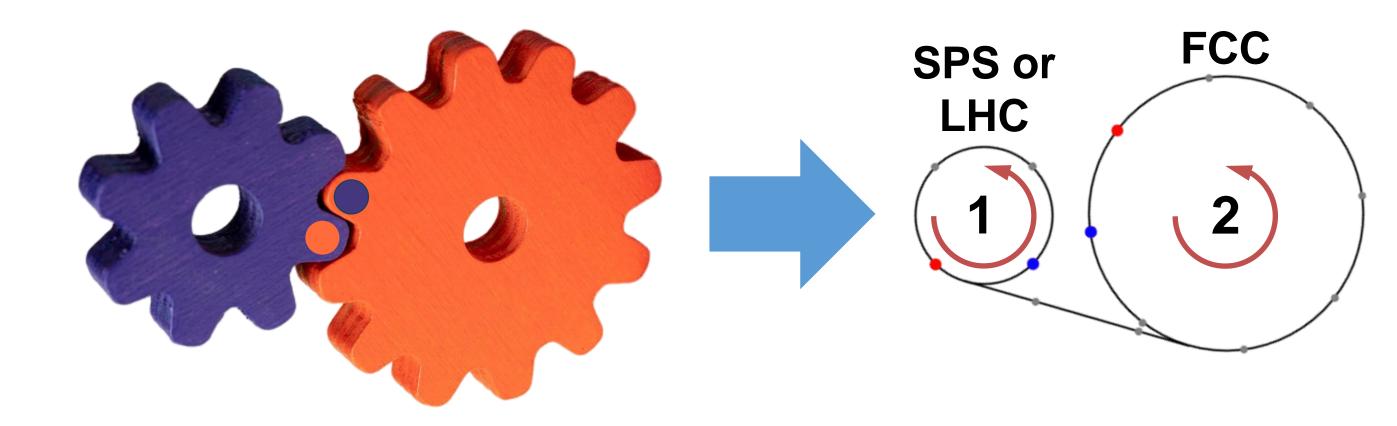


Optimization of FCC circumference for hh

H. Damerau, I. Karpov, A. Vanel CERN, Geneva, Switzerland

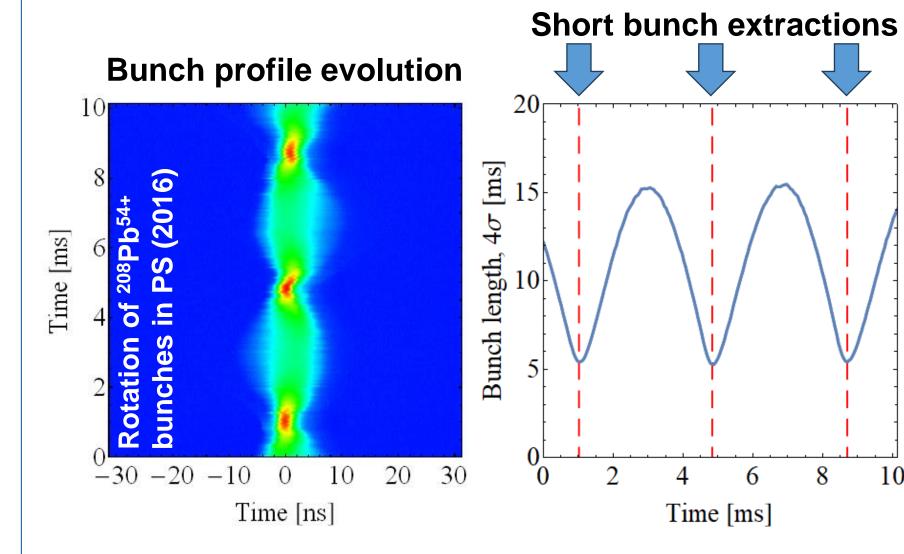
Abstract

The accelerator circumference will remain an unchangeable parameter throughout the entire life of the FCC program. A cautious choice is therefore essential to cover all present and future requirements in terms of beam transfer schemes or bunch spacing and length. The exact circumference becomes particularly important for the FCC-hh, when hadron beams will be supplied by a high-energy booster synchrotron either in the SPS or the LHC tunnel. The numerator and denominator in the rational circumference ratio between the FCC and its injector define the fundamental periodicity of possible beam transfers. The ratio of FCC and LHC for the present baseline circumference is extremely close, but not exactly 17/5. Moving it to precisely that value by shortening the tunnel by 18 m would allow hadron injections to take place every five revolutions, opening the door to, for example, RF manipulations to control the bunch length and alternative beam transfer schemes. This contribution summarizes the impact of the proposed fine tuning of the FCC circumference on RF frequencies, as well as its benefits for more flexibility at beam transfer.

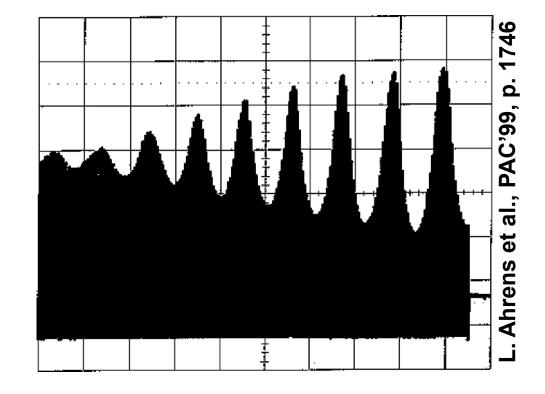

$$3.40067 \rightarrow 3.4 = 17/5 \rightarrow C_{FCC} = 90640.2 \text{ m}$$

Why small circumference ratios between hadron synchrotrons?

- \rightarrow Almost instant transfer between HEB in LHC tunnel and FCC
- \rightarrow Required for manipulations like, e.g., bunch rotation at transfer
 - Operational: AGS Booster \rightarrow AGS, CERN PS \rightarrow SPS and SPS \rightarrow AWAKE, DESY PETRA \rightarrow HERA, FNAL Booster \rightarrow MI
 - Planned: CERN SPS-LHC (ions), SSC HEB \rightarrow Collider

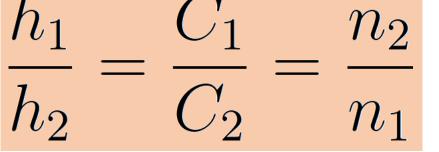

Introduction

• Transfer between circular accelerators \rightarrow cogwheeling


- For equal RF frequencies $f_{\rm RF,1} = f_{\rm RF,2}$ in both synchrotrons
- \rightarrow Ratio between harmonic numbers, *h*, circumferences, *C*, and number of turns, *n*:

- Multiple transfers of ~80-bunch batches
 - \rightarrow Required for HEB-FCC to limit transferred beam energy
- \rightarrow Trigger ejection each half-period of synchrotron oscillation, T_{s}

Peak detected beam signal $\propto 1/\tau_{bunch}$ in BNL AGS Booster


2024

 \rightarrow Only possible when $T_{\rm S}$ much larger than $n \cdot T_{\rm rev}$ \rightarrow Future exotic schemes like off-momentum or barrier-bucket stacking, etc. also very constrained

Impact of modifying FCC circumference by $\Delta C = -18$ m?

 \rightarrow Harmonic number h_{LHC} = 35640 (f_{RF} = 400.8 MHz) in LHC would correspond to $h_{FCC} = 121176 = 2^3 \cdot 3^4 \cdot 11 \cdot 17$ in FCC

- \rightarrow Beams at identical azimuths after n_1 turns in accelerator 1, corresponding to *exactly* n_2 turns in accelerator 2
- \rightarrow Present FCC circumference baseline of 90658.2 m would allow injection only every 297 turns (90 ms, i.e. 1010 turns in LHC) or every 77 turns (23 ms, i.e. 1010 turns in SPS)
- \rightarrow Prefer small rational ratios n_2/n_1 to maximize transfer occasions \rightarrow Rare opportunity to optimize length for entire FCC program

→ Change from ratio $C_{FCC}/C_{LHC} = 1010/297 \approx 3.40067$ to 17/5 = 3.4

 \rightarrow Not suitable for 25 ns bunch spacing nor particularly flexible \rightarrow Change RF frequency for FCC-ee and later for FCC-hh

Bunch spacings \rightarrow harmonic number multiple of $2^4 \cdot 3 \cdot 5 = 240$

Include also 17 as an integer factor $\rightarrow m \cdot 240 \cdot 17 = 4080$

 \rightarrow Closest to $h_{FCC} = 121176$ is $h_{FCC} = 122400 = 30.4080 = 25.32.52.17$

 \rightarrow *Proposed* RF frequency for FCC-ee: $f_{RF} = 404.8$ MHz

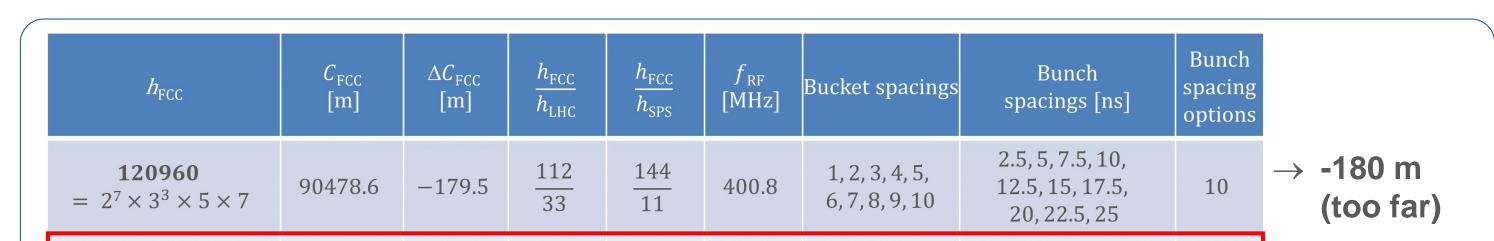
• SPS (or successor) likely required as (pre-)injector for protons \rightarrow Harmonic number must include factor 27 = 3³ \rightarrow *m*·27·4080 = 36720 \rightarrow RF frequency multiple of 121.5 MHz

 \rightarrow Proposed RF frequencies FCC-hh: $f_{RF} = 364.4$, (485.8, 607.3) MHz

Large scale accelerator facilities worldwide

\mathbf{C}	nmary	

Accelerator	Circumference [m]	Ratio	Remark
TRISTAN Acc. Ring	377.26	-	
TRISTAN	3018.08	8	Initial proton option
AGS	807.10475	-	
RHIC	3833.845	19/4	Evolution of ISABELLE, CBA
FNAL Booster	474.2	-	
FNAL MI/Recycler	3319.419	7	
FNAL MR/Tevatron	6283	53/28 (MI), 53/4 (Booster)	Originally NAL MR length
PETRA	2304	-	Initially for leptons only
HERA	6336	11/4	
IHEP Protvino U-70	1483.699	-	
IHEP Protvino UNK	20771.786	14	Tunnel completed
SPS	6911.562	-	
LEP/LHC	26658.883	27/7	
SSC HEB (1994)	10800	-	Adapted for cogging
SSC collider	87120	121/15	23 km tunnel constructed


 \rightarrow Often multiple iterations made before settling to a final circumference \rightarrow Small rational ratios of circumferences allow flexible transfer every few turns \rightarrow Conservatively chosen tunnel

lengths

studies for LEP

circumference

 \rightarrow Detailed

	110160 $= 2^4 \times 3^4 \times 5 \times 17$	90640.2					364.	364.4	1, 2, 3, 4, 5, 6, 8, 9, 10, (12)	2.7, 5.5, 8.2, 11, 13.7, 16.5, 22, 24.7, 27.4	9	\rightarrow Proposal								
	$121176 = 2^3 \times 3^4 \times 11 \times 17$		90640.2 -17.9													400.8	1, 2, 3, 4, 6, 9, (11, 12)	2.5, 5, 7.5, 10, 15, 22.5, (27.4, 29.9)	6	FCC-hh
	$122400 = 2^5 \times 3^2 \times 5^2 \times 17$			2 –17.95	0640.2 -17.95	90640.2 -17.95	<u>17</u>		$-17.95 \frac{17}{-17}$	<u>459</u>		1, 2, 3, 4, 5,	2.5, 5, 7.5, 10, 12.5, 15, 20,22.5, 25	9	\rightarrow Proposal					
	$ \begin{array}{r} 146880 \\ = 2^6 \times 3^3 \times 5 \times 17 \end{array} $		- 11170	5	35	35	485.8	6, 8, 9, 10, 12	2.1, 4.1, 6.2, 8.2, 10.3, 12.4, 16.5, 18.5, 20.6, 24.7	10	FCC-ee									
	$ 183600 \\ = 2^4 \times 3^3 \times 5^2 \times 17 $					607.3	1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15	1.7, 3.3, 4.9, 6.6, 8.2, 9.9, 13.2, 14.8, 16.5, 19.8, 24.7	11											
	$121200 \\ = 2^4 \times 3 \times 5^2 \times 101$	90658.2	0	$\frac{1010}{297}$	$\frac{1010}{77}$	400.8	1, 2, 3, 4, 5, 6, 8, 10	2.5, 5, 7.5, 10, 12.5, 15, 20, 25	8	\rightarrow Baseline										
:	$121440 = 2^5 \times 3 \times 5 \times 11 \times 23$	90837.7	+179.5	92 27	$\frac{92}{7}$	400.8	1, 2, 3, 4, 5, 6, 8, 10	2.5, 5, 7.5, 12.5, 15, 20, 25	8	→ +180 m (too far)										

FCC week 2024, The Westin St. Francis San Francisco on Union Square, California, USA June 10 - 14, 2024