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Collimation challenge: LHC vs FCC-hh

Loss of even a very small fraction of the beam could cause
« Damage to impacted elements Need collimation!
« Heating of superconducting magnets, leading to a quench

LHC FCC-hh

Cold aperture, superconductors

Quench limit
~30 W/m

Loss power up to ~0.5 MW _> _ [ Loss power up to 9.7-14 MW :
P ——ntd © ===

Beam: 7 TeV. 362 MJ

Cold aperture, superconductors

Quench limit
~30-100 W/m

Needed loss attenuation: factor >10°

ion: ~ 4 . .
Needed loss attenuation: factor ~2x10 Higher energy & smaller collimator gaps



Roles of FCC-hh collimation system

 Need collimation system to
o clean unavoidable regular losses and protect superconducting magnets
from quenches
o passive machine protection
o optimize background and radiation dose
o At the same time, keep the impedance within limits

 Main design beam loss scenarios
« Betatron cleaning 0.2 h beam lifetime during 10 s or “steady-state” 1 h beam
lifetime
« 0.2h,50TeV, 8.3 GJ stored energy => 11.6 MW beam loss power
« Off-momentum losses of unbunched beam at start of ramp: 1% over 10 s
» Extraction and injection kicker pre-fire, other possible failures



FCC-hh collimation layout

PA
{Experiment)

PL
(Injection + rf)

 Initial system design implemented for the
CDR, with betatron collimation in PJ (2.8km)
* Following layout changes:
o  Betatron collimation system in PF

{Injection + dump)

Experimental insertion
straight: 961m

Technical insertion
straight: 2032m

P
(Experiment)

PD

o  Momentum collimation system in PH Experiment]

o  Note: New layout under study with momentum
collimation in PB (combined with injection) and betatron
collimation in PH (see talk G. Perez)

« Both collimation insertions have a length
of 2.032 km

o Needed to redo the design of the collimation layout

PH PF
(Momentum (Betatron
collimation) collimation)

PG
(Experiment)

and optics
* More info on studies for latest design in paper Ring length: 90.66 km,
by A. Abramov et al. at HB'23 16-dipole arc cell

o Basis for results shown in this talk


http://accelconf.web.cern.ch/hb2023/papers/thbp18.pdf
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Design of FCC-hh collimation system

* Multi-stage system in each
collimation insertion, as in the LHC
* primary and secondary
collimators, shower absorbers,
tertiary collimators in experimental
insertions

« Some modifications /
additions implemented for the CDR
» Dispersion suppressor collimators
in cold region in many insertions,
in between dipoles
« extra shower absorbers in
extraction insertion
« removal of skew primary

principle of multi-stage cleaning

cold : primary secondary shower DS tertiary SC
aperture | collimator collimator absorbers ¢ollimator collimators triplet
|
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Betatron collimation insertion
« New optics matched with larger B- gmee bl ¢ ot ) Beesmms

functions, as in MD optics for the =g ==
—_ 5:«

LHC. Potential benefits: X Hor, coll,

+ wer coll

o Lower impedance due to larger 4000 '+ Seewcol
collimator gaps s

o Better cleaning due to 3000 { -\ ™°
larger normalized kicks due to

larger 3 2000

B [m]
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33000 33500 34000 34500 35000 35500
5[m]

Optics: PA31 V3.1



Momentum collimation insertion
PH
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 LHC-like layout and optics 2001} e
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Optics: PA31 V3.1



Collimation in experimental insertions -
otnec Tl g T

70000 A
X Hor, coll

« Two pairs of tertiary collimators on
the incoming beam, as in LHC 50000

E 40000

D [m]

30000 A

« Aperture bottleneck is no longer in

20000 A

the triplet, but in first cell of the DS
o TCT placement downstream of R s ST
bottleneck not optimal o
o Alternative upstream TCT M e e
placement studied — see later — 2
— 208
%40000- II \\ 15%
200001 /f \ ;O
: WAL 0

0 1000 2000 3000 4000
S[m]
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Assumed collimator settings

Type Material Length [m] Gap [o]

: TCP PF CFC 0.3 7.6
» Collimator gaps calculated for a TCSG PF MoGr. CFC 10 26
reference normalized emittance of 2.2 TCLA PF Inermet180 1.0 10.6
m TCLD PF Inermet180 1.0 35.1
TCP PH CFC 0.3 18.1

) ) ) TCSG PH MoGr 1.0 21.7

* Assuming also LHC-type collimators in TCLA PH Inermet180 1.0 24 1
CFC, MoGr, Inermet180 TCLD PH Inermet180 1.0 35.1
TCT PA.D.G.] Inermet180 1.0 22.1

TCLD1 PA.D,G,J Inermetl80 1.0 1254

TCLD2 PA.D,G.J Inermetl80 1.0 35.1

TCDQ PB CFC 10.0 10.8

TCLA PB Inermet180 1.0 14.8

TCLD PB, PL Inermet180 1.0 35.1
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Simulation setup of collimation performance

 FCC-hh betatron cleaning simulated for latest layout
o Generic halo losses at 50 TeV
o Impact parameter of 1 um, 108 primary protons, 700 turns

« Simulation tools: SixTrack-FLUKA coupling, XSuite-BDSIM coupling (used here)
o  XSuite-FLUKA coupling is being set up, also to be used in future studies
o Energy cut: not tracking particles below 1 TeV

« Compare with rough estimate of quench limit
o depends on magnet and design — has significant uncertainties
o Assuming 12 min beam lifetime, and that 4.3 10° p/m/s cause 10 mW/cm?3power load
=  From ELUKA simulations by M. Varasteh et al.
If quench limitis 10 mW/cm?3 => Max local cleaning inefficiency is 3x10" mt
If quench limitis 70 mW/cm?3 => Max local cleaning inefficiency is 2x106 m-t



https://indico.cern.ch/event/733292/contributions/3147557
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Simulated cleaning performance
B1H

» Losses focused in betatron cleaning insertion A P D L m R
in PF =
i B Collimat
1l1"=E == quench limit
« Overall, very good loss suppression m-—’g
—T 10-3 i
« Almost all losses below estimated quench 0
limits 107
10 /A | D
« High losses on TCLA collimators in PB “"7’§| ﬂ |
(injeCti0n+dump) with downstream cold losses e 20000 40000 60000 80000

.. . s [m]
need optimization _
Optics: PA31 V3.1
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Simulated cleaning performance

109 4
0] Zoom PF
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« Cold DS losses in PF and showers would need dedicated FLUKA study to determine
risk of quenching

« As for CDR, loads on collimators and nearby warm elements need further study
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Losses In experimental IRS | orara =i
w011 TCT layout =X i —
« With initial TCT position, cold losses .
observed upstream TCTs at global B
aperture bottleneck e
. Alternative TCT layout investigated, wrf 1|H|| _______
but very high losses on TCTs T ' ' ‘
observed ' ammma’ iy Ty ———
; ; 1 4 Modified — s
o Possibly problematic for beam . e =
background and for the TCT in __
case of high losses .
« Future work: study and optimize TCT e
positions as well as leakage from PF T e
to the experimental insertions ’\I | H|| “ ‘H

67000 67500 68000 68500 69000
s [m]
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Conclusions

FCC-hh beams are highly destructive —a good collimation system is crucial

Adapted collimation system to latest FCC-hh baseline
o  Using new high-3 optics

First iteration of cleaning performance studies performed
o  Overall good performance

o  Some areas with concerning losses need further optimization (PB, TCTs)
o  Might need to revisit optics and layout in PF to further optimize leakage

Future work to

o study other beam loss scenarios and imperfections: Off-momentum losses, failures, ...

o further studies of off-momentum system in new layout, combined with injection

o repeat key studies done for CDR: energy deposition studies, thermo-mechanical studies, impedance

studies, possibly also beam background studies



Thank you
for your attention,
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Design studies for the CDR (1)

Tracking studies R
« Cleaning performance for betatron ancz

off-momentum losses

Accidental scenarios (asynchronous
beam dump)

Conclusion: collimation system
provides excellent protection of cold
aperture; dispersion suppressor
collimators are critical

Cleaning ineffiency

Tracking + energy deposition studies on
most exposed cold magnets

Peak power density of up to about
30 mW/cm3 — factor ~2 below
estimated quench limit
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Design studies for the CDR (2)

« Tracking + Energy deposition +
thermomechanical studies of most
exposed collimators

 Conclusions:

92 kW on most loaded secondary
collimator — should be OK, no
permanent damage

50 kW/cm? peak power density at
surface of primary collimator; 660° peak
temperature — similar conditions
achieved at HiRadMat without damage
Challenges: high temperature leading
to potential outgassing, high deflection,
load on cooling pipes

X (cm)

.o_.mc.o-hmcnumm

100
10
1
0.1

M. Varasteh

‘ Deflection = 375 pm

G. Gobbi, M. Pasquali

Peak power density (W/cm?®)



Next steps

* Need to move to new 16-dipole lattice and repeat basic performance studies
* Explore optimizations of optics and collimator settings
* Study performance of momentum cleaning
* Study impedance
« Energy deposition studies to quantify risk of quench for design losses
* Maybe new thermo-mechanical studies of most loaded collimators
* Study outgassing and cooling of the most impacted elements in collimation insertion
* Study failure scenarios
« Collimation for Pb ion operation
« Energy deposition studies of collimation insertion and dispersion suppressor, possibly including
imperfections
» Further studies of secondary beams from collision points
* Imperfection studies?
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Optics of collimation insertions: CDR version

« Scaled B-functions and insertion length by factor 5 from the LHC - 2.8 km insertion length
* Increased dispersion in momentum cleaning insertion

IRJ (Betatron cleaning) IRF (Momentum cleaning)
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Collimation performance — FCC-hh protons

o CO”lmatlon performance ChECked Wlth wmm Collimator loss m— Warm loss m Cold loss Dipole Quadrupole we Collimator
) : . ) o -
tracking studlgs using the_ SixTrack- E i~ Collision, 50 TeV _ 3. Molson
FLUKA coupling and dedicated FLUKA E -
simulations of exposed magnets g e
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cold machine aperture, thanks to
dispersion suppressor collimators

Most loaded cold magnet
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FCC collimator design

Assuming LHC-type collimators, with some design
modifications, following iterative simulations of
tracking, energy deposition and thermo-mechanical
response

Materials

* Primary collimators, and most loaded secondary
collimator made of carbon-fiber-composite
(CFC) for maximum robustness

* Remaining secondary collimators in MoGr with
5 um Mo coating for a good compromise
between impedance and robustness

Collimators would survive design losses in
simulations, but some challenges remain: high
temperature leading to potential outgassing, high
deflection, load on cooling pipes
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