a dark sector, we need a portal interaction:


New Physics could be light and feebly interacting with SM

Higgs Invisible Width

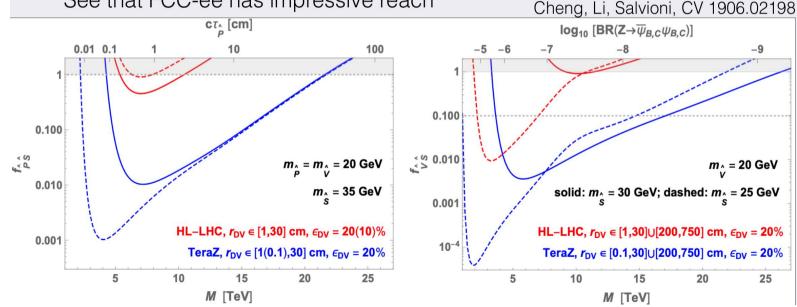
e^{-}, μ^{-}, q Higgs boson: portal to dark world e^{+}, μ^{+}, \bar{q} Use recoil and require nothing else • Measure $H \rightarrow ZZ \rightarrow vvvv$ Invisible decay products Then remove as SM background SM precision 0.1%; NP at BF of 0.5% 0.022 5o discovery expected Limit e → ZH FCC-ee Simulation (Delphes FCC-ee Simulation (Delphes) *e^{*}→ ZH 0.02 s=240 GeV, L=5 ab-1 s=240 GeV. L=5 ab⁻¹ 0.018 0.01 0.016 0.016 0.247% 0.763% 0.19% 0.436% 0.515% 0.014 0.014 H→ DM. min. BF for 0.63% 0.486% 1.1% 1.225% 1.87% 0.012 0.012 + DM BF 95% 0.01 0.0 0.008 0.008 0.006 0.006 0.004 0.004 0.002 0.002 All qq μμ ee qq ee bb bb μμ All

Recent work (FCC MIT Workshop) compares CLD full sim and CLD & IDEA Delphes fast sim.

- Efficiency is ~identical for IDEA and CLD fast simulations!
- > Electron eff is worse for full sim than for fast sim & Muon eff is very similar for full & fast sim.

Can the Z be a portal? Z-portal

Rare Z decays


• Not only the Higgs can be a portal

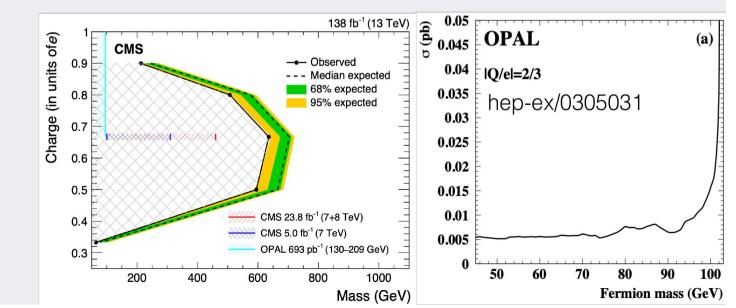
 Z resonance holds potential for exotic decays

Fraction of Z decays to hidden sector that are XY final state: f_{XY}

Grey lines motivated benchmarks

See that FCC-ee has impressive reach

Sensitive to fractional charge?

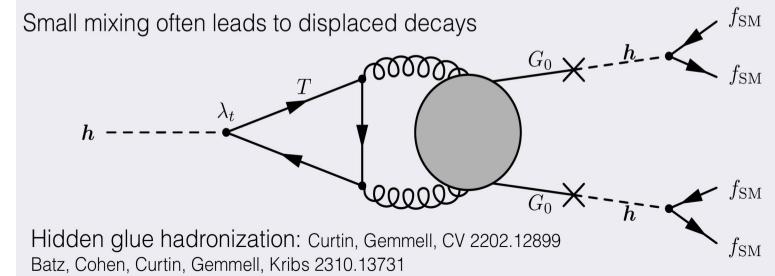

GUT

- Recent paper motivate GUTs with possible e/6 charges
- Can the FCC-ee make a contribution

Fractionally Charge Particles

Not clear that the charge e/6 target can be probed at the LHC

Can the FCC-ee make a comprehensive search/discovery up to the topquark mass?



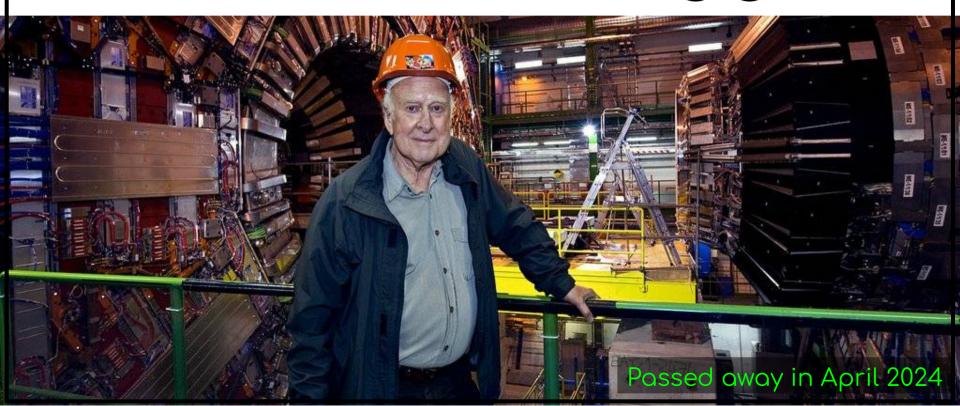
Comments

- Glueball searches are hard at the LHC
- The excess in bbbb final states will be hard to distinguish from the background

Higgs and Glueballs? Higgs Physics Exotic Higgs Decays

Lightest hidden glueball mixes with the Higgs $h \to G_0 G_0 \to \bar{f} f \bar{f} f$ (Mostly to b-quarks)

Conclusions


Status

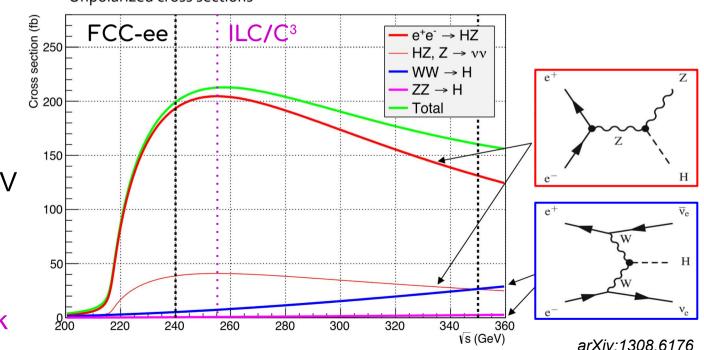
- FCC-ee produces ~2.2M Higgs bosons in pristine conditions and thus has a strong Higgs program
- There are extraordinary electroweak precison, flavor and BSM programs
- Detector design ideas exist and match the requirements
- New ideas for even better solutions are being investigated

Work that needs doing

- Work on systematics and the theory is essential
- New detector technology should be supported
- Detector integration is starting to move into focus

R.I.P. Peter Higgs

More


Higgs Physics at e⁺e⁻ Colliders

ZH Threshold turns on at 91 + 125 GeV = 216 Ge reaches a maximum at around 255 GeV

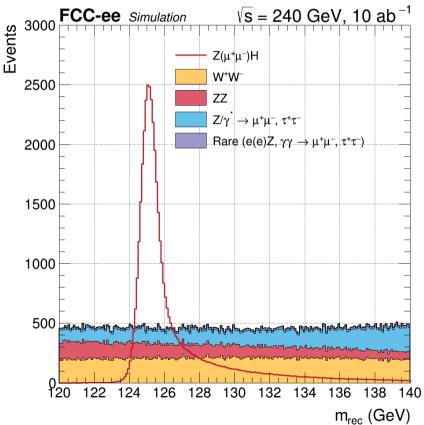
Vector boson fusion rises steadily but is small

FCC-ee: most Higgses at 240 GeV for FCC-ee considering lumi profile

ILC/C³ best at peak

Higgs Physics at e⁺e⁻ Colliders

Leading strategy


- Tag the Z boson (leptons or jets)
- Recoil mass peaks sharply at Higgs mass

 $m_{recoil}^2 = \left(\sqrt{s} - E_{ff}\right)^2 - p_{ff}^2$ $= s + m_Z^2 - 2E_{ff}\sqrt{s} \approx m_H^2$

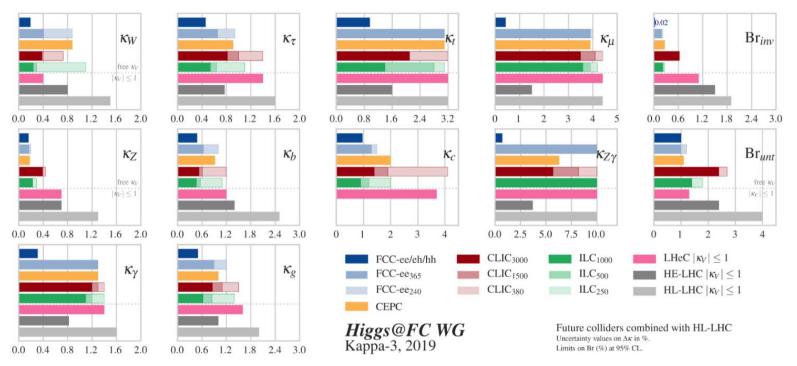
- Direct Higgs reconstruction not required, model independent σ_{ZH} measurement
- Dominant background: WW, ZZ and Z/ γ^*

Challenges

- Detectors: resolution, tracking, vertexing, timing, angular
- Flavour tagging for Higgs couplings
- Jet reconstruction algorithms

This plot does not work at hadron colliders.

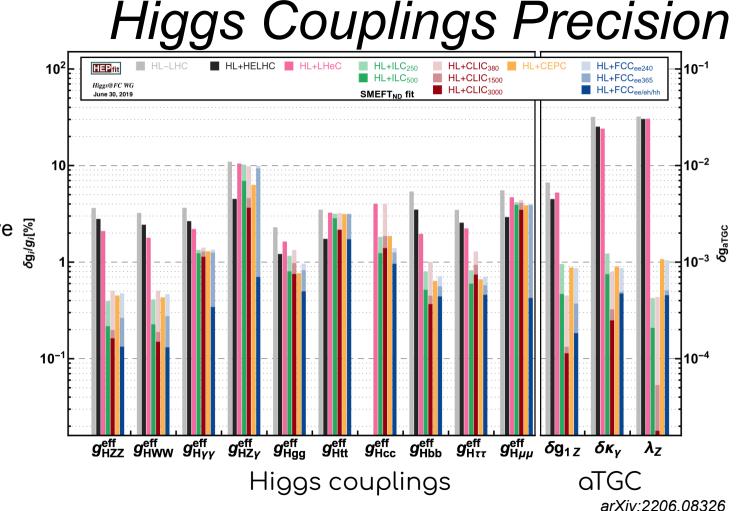
Higgs Invisible Width


e^{-}, μ^{-}, q Higgs boson: portal to dark world e^{+}, μ^{+}, \bar{q} Use recoil and require nothing else • Measure $H \rightarrow ZZ \rightarrow vvvv$ Invisible decay products Then remove as SM background 0.022 H→ DM. min. BF for 5σ discovery expected Limit e → ZH FCC-ee Simulation (Delphes FCC-ee Simulation (Delphes) e⁺e → ZH 0.02 s=240 GeV. L=5 ab⁻¹ s=240 GeV. L=5 ab⁻¹ 0.018 0.01 0.016 0.016 0.247% 0.763% 0.19% 0.436% 0.515% 0.014 0.014 0.63% 0.486% 1.1% 1.225% 1.87% 0.012 0.012 → DM BF 95% 0.01 0.0 0.008 0.008 0.006 0.006 0.004 0.004 0.002 0.002 All qq bb μμ ee qq μμ ee bb All

Recent work (FCC MIT Workshop) compares CLD full sim and CLD & IDEA Delphes fast sim.

Efficiency is ~identical for IDEA and CLD fast simulations!

Electron eff is worse for full sim than for fast sim & Muon eff is very similar for full & fast sim.

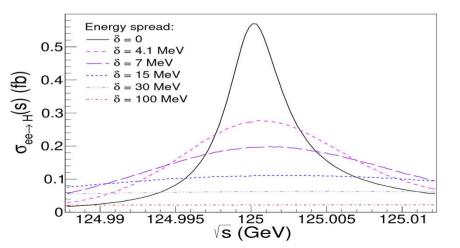

Higgs Couplings Precision

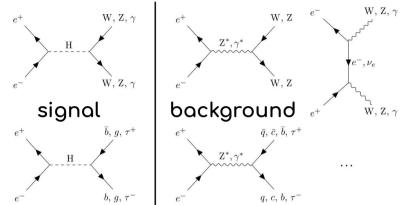
Not very dependent on the e⁺e⁻ option

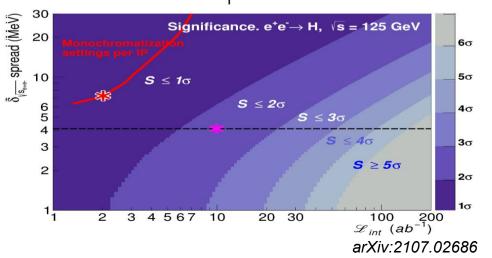
- Sensitivity to Higgs coupling is mostly around a percent
- Details of the uncertainties are dependent on the specific implementations

arXiv:2206.08326

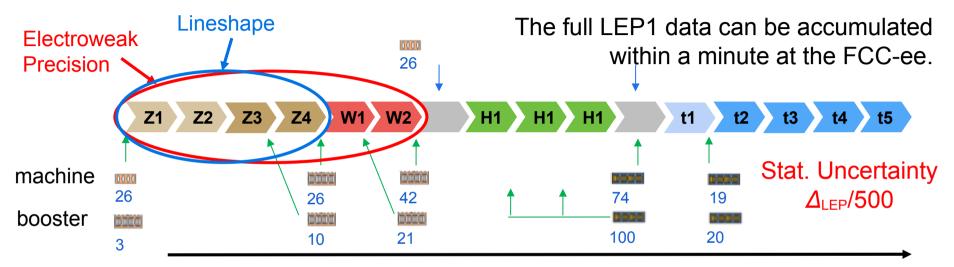
Sensitivity to deviations for


- Different effective Higgs couplings
- and aTGC


Higgs Electron Yukawa Coupling


Measure $e+e- \rightarrow H \rightarrow e^+e^-$: how?

- $\Gamma_{\rm H}$ is 4.1 MeV, measure m_H at MeV level
- Dial collider E_{CM} to m_H
- Monochromatize energy: ~ 4 MeV spread
- Signal is tiny and background is very large


• 1.3 std significance per IP and per year

'Circular Electroweak Opportunity'

time [operation years]

Working point	Z, years 1-2	Z, later	WW, years 1-2	WW, later	ZH	$t\overline{t}$	
$\sqrt{s} \; (\text{GeV})$	88, 91, 94		157, 163		240	340 - 350	365
Lumi/IP $(10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1})$	70	140	10	20	5.0	0.75	1.20
Lumi/year (ab^{-1})	34	68	4.8	9.6	2.4	0.36	0.58
Run time (year)	2	2	2	0	3	1	4
					$1.4510^{6}{ m HZ}$	1.910^{6}	³ t ī
Number of events	$6 10^{12} \mathrm{Z}$		$2.410^8\mathrm{WW}$		+	$+330\mathrm{k}\mathrm{HZ}$	
					45k WW \rightarrow H	$+80\mathrm{kWW}$	$V \to H$

Lineshape Summary

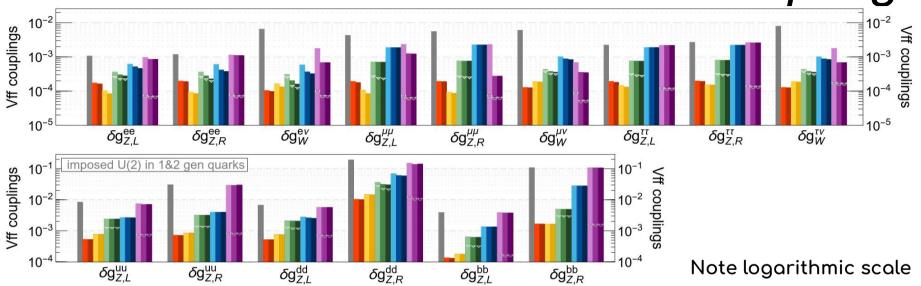
	Quantity	current	ILC250	ILC-GigaZ	FCC-ee	CEPC	CLIC380
	$\Delta \alpha(m_Z)^{-1} \; (\times 10^3)$	17.8^{*}	17.8^{*}		3.8(1.2)	17.8^{*}	
	$\Delta m_W \; ({ m MeV})$	12*	0.5(2.4)		0.25~(0.3)	$0.35\;(0.3)$	
C	$\Delta m_Z \ ({\rm MeV})$	2.1^{*}	0.7~(0.2)	0.2	0.004~(0.1)	$0.005\ (0.1)$	2.1^{*}
5	$\Delta m_H \; ({\rm MeV})$	170*	14		2.5(2)	5.9	78
	$\Delta\Gamma_W$ (MeV)	42^{*}	2		$1.2 \ (0.3)$	1.8 (0.9)	
e	$\Delta\Gamma_Z ({\rm MeV})$	2.3*	1.5(0.2)	0.12	0.004(0.025)	$0.005\ (0.025)$	2.3*
0	$\Delta \sigma_{\rm had}^0 ~({\rm pb})$	37^{*}			0.035~(4)	0.05~(2)	37*
Q	$\delta R_e \; (imes 10^3)$	2.4^{*}	0.5(1.0)	0.2 (0.5)	0.004~(0.3)	0.003~(0.2)	2.7
N	$\delta R_{\mu} \; (imes 10^3)$	1.6^{*}	0.5~(1.0)	0.2 (0.2)	$0.003\ (0.05)$	0.003~(0.1)	2.7
• •	$\delta R_{\tau} \; (imes 10^3)$	2.2^{*}	0.6~(1.0)	$0.2 \ (0.4)$	$0.003\ (0.1)$	$0.003\ (0.1)$	6
	$\delta R_b \; (\times 10^3)$	3.0^{*}	0.4(1.0)	0.04~(0.7)	$0.0014 \ (< 0.3)$	0.005~(0.2)	1.8
	$\delta R_c(\times 10^3)$	17*	0.6~(5.0)	0.2(3.0)	0.015 (1.5)	0.02~(1)	5.6

arXiv:2206.08326

Lineshape Summary

C	Quantity	current	ILC250	ILC-GigaZ	FCC-ee	CEPC	CLIC380
Б	$\Delta \alpha(m_Z)^{-1} \; (\times 10^3)$	17.8^{*}	17.8^{*}		3.8(1.2)	17.8^{*}	
	$\Delta m_W \; ({ m MeV})$	12^{*}	0.5(2.4)		0.25~(0.3)	0.35~(0.3)	
ρ	$\Delta m_Z \; ({\rm MeV})$	2.1^{*}	0.7~(0.2)	0.2	0.004~(0.1)	$0.005\ (0.1)$	2.1^{*}
οισ	$\Delta m_H \ ({ m MeV})$	170^{*}	14		2.5(2)	5.9	78
ų	$\Delta\Gamma_W ({ m MeV})$	42*	2		$1.2 \ (0.3)$	1.8 (0.9)	
S	$\Delta\Gamma_Z ({ m MeV})$	2.3*	1.5~(0.2)	0.12	$0.004 \ (0.025)$	$0.005\ (0.025)$	2.3*
D	$\Delta \sigma_{\rm had}^0 ~({\rm pb})$	37*			0.035~(4)	0.05~(2)	37*
th	$\delta R_e \; (\times 10^3)$	2.4^{*}	0.5(1.0)	0.2 (0.5)	0.004~(0.3)	0.003~(0.2)	2.7
	$\delta R_{\mu} \; (imes 10^3)$	1.6^{*}	0.5~(1.0)	$0.2 \ (0.2)$	$0.003\ (0.05)$	$0.003\ (0.1)$	2.7
\mathbf{N}	$\delta R_{ au} \; (imes 10^3)$	2.2^{*}	0.6(1.0)	0.2 (0.4)	$0.003\ (0.1)$	$0.003\ (0.1)$	6
5	$\delta R_b \; (\times 10^3)$	3.0^{*}	0.4(1.0)	0.04~(0.7)	$0.0014 \ (< 0.3)$	0.005~(0.2)	1.8
	$\delta R_c(\times 10^3)$	17*	0.6(5.0)	0.2(3.0)	0.015~(1.5)	0.02(1)	5.6

arXiv:2206.08326


Asymmetry Summary

Quantity	current	ILC250	ILC-GigaZ	FCC-ee	CEPC	CLIC380
$\Delta A_e \; (\times 10^5)$	190*	14 (4.5)	1.5(8)	0.7~(2)	1.5	64
$\Delta A_{\mu} (\times 10^5)$	1500^{*}	82 (4.5)	3(8)	2.3(2.2)	3.0(1.8)	400
$\Delta A_{\tau} (\times 10^5)$	400*	86(4.5)	3(8)	0.5(20)	1.2 (6.9)	570
$\Delta A_b \; (\times 10^5)$	2000*	53 (35)	9(50)	2.4(21)	3(21)	380
$\Delta A_c \; (\times 10^5)$	_2700*	140(25)	20 (37)	20 (15)	6 (30)	200

A few points to note

- Z pole running creates substantially improved precision for all 'LEP' measurements by close to 3 orders of magnitude (statistically speaking)
- Major work for experimental and theory community to bring that precision to bear

Global Fit focus W/Z couplings

As expected

 Precision on couplings of W and Z bosons to fermions is more competitive at circular collider