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Beam exists in 6-D position-momentum phase space

Have incomplete information: measure 2-D projections or reconstruct 
based on perturbations of upstream controls (e.g. tomography, quad scans)

Have dozens-to-hundreds of controllable variables and hundreds-of-
thousands to monitor 
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A. Marinelli, IPAC’18A. Marinelli, et al., Nat. Commun. 6,  6369 (2015)

Many tuning problems require detailed beam phase 
space customization for different experiments

Nonlinear, high-dimensional optimization/control problem



J. Qiang, et al., PRSTAB30, 
054402, 2017

MeasurementSimulation

“10 hours on thousands of 
cores at the NERSC”
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A. Marinelli, et al., Nat. Commun. 6,  6369 (2015)

Rapid beam 
customization

Achieve new 
configurations + 

unprecedented beam 
parameters 

Fine control to 
maintain

stability within 
tolerances 

wide spectrum of tuning needs



nonlinear effects / 
instabilities

fluctuations/noise
(e.g. initial beam conditions)

hidden variables / sensitivities

reality
vs.
simulation

drift over time 

F. Wang

many small, compounding 
sources of uncertainty

J. Qiang, et al., PRSTAB30, 
054402, 2017

MeasurementSimulation

“10 hours on thousands of 
cores at the NERSC”

computationally expensive simulations



moreassumed knowledge of machine

Model-Free 
Optimization

Observe performance change after a 
setting adjustment

 à estimate direction or apply 
heuristics toward improvement

Model-guided 
Optimization

Update a model at each step

 à use model to help select the next 
point

Global Modeling + 
Feed-forward Corrections

 

àprovide initial guess (i.e. warm start) 
à provide insight to operators
àmodel-based control

gradient descent
simplex

ES

Bayesian optimization
reinforcement learning

ML system models +
inverse models

Tuning approaches leverage different amounts of data / previous knowledge
 à suitable under different circumstances

 
 

J. Kirschner

less

General strategy: start with sample-efficient methods that do well on new systems, then build 
up to more data-intensive and heavily model-informed approaches. 



Sextupole tuning for IP at FACET-II

Longitudinal phase space 
tuning on LCLS

Hanuka et. al. PRAB , 2021

Higher-precision optimization possible 
when including hysteresis effects in model

BO on sys. with 
hysteresis

Hybrid BO on 
sys. with 
hysteresis

Duris et. al. PRL , 2020

Roussel et. al. PRL , 2022

Roussel et. al. PRAB , 2021

FEL pulse energy tuning at LCLS Loss rate tuning at SPEAR3

Multi-objective 
Bayesian Optimization

target

Many successes 
with Bayesian 
Optimization

 (+ improvements)

Algorithms being implemented/distributed in Xopt: https://github.com/ChristopherMayes/Xopt 

https://github.com/ChristopherMayes/Xopt


Fast-Executing,  Accurate System Models

7

Accelerator simulations that include nonlinear and 
collective effects are powerful tools, but they can 

be computationally expensive

ML models are able to provide fast approximations to simulations
 (“surrogate models”)

< ms execution speed

106 times speedup
10 hours on 
thousands of 
cores at NERSC! Edelen et al., NeurIPS 2019

Long history now of using ML modeling to enable accurate predictions of accelerator system responses with unprecedented speeds

https://ml4physicalsciences.github.io/2019/files/NeurIPS_ML4PS_2019_90.pdf


Fast-Executing,  Accurate System Models

8

< ms execution speed

106 times speedup

Bringing simulation 
tools from HPC 

systems to 
online/local 
compute

Online prediction
Model-based control

Control prototyping
Experiment planning

ML models are able to provide fast approximations to simulations
 (“surrogate models”)

Edelen et al., NeurIPS 2019

Long history now of using ML modeling to enable accurate predictions of accelerator system responses with unprecedented speeds

https://ml4physicalsciences.github.io/2019/files/NeurIPS_ML4PS_2019_90.pdf


 

 
 

• ML models trained on detailed physics simulations with nonlinear collective effects
• Accurate over a wide range of settings à calibrate to match machine measurements
• Used to develop/prototype new algorithms before testing online 

(e.g. BAX w/ 20x speedup in emittance tuning https://arxiv.org/abs/2209.04587)

• Will provide initial parameters for downstream model

prototyping 
optimization
algorithms

In Regular Use: Injector Surrogate Model at LCLS 

ML models trained on simulations and measurements have enabled fast prototyping of new optimization algorithms, facilitated rapid model 
adaptation under new conditions, and can directly aid online tuning and operator decision making

Automatic adaptation of models and identification of sources of 
deviation between simulations and as-built machine

interactive model widget 
and visualization tools

ML model matches 
simulation under 

interpolation 
Simulation and ML model trained 
on it are qualitatively similar to 

measurements under interpolation 
(setting combinations reasonable 

distance from training set)

https://arxiv.org/abs/2209.04587


Leveraging Online Models for Faster Optimization

Combining more expressive models with BO à important for scaling up to higher-dimensional 
tuning problems (more variables)
 

Even prior mean models with substantial inaccuracies 
provide a boost in optimization speed

Good first step from previous work: use neural network 
system model to provide a prior mean for a GP
 
Used the LCLS injector surrogate model for prototyping
variables: solenoid, 2 corrector quads, 6 matching quads
objective: minimize emittance and matching parameter

regular Bayesian
 optimization

model prediction returns to prior

prior mean from 
models with different 
fidelity

https://arxiv.org/abs/2211.09028 https://arxiv.org/abs/2403.03225 

https://arxiv.org/abs/2211.09028
https://arxiv.org/abs/2403.03225


Efficient Emittance Optimization with Virtual Objectives
• Instead of tuning on costly emittance measurements directly: learn a fast-executing model online for 

beam size while optimizing à learn on direct observables (e.g. beam size); do inferred “measurements” (e.g. emittance)
• New algorithmic paradigm leveraging “Bayesian Algorithm Execution” (BAX) for 20x speedup in tuning

simulation

experiment

Paradigm shift in how tuning on indirectly computed beam measurements (such as emittance) is done, with 20x improvement over 
standard method for emittance tuning. à Now working to integrate into operations. 

àAlso now working to incorporate more informative global models /priors rather than learning the model from scratch each time.

model is learned
 on-the-fly

Convergence of beam size prediction error 
gives practical indicator of optimization 
convergence (no need to do direct emittance 

measurement until the end)

Found equivalent quality to hand-
tuning in about 70 iterations (estimate 

this would take a few minutes with 
computationally optimized routine)

https://arxiv.org/abs/2209.04587 

https://arxiv.org/abs/2209.04587


RL for LCLS Accelerator
  

• Focusing on FEL pulse intensity tuning and 
quadrupole magnets first
 

• FEL is sensitive to focusing, trajectory; 
perturbing beam/feedbacks too much 
results in beam losses

•  

• Using data-driven surrogates and 
differentiable sims (Cheetah and Bmad) to 
train agents (TD3, PPO)
  

• Iteratively add more data and variables:

• Longitudinal phase space, spectra
• RF phases and amp., undulator taper
• Combine with photon beamline, 

trajectory control
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~28 focusing magnets for FEL pulse intensity
(many more variables to include: steering, rf, taper, drive laser)



Finding Sources of Error Between Simulations and Measurements
Many non-idealities not included in physics simulations:

static error sources (e.g. magnetic field nonlinearities, physical offsets) 

time-varying changes (e.g. temperature-induced phase calibrations)

Want to identify these  to get better understanding of machine performance 

à ML model allows fast / automatic exploration of error sources in high dimension

10

First studies look promising à current/future work to investigate robustness and extend to larger subsystems + more complicated setups

injector
settings

laser image

adaptable calibration
transforms

longitudinal/
transverse phase space

Without 
calibration

With calibration

Inputs
Laser radius
Laser spot sizes
Pulse length
Charge
Solenoid
L0A phase 
L0B phase
SQ quad
CQ quad
6 matching quads

Outputs
Beam size (x,y)
Emittance (x,y)
Bunch length

output beam
scalars

ML modeling enables rapid identification of error sources between idealized physics simulations and real machine
à path toward gaining new insights into machine performance (could also help inform future designs)

Example: calibration 
offset in injector 
solenoid strength found 
automatically with 
neural network model 
(trained first in 
simulation, then 
calibrated to machine)

frozen neural network 
layers trained on 
simulation

Speed and differentiability of ML models enables rapid identification of error sources between 
idealized physics simulations and real machine 



Finding Sources of Error Between Simulations and Measurements
Many non-idealities not included in physics simulations:

static error sources (e.g. magnetic field nonlinearities, physical offsets) 

time-varying changes (e.g. temperature-induced phase calibrations)

Want to identify these  to get better understanding of machine performance 

à ML model allows fast / automatic exploration of error sources in high dimension

10

First studies look promising à current/future work to investigate robustness and extend to larger subsystems + more complicated setups

injector
settings

laser image

adaptable calibration
transforms

longitudinal/
transverse phase space

Without 
calibration

With calibration

Inputs
Laser radius
Laser spot sizes
Pulse length
Charge
Solenoid
L0A phase 
L0B phase
SQ quad
CQ quad
6 matching quads

Outputs
Beam size (x,y)
Emittance (x,y)
Bunch length

output beam
scalars

ML modeling enables rapid identification of error sources between idealized physics simulations and real machine
à path toward gaining new insights into machine performance (could also help inform future designs)

Example: calibration 
offset in injector 
solenoid strength found 
automatically with 
neural network model 
(trained first in 
simulation, then 
calibrated to machine)

frozen neural network 
layers trained on 
simulation

Differentiable simulations allow direct learning of calibrations while being constrained by the expected physics

J.P. Gonzalez-Aguilera

Same approach can be used with differentiable physics simulations

https://accelconf.web.cern.ch/ipac2023/pdf/WEPA065.pdf



Distribution Shift is a Major Challenge in Particle Accelerators

Many sources of change over time:

• Deliberate changes in beam configuration (e.g. beam charge)

• Unintended drift in initial conditions (including in unobservable 
variables), diurnal temperature/humidity changes, etc

• Time-dependent action of feedback systems

Reliable uncertainty estimates and model adaptation methods are key for putting online models to use operationally
Need fast ways of obtaining characterization data from accelerator

unseen region

  Example: beam size prediction and uncertainty estimates under drift from a neural network 
Uncertainty estimate from neural network ensemble does not cover prediction error, but does give a qualitative metric for uncertainty 
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“Bayesian Exploration” for Efficient Characterization

• Used Bayesian Exploration for efficient high-dimensional characterization (10 
variables) of emittance and match at 700pC: 2 hrs for 10 variables compared 
to 5 hrs for 4 variables with N-D parameter scan
  

• Data was used to train neural network model of injector response predicting x-
y beam images. GP ML model from exploration predicts emittance and match. 
 

• Example of integrated cycle between characterization, modeling, and 
optimization à now want to extend to larger system sections and new setups

Use of Bayesian exploration to generate training data was sample-efficient, reduced burden of data cleaning, and resulted in a well-
balanced distribution for the training data set over the input space. ML models were immediately useful for optimization.
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transverse phase space

Automatic Exploration
(constrained to useful values 

of emittance and match)

Comprehensive ML 
Models of Injector

Setting changes on 10 variables (solenoid, bucking coil, corrector quads and matching quads)

x-y emit, 
match, 
and 
beam 
images

FACET-II Injector

x

y

https://www.nature.com/articles/s41467-021-25757-3



Phase Space Reconstruction with Differentiable Tracking Simulations
Differentiable pipeline for reconstructing 6D phase space 
distribution using neural network parameterization

Reconstruct 4D phase space 
distribution + approx. energy 
spread from simple beamline 
diagnostic and 10 measurements

Simulation
Experiment

Confidence estimates

ML combined with differentiable simulations opens up a new paradigm for constructing detailed phase space 
diagnostics in a way that is computationally-efficient and sample-efficient

https://arxiv.org/abs/2404.10853 

https://journals.aps.org/prl/abstract/10.
1103/PhysRevLett.130.145001 

https://arxiv.org/abs/2404.10853
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.130.145001
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.130.145001


Goal: Full Integration of AI/ML Optimization, Data-Driven Modeling, and Physics Simulations

Data 
processing

Data 
processing

FACET-II LCLS

Data 
processing

Data 
processing

FACET-II LCLS

Cluster Compute
(CPU,GPU)

Working on a facility-agnostic ecosystem for online simulation, ML modeling, and AI/ML driven characterization/optimization

Will enable system-wide application to aid operations, and help drive AI/ML development (e.g. higher dimensionality, robustness, 
combining algorithms efficiently)

Making good progress toward this vision with open-source, modular software tools



Ecosystem of modular tools (can use independently)

Digital Twin Infrastructure

Substantial progress on deploying ML and Physics-based models and integrating with HPC in a portable way

Deployment on HPC• Live physics simulations and ML models now linked between SLAC’s 
HPC system (S3DF)  and control system  
à run with Kubernetes and Prefect
 

• Working with NERSC to swap between S3DF/NERSC resources
 

• Beginning work on MLOps aspects that will be used in continual 
learning research
 

• Collaboration with LBNL through SciDAC on “virtual accelerators”

LUME – simulation interfaces/wrappers in Python
 

lume-model – wraps ML models, facilitates calibration
 

lume-services – online model deployment and orchestration
 

distgen – flexible creation of beam distributions
 

Integration with MLFlow for MLOps
 

https://www.lume.science/ 
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FACET-II
LCLS

D
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D
ata 

processing

FACET-II
LCLS

Cluster Com
pute

(CPU,GPU)

Secure EPICS I/O

https://www.lume.science/


Combining BO with Warm Starts from Online Physics Models



Summary/Conclusions
• Particle accelerators stand to benefit substantially from 

the development and deployment of modern digital twins 
• Faster optimization, new capabilities in beam 

customization, human-AI interaction
• High impact for science that is supported by 

particle accelerators (and translations to 
industry/medicine)

• SLAC and collaborating labs (LBNL, JLab, FNAL, ANL) are 
building out infrastructure to deploy detailed physics 
simulations and ML models “online” with the control 
system à community open source software is essential!

• Now scaling up small-scale demos of combining ML 
surrogate models, adaptive model calibration, automatic 
characterization, and integration into online control

à Many interesting problems to tackle
 

à Accelerators are also interesting platforms for 
AIML research!
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domain transfer

fast dynamic beam
 customization

AIML + human 
feedback

FACET-II

LCLS



Digital twins + online modeling
(fast sims, differentiable sims, model calibration, model adaptation)

ML-enhanced 
diagnostics 

(provide insight at faster rate, 
at higher resolution, 

non-invasively)

Anomaly detection
failure prediction

(plan maintenance; 
alert to changes in machine; 
alert to interesting science) Extract unknown

relationships + correlations
(feed into future control / design)

J. Duris
et al., 
PRL, 
2020

C. Emma 
et al., 
PRAB, 
2018

+ need uncertainty quantification for all
+ can incorporate physics information in all 

D
ata 

processing

D
ata 

processing

FACET-II
LCLS

Automated control
+ optimization

algorithm transfer between systems

Data reduction/rejection (kHz/MHz data streams)
Event triggering

SLAC Pursuing AIML for Accelerators Very Broadly
Human-computer interaction Language modeling / multi-modal data

(e.g. electronic logbook)

Aim to tie together AIML to aid many different tasks toward autonomous accelerator control



Backups



Thanks to the core team at SLAC working on various digital 
twin and AIML technologies and infrastructure, and many 
other collaborators at other labs!



Community development of re-usable, 
reliable, flexible software tools for 
AI/ML workflows has been essential to 

maximize return on investment and ensure 
transferability between systems

  

 Modularity has been key: separating 
different parts of the workflow + using 

shared standards

Modular, Open-Source 
Software Development

Different software for different tasks:
 

Optimization algorithm driver (e.g. Xopt)
 

Visual control room interface (e.g. Badger)
 

Simulation drivers (e.g. LUME)
 

Standards model descriptions, data formats, 
and software interfaces (e.g. openPMD)

 

Online model deployment (LUME-services)

Online Impact-T simulation and 
live display; trivial to get running 
on FACET-II using same software 

tools as the LCLS injector 

LCLS

FACET-II

standard
data 

format
LUME

More details at https://www.lume.science/ 

Simulation

Optimizer

Modular open-source software has been essential for our work.  

https://www.lume.science/


Roussel et. al. Nat. Comm. 2021

Efficient, safe optimization algorithms

Output constraints learned on-the-fly

ground truth validity probability

Combining physics and ML for better performance ML-enhanced diagnostics
Rapid analysis/virtual diagnostics

Shot-to-shot predictions at beam rate

Online prediction with physics sims 
and fast/accurate ML system models

Adaptation of models and identification of sources of 
deviation between simulations and as-built machine

Challenging problems: e.g. sextupole tuning

Current Areas of AIML R&D for Accelerators at SLAC

AI/ML enables fundamentally new capabilities across a broad range of applications à highly promising from initial demos.

Hysteresis-aware optimization

BO on sys. with 
hysteresis

Hybrid BO on 
sys. with 

hysteresis

Adhere to constraints and balance multiple targets

C. Emma, et al. – PRAB 21, 112802 (2018)

Many solutions put into reusable open-source software (e.g. Xopt/Badger) demoed at many facilities

Roussel et. al. PRL. 2022

Differentiable simulations + ML for 6D 
phase space reconstruction

Roussel et. al. PRL. 2023

Anomaly detection

(1) Developing new approaches for accelerator optimization/characterization and faster higher-fidelity system modeling, (2) developing 
portable software tools to support end-to-end AI/ML workflows, (3) helping integrating these into regular use

Broad Research Program at SLAC in AI/ML for Accelerators

https://github.com/ChristopherMayes/Xopt


Opportunities for AIML Accelerator Research
(mix of needs from science side + compelling areas in AIML)
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• Pushing to higher-dimensional algorithms (more comprehensive, 
precise tuning); incorporation of multiple signals on photon side to 
characterize beam quality

• Sample-efficient adaptation across setups needed
(different charges, beam phase space, multi-bunch)

• Enabling fundamentally new capabilities in beam physics / photon 
science
• FACET-II “extreme beams”; highly sensitive
• Photon science requiring precise dynamic control

• Comprehensive online system modeling + ML-based optimization
• Physics sims + ML surrogates being deployed on local HPC connected 

to control system
• “digital twins” + “outer-loop” applications of interest to ASCR

• AI with human feedback à human-AI interaction in the   
control room is a current area of study 

• Transfer learning between LCLS/LCLS-II/FACET-II
à Similar layouts, component design, beam diagnostics, user needs (e.g. 
scan two bunches)

domain transfer

fast dynamic beam
 customization

AIML + human 
feedback

FACET-II

LCLS



Physics Sim: 
~95k core hrs, 131k sims

2246 cores, 36 hours

Neural Network: 
~2 mins on a laptop

(500 sims for training)

Smooth interpolation 
Example 𝝈𝒙 surface from 2D scan, LCLS-II Injector

Surrogate-boosted design optimization 

Warm starts for 
optimization

ML
Inverse 
Model

L1S phase
BC2 peak current

Local 
optimizer

Suggested 
initial 

settings

A. Scheinker, A. Edelen, 
et al, PRL, 2018

A. Edelen
 et al., PRAB, 

2020

Deconvolution Layers

Cavity phase

Solenoid field

Bunch Charge

N Fully Connected 
Hidden Layers

… N - 2 …

Scalar outputs
VCC Size

Convolution Layers

# Particles

Mean X, Y, Z

Beam Kinetic Energy

Norm. Emittances

Beam Sizes

Mean X’, Y’, Z’

Scalar inputs

Include high-dimensional input information à better output predictions

L. Gupta, et al, 
MLST, 2021

A. Edelen et al., NeurIPS 2019



Better Data Sampling:
Bayesian Exploration

adaptive sampling

learning 
constraints

proximal
biasing

R. Roussel et. al. 
Nat. Comm. 2021
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Enables sample-efficient 
characterization of high-dimensional 
spaces, while respecting both input 

and output constraints

Efficient 
Characterization with 
Bayesian Exploration

Enables sample-efficient 
characterization of high-dimensional 

spaces, while respecting both input and 
output constraints



E. Cropp et al., in preparation

Hand-tuning in seconds vs. tens of minutes
 

Boost in convergence speed for other algorithms

Can work even under distribution shift

• Round-to-flat beam transforms are challenging to optimize 
à 2019 study explored ability of a learned model to help

• Trained neural network  model to predict fits to beam 
image, based on archived data

• Tested online multi-objective optimization over model (3 
quad settings) given present readings of other inputs

• Used as warm start for other optimizers

• Trained DDPG Reinforcement Learning agent and tested on 
machine under different conditions than training

Example: Warm Starts from Online Models



Sample Number (Time Ordered)

Neural network with quantile 
regression predicting FEL pulse 
energy at LCLS

unseen 
regions

test 
data

L. Gupta

BNN Predictions
ASTRA Simulation

White area 
– values 
left out of 
training

A. Mishra et. al., PRAB, 2021
LCLS injector transverse phase space  (ensemble)

Scalar parameters for the 
LCLS-II injector

(Bayesian neural network)

Essential for decision making under uncertainty (e.g. safe opt., intelligent sampling, virtual diagnostics) 
Current approaches 
• Ensembles
• Gaussian Processes
• Bayesian NNs
• Quantile Regression

longitudinal phase space
(quantile regression + ensemble)

In-distribution

Out-of-distribution 

O. Convery, et al., PRAB, 2021

Uncertainty Quantification / Robust Modeling


