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Many tuning problems require detailed beam phase
space customization for different experiments
Cathode and RF gun

RF accelerating cavities
Focusing magnets

m E Linearizing cavity Chicane (beam compression) Undulator (e- beam to photons)
laser ¥
profile P L4 4 i 4
i p— g - » photon beam to 7
250 MeV 4.3 GeV 14 GeV experiment
stations
A Y
Injector Main Accelerator Sections

Beam exists in 6-D position-momentum phase space

Have incomplete information: measure 2-D projections or reconstruct
based on perturbations of upstream controls (e.g. tomography, quad scans)

Have dozens-to-hundreds of controllable variables and hundreds-of-
thousands to monitor

Nonlinear, high-dimensional optimization/control problem
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wide spectrum of tuning needs
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mputationally expensive simulation . .
computationally expensive s tions fluctuations/noise

Simulation Measurement (e.g. initial beam conditions)
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Tuning approaches leverage different amounts of data / previous knowledge
-> suitable under different circumstances

less

assumed knowledge of machine

> more

4 ) (
Model-Free Model-guided Global Modeling +
Optimization Optimization Feed-forward Corrections
\/ J. Kirschner
Observe performance change after a
setting adjustment Update a model at each step
S esti o -> provide initial guess (i.e. warm start)
h estimate dlr;c‘tlon or apply = use model to help select the next = provide insight to operators
euristics toward improvement point > model-based control
\. J \
gradient descent Bayesian optimization ML system models +
simplex reinforcement learning inverse models
ES

General strategy: start with sample-efficient methods that do well on new systems, then build

up to more data-intensive and heavily model-informed approaches.
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FEL pulse energy tuning at LCLS Loss rate tuning at SPEAR3 Sextupole tuning for IP at FACET-II
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Roussel et. al. PRAB . 2021 Algorithms being implemented/distributed in Xopt: https://github.com/ChristopherMayes/Xopt @t



https://github.com/ChristopherMayes/Xopt

Fast-Executing, Accurate System Models

Accelerator simulations that include nonlinear and
collective effects are powerful tools, but they can
be computationally expensive

ML models are able to provide fast approximations to simulations
(“surrogate models”)

Neural Network

Simulation Measurement gun L1X

L2-linac

BC1 ' BC;I_H,J,

250 MeV 3GeV 14 GeV undulator

_ L3-linac
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054402, 2017
10 hours on : .
thousands of 107 times speedup
cores at NERSC! Edelen et al, NeurlPS 2019

Long history now of using ML modeling to enable accurate predictions of accelerator system responses with unprecedented speeds



https://ml4physicalsciences.github.io/2019/files/NeurIPS_ML4PS_2019_90.pdf

Fast-Executing, Accurate System Models

ML models are able to provide fast approximations to simulations
(“surrogate models”)

Bringing simulation
tools from HPC gun LIX »

Neural Network

systems to L2-linac _ L3-linac 'l 3
onllne/IocaI 80230 MeV BC2 4.3 GeV 14 GeV undulator @“ :g
compute 3" ¥
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Experiment planning < ms execution speed
Online prediction 108 times speedup

Model-based control

Edelen et al., NeurlPS 2019

Long history now of using ML modeling to enable accurate predictions of accelerator system responses with unprecedented speeds



https://ml4physicalsciences.github.io/2019/files/NeurIPS_ML4PS_2019_90.pdf

In Regular Use: Injector Surrogate Model at LCLS ™

Solenoid
Laser-Heater

* ML models trained on detailed physics simulations with nonlinear collective effects
* Accurate over a wide range of settings = calibrate to match machine measurements

* Used to develop/prototype new algorithms before testing online
(e.g. BAX w/ 20x speedup in emittance tuning https://arxiv.org/abs/2209.04587)
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* Wil provide initial parameters for downstream model 7] Screens/Wires
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ML models trained on simulations and measurements have enabled fast prototyping of new optimization algorithms, facilitated rapid model

adaptation under new conditions, and can directly aid online tuning and operator decision making


https://arxiv.org/abs/2209.04587

Leveraging Online Models for Faster Optimization e

® Data

Combining more expressive models with BO = important for scaling up to higher-dimensional

tuning problems (more variables)

Good first step from previous work: use neural network

system model to provide a prior mean for a GP

Used the LCLS injector surrogate model for prototyping

variables: solenoid, 2 corrector quads, 6 matching quads
objective: minimize emittance and matching parameter
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Even prior mean models with substantial inaccuracies

provide a boost in optimization speed

Step

https://arxiv.orglabs/2403.03225 https://arxiv.orglabs/2211.09028



https://arxiv.org/abs/2211.09028
https://arxiv.org/abs/2403.03225

Efficient Emittance Optimization with Virtual Objectives

Instead of tuning on costly emittance measurements directly: learn a fast-executing model online for
beam size while optimizing - learn on direct observables (e.g. beam size); do inferred “measurements” (e.g. emittance)
* New algorithmic paradigm leveraging ‘“Bayesian Algorithm Execution’” (BAX) for 20x speedup in tuning
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Paradigm shift in how tuning on indirectly computed beam measurements (such as emittance) is done, with 20x improvement over

standard method for emittance tuning. > Now working to integrate into operations.
- Also now working to incorporate more informative global models /priors rather than learning the model from scratch each time.



https://arxiv.org/abs/2209.04587

ol AR
RL for LCLS Accelerator =\
T
Jefferson Lab
Focusing on FEL pulse intensity tuning and Cathode and RF gun
. RF accelerating cavities
quadrupole magnets first Focusing magnets
E E 4 Linearizing cavity Chicane (beam compression) Undulator (e- beam to photons)
FEL is sensitive to focusing, trajectory; laser N /
profile P) LA

. » photon beam to 7
perturbing beam/feedbacks too much 50MeV  43GeV 14 GeV / zxpe,imem
\ I stations

results in beam losses —y— v
Injector Main Accelerator Sections

Using data-driven surrogates and
differentiable sims (Cheetah and Bmad) to
train agents (TD3, PPO)

~28 focusing magnets for FEL pulse intensity
(many more variables to include: steering, rf, taper, drive laser)

Iteratively add more data and variables: “| — Predicted (NN surrogate) M
S = Measured T =
* Longitudinal phase space, spectra Es g
2 w0
*  RF phases and amp., undulator taper 2 a /
= [P
*  Combine with photon beamline, g £
trajectory control 1.;’ | u J %
[ [ W
0 ’ 30 3s 40 45 50 55 6.0 6.5
Quad LI21:211

Samples (increasing time, several hours of tuning)



Finding Sources of Error Between Simulations and Measurements

Many non-idealities not included in physics simulations:

=
IS

static error sources (e.g. magnetic field nonlinearities, physical offsets) giz : g E\”’Z’:SC_T'T . j
time-varying changes (e.g. temperature-induced phase calibrations) éo:s L .
Want to identify these to get better understanding of machine performance 5:: ’
- ML model allows fast / automatic exploration of error sources in high dimension 2 :: (‘f‘;"/l;_’;?;’ttion

0.45 0.46 0.47 0.48 0.49 0.50

Integrated Solenoid Field (kG-m)
frozen neural network

] . . adaptable calibration layers trained on l
Example: calibration transforms _ simulation ol
offset in injector A ’,-’ 'L';l:::Srad . ' 0y NN {
i - u =121 IMPACT-T
solenoid strength found injector output beam Laser spot sizes £ s 4
automatically with settings scalars Pulse length g:;‘fn”:isze o) =109 x :
neural network model Charge . ' & 08
. . . Solenoid Emittance (x,y) =
(trained first in LOA phase Bunch length 5 06
simulation, then LOB phase 2 04
calibrated to machine) 2%2323 Z 02
laser image longitudinal/ 6 matching quads 0o With calibration
transverse phase space 044 045 046 047 048 049 050

Integrated Solenoid Field (kG-m)

Speed and differentiability of ML models enables rapid identification of error sources between

idealized physics simulations and real machine




Finding Sources of Error Between Simulations and Measurements

Same approach can be used with differentiable physics simulations

True offsets Predicted offsets

z —n
£ .
8 i
@ -—- true offsets
s
=) 61
o 0 6
E — o
£ ~100 === true tilts
10° 4
9 1072 H
k<] N
10~
0 1000 2000 3000 4000 5000 20 0 20
n_iter X J.P. Gonzalez-Aguilera

https://accelconf.web.cern.ch/ipac2023/pdf/VWEPA065.pdf

Differentiable simulations allow direct learning of calibrations while being constrained by the expected physics




Distribution Shift is a Major Challenge in Particle Accelerators

Many sources of change over time: § :
* Deliberate changes in beam configuration (e.g. beam charge) ;? \
* Unintended drift in initial conditions (including in unobservable T Time ()

variables), diurnal temperature/humidity changes, etc

* Time-dependent action of feedback systems

175 Measured
Predicted (Ensemble Mean)

- NM LM Al 3

< unseen reglon

20000 40000 60000 80000 100000
Sample Number (increasing time)

Example: beam size prediction and uncertainty estimates under drift from a neural network
Uncertainty estimate from neural network ensemble does not cover prediction error, but does give a qualitative metric for uncertainty

Reliable uncertainty estimates and model adaptation methods are key for putting online models to use operationally

Need fast ways of obtaining characterization data from accelerator



‘““Bayesian Exploration” for Efficient Characterization

O\ Setting changes on 10 variables (solenoid, bucking coil, corrector quads and matching quads)

v

Automatic Exploration

(constrained to useful values [+ | Y .
) R X-y emit,
of emittance and match) s g
: E . . g & match,
/ g 3 E p g g % ‘% and
| 3 3 3 beam
’ images

i

A 4

[ Comprehensive ML ] FACET-I Injector

Models of Injector

transverse phase space

* Used Bayesian Exploration for efficient high-dimensional characterization (10
variables) of emittance and match at 700pC: 2 hrs for 10 variables compared

to 5 hrs for 4 variables with N-D parameter scan

0 %

¢ Data was used to train neural network model of injector response predicting x-
y beam images. GP ML model from exploration predicts emittance and match.

Predicted Measured

* Example of integrated cycle between characterization, modeling, and
optimization 2 now want to extend to larger system sections and new setups
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°
10
150 y
0
0
0 % 0 150 20 20

https://lwww.nature.com/articles/s41467-021-25757-3

Use of Bayesian exploration to generate training data was sample-efficient, reduced burden of data cleaning, and resulted in a well-

balanced distribution for the training data set over the input space. ML models were immediately useful for optimization.



Phase Space Reconstruction with Differentiable Tracking Simulations o

hups/fjournals.aps.org/prilabstract/1 0,
LL03/PhysRevlett, 30,1 45001
Differentiable pipeline for reconstructing 6D phase space Reconstruct 4D phase space
. . . . . . . . . (a)10-3
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ML combined with differentiable simulations opens up a new paradigm for constructing detailed phase space
diagnostics in a way that is computationally-efficient and sample-efficient


https://arxiv.org/abs/2404.10853
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.130.145001
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.130.145001

Goal: Full Integration of AI/ML Optimization, Data-Driven Modeling, and Physics Simulations

Working on a facility-agnostic ecosystem for online simulation, ML modeling, and Al/ML driven characterization/optimization

Will enable system-wide application to aid operations, and help drive Al/ML development (e.g. higher dimensionality, robustness,

combining algorithms efficiently)

2 Model Prediction Displays Model Output Predictions (e.g. beam images, scalars) HPC cluster
=% P | (e.g. SDF at SLAC,
vl & i , _ NERSC at LBNL)
< U3 g Online Modeling

C
5

Measured Input Data Data High-fidelity Physics
(accelerator settings, processing Simulations

input diagnostics)

Cluster Compute
(CPU,GPU)

14 GeV

Adaptive ML Models

L3-linac

EPICS
Control

Measured Output Data Data
(scalars, images processing
describing the beam)

Online Optimization
and Characterization Tools

Archives
(Measurements,

BCT50 Mev BC243 Gev

Active Learning +
Efficient Exploration

L1X

Predictions, and
Models)

Model and ML-Based
Changes in Accelerator Settings Optimization

" Rrr
E cun
Laser
diagnostics

gun
" ejeQ puE S|9POI |EI1I0ISIH

ﬁ Online Control GUI «

Making good progress toward this vision with open-source, modular software tools



Digital Twin Infrastructure

( )
Ecosystem of modular tools (can use independently)

EPICS CA/PVA-

LUME — simulation interfaces/wrappers in Python

: '
Data Get Job
o e, [ QD Qo EPICS
lume-model — wraps ML models, facilitates calibration SERVEEES

Posgres &
API/CLI ResultDB /v
MLFLOW T EPICS CAPVA

lume-services — online model deployment and orchestration 1 T % o
> > G @
distgen — flexible creation of beam distributions i 5 @ @ o
Prefect worker REST API

" MLFlow Prefect Stack (Wrapped Mogel)
Integration with MLFlow for MLOps | [ ‘

L https://www.lume.science/ @< @ Kubernetes Pod

* Live physics simulations and ML models now linked between SLAC’s Deployment Zj:am’i;;,c @D rowomets o
HPC system (S3DF) and control system \.

- run with Kubernetes and Prefect

OR MinlO Storage

J

"
» Working with NERSC to swap between S3DF/NERSC resources B0 > Secure EPICS /0 BB
e  Beginning work on MLOps aspects that will be used in continual B gun T.. I.

learning research L1Ss . L2-dinac L3-linac .
» Collaboration with LBNL through SciDAC on “virtual accelerators” BClosoMev B243Gev  14Gev undulator

Substantial progress on deploying ML and Physics-based models and integrating with HPC in a portable way


https://www.lume.science/

Combining BO with Warm Starts from Online Physics Models

Used combination of online physics simulation and Bayesian optimization algorithms to aid LCLS-II injector commissioning

7

Readings from machine via EPICS
injector settings, laser profile from VCC image

emittance and beam sizes along z

OTROH04
i

.| z-E ’

A

%)

LCLS-II live sim: run on HPC and display in control room
Updates every 3-8 mins, space charge included, uses LUME-IMPACT

-

v

Adjust settings / ranges with insight from predictions

— Hand over to ML-based optimization for fine tuning

Xopt LCLS-Il Emittance Optimization 2022-12-04

«»| Model learns /7?
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Bayesian optimization s ﬁf/ ([
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Xopt iteration

=}

434 436
SOL1B (G*m)

~

€y (Mm-mrad)

06-Dec-2022 01:53:37
OTRS HTR 330 EMIT

vex 0.43/1.00
ve, 0.57/1.00

Best emittance yet obtained during
LCLS-Il injector commissioning

despite extensive previous hand-tuning

=

Physicists’ intuition aided by detailed online physics model = simple example of how a “virtual accelerator” can aid tuning

HPC enables fundamentally new capabilities in what can be realistically simulated online




Summary/Conclusions

Particle accelerators stand to benefit substantially from
the development and deployment of modern digital twins
* Faster optimization, new capabilities in beam
customization, human-Al interaction

* High impact for science that is supported by
particle accelerators (and translations to
industry/medicine)

SLAC and collaborating labs (LBNL, JLab, FNAL,ANL) are
building out infrastructure to deploy detailed physics
simulations and ML models “online” with the control
system = community open source software is essential!

Now scaling up small-scale demos of combining ML
surrogate models, adaptive model calibration, automatic
characterization, and integration into online control

Many interesting problems to tackle

Accelerators are also interesting platforms for
AIML research!
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Aim to tie together AIML to aid many different tasks toward autonomous accelerator control

X-ray pulse energy (m))

~

Automated control
+ optimization

Human-computer interaction

Language modeling / multi-modal data

(e.g. electronic logbook)

Data reduction/rejection (kHz/MHz data streams)

/" Event triggering

ML-enhanced

—— swndard optimizer
GP optimization

~—— GP wi correlations

20 30
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(provide insight at faster rate,
at higher resolution,
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BC1250 MeV L= 4.3 GeV 14 GeV undulator

Anomaly detection

Digital twins + online modeling

(fast sims, differentiable sims, model calibration, model adaptation)

.

(feed into future control / design)

failure prediction
(plan maintenance;
alert to changes in machine;

Extract unknown alert to interesting science)

relationships + correlations

Kiysron sates - YoM (on dev-rhai)
e Vi oy o Ao

LCLs

Kiystron States

=]

+ need uncertainty quantification for all

+ can incorporate physics information in all




Backups
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Thanks to the core team at SLAC working on various digital
twin and AIML technologies and infrastructure, and many
other collaborators at other labs!



Modular, Open-Source
Software Development

Community development of re-usable,

reliable, flexible software tools for

Al/ML workflows has been essential to
maximize return on investment and ensure

transferability between systems

Modularity has been key: separating
different parts of the workflow + using
shared standards

Xopt.step()

Pass sample(s) to be evaluated

Generator Evaluator

VOCS Generates sample + Evaluates

Defines variables, points objective function

objectives and
constraints

Retrieve result(s), handle errors, add data to generator, store results etc.

vocs: algorithm:
name: TNK test name: bayesian_exploration
variables: Optlons_ P
x1: [@, 3.14159] n_initial_samples: 5
n_steps: 25

x2: [0, 3.14159]
objectives: {yl: MINIMIZE} :
constraints: baFCh_slze: 1

c1: [GREATER_THAN, 0] #sigma: [[0.01, 0.0],

c2: ['LESS_THAN', 0.5] use_gpu: False

generator_options:

Different software for different tasks:
Optimization algorithm driver (e.g. Xopt)
Visual control room interface (e.g. Badger)

Simulation drivers (e.g. LUME)

Standards model descriptions, data formats,
and software interfaces (e.g. openPMD)

Online model deployment (LUME-services)

More details at https://www.lume.science/

Optimizer
standard
LUME data

/

Simulation °'°FJI6 format [ERCEELS
Impact
ASTRA } gen_1.json X
GPT
Bmad v root:
G . » variables:
enesis generation: 1
SRW » vocs:

» error: [] 1241 items
» inputs: [] 1241 items
» outputs: [] 1241 items

Online Impact-T simulation and

live displays; trivial to get running

on FACET-II using same software
tools as the LCLS injector

Modular open-source software has been essential for our work.


https://www.lume.science/

Broad Research Program at SLAC in Al/ML for Accelerators

(1) Developing new approaches for accelerator optimization/characterization and faster higher-fidelity system modeling, (2) developing
portable software tools to support end-to-end Al/ML workflows, (3) helping integrating these into regular use

Online prediction with physics sims Efficient, safe optimization algorithms Anomaly detection
» y
and fast/accurate ML system models ) -
il R ; , ground truth M vaiidity probabiity ||| — e
Y ° 2 140 {‘ geomean
“ | §10 | | Kiystron States
\ e - | A !
; i aw0f Al /,\\ A “ \ ‘
o ‘. 3 w & g \i l’/ N \ A \ N [
o ¢ § Ve \ta A 1\
— o ANAAL TS
Region ok Region not ok T T =3 % 5 = 5 - Il
Output constraints learned on-the-fly freraton | \} | ]
Adhere to constraints and balance multiple targets Challenging problems: e.g. sextupole tuning
Adaptation of models and identification of sources of e ; ML-enhanced diagnostics
P Combining physics and ML for better performance ) o ) i
deviation between simulations and as-built machine Rapid analysisivirtual diagnostics
Hysteresis-aware optimization Differentiable simulations + ML for 6D Shot-to-shot predictions at beam rate
4 : ) - ) - phase space reconstruction
14 G NN { 9NN A BO onsys. with  Hybrid BO on Measured Predicted
z12 o 0, IMPACT-T £ ®  0x IMPACT-T 104 hysteresis sys. with L N - [
E10 + 0y meas. W Eqo + Ox meas. b/ E : M
< £ hysteresis |
& o8 L h\ ; 100 4 \ )i
g ) <
E“ ~ 10714 i3
o 0.2 |
00 00 T T T T / s
oi  oa 0w oum om0k 04t 045 oas 047 ous  04s 050 0 50 100 150 200
Integrated Solenoid Field (kG-m) Integrated Solenoid Field (kG-m) Iteration
N

Time [fs]
C. Emma, et al. - PRAB 21, 112802 (2018)

Many solutions put into reusable open-source software (e.g. Xopt/Badger) demoed at many facilities

AIl/ML enables fundamentally new capabilities across a broad range of applications - highly promising from initial demos.



https://github.com/ChristopherMayes/Xopt

Opportunities for AIML Accelerator Research
(mix of needs from science side + compelling areas in AIML)

* Pushing to higher-dimensional algorithms (more comprehensive,
precise tuning); incorporation of multiple signals on photon side to
characterize beam quality

* Sample-efficient adaptation across setups needed
(different charges, beam phase space, multi-bunch)

* Enabling fundamentally new capabilities in beam physics / photon
science
*  FACET-I “extreme beams”; highly sensitive
* Photon science requiring precise dynamic control

* Comprehensive online system modeling + ML-based optimization
*  Physics sims + ML surrogates being deployed on local HPC connected

to control system
e “digital twins” + “outer-loop” applications of interest to ASCR

. Al with human feedback = human-Al interaction in the
control room is a current area of study

*  Transfer learning between LCLS/LCLS-II/FACET-II
= Similar layouts, component design, beam diagnostics, user needs (e.g.
scan two bunches)

un
g L1X LCLS
L1 Sl L2-linac L3-linac =
I ! TN 2
BC2 i bis

BC]250 MeV 4.3 GeV 14 GeV undulator

domain transfer

L c c1a -
d;sg(:ostics %, ? l" ® f BT“ F ACET I I
TCAV
) L2 (e) }—/—\-O L3 (e)
Final Focus &
TCAV Experimental Area

fast dynamic beam
customization

ii;.




Smooth interpolation

Target Example o, surface from 2D scan, LCLS-II Injector
ML Suggested
Warm starts for vgeeste
L. : \ Inverse initial — Neural Network ~—— ASTRA
optimization Model settings ) 010

0.08 /
LIS phase =
) BC2 peak current < oo
A. Scheinker, A. Edelen, z - P
etal, PRL, 2018 gun L1X 800l —
l ) ) XTCAV T
L1S L2-linac L3-linac \ J
J . SRt 3 s 0.02
BCsomev B243Gev  14Gev undulator / S PR o ;ﬁ
0.00 r T T r |
£ 7 / .& 2, ..: 0.00 0.02 Ds.zéllenmd 20(1?)6 0.08 0.10
Local A. Edelen et al., NeurlPS 2019
optimizer
¥ Ful Connected 160 1 —o— GA with Neural Network
Hidden Layers —e— GA with Physics Simulation
Cavity phase Norm. Emittances L Gubt ¢ dl % 140 A x Best Known Pareto Front
Scalar inputs Solenoid field Beam KnetcEreroy MLZ‘;’,G’ZZZ(;, E
Bunch Charge Mean X, 1,2 Scalar outputs E Ph)’SiCS Sim:
VCC Size # Particles | 120 1 ~95k core hrs, 131k sims
::::ﬂ);zzsz E 2246 cores, 36 hours
< 100 4
\ N | Network:
Y P W P A. Edelen
N T ~2 mins on a laptop et al. PRAB
-~ 8019 (500 sims for training) 2020
T T T T T T
Y 0.35 0.40 0.45 050 0.55 0.60 0.65

Convolution Layers Deconvolution Layers

AE (MeV)

Include high-dimensional input information = better output predictions Surrogate-boosted design optimization



Efficient

Characterization with o (x) = o(x) npl(gl(x) h) W(x, %)

Bayesian Exploration

adaptive sampling

Equal lengthscales Short lengthscale
—l

Initial samples Exploration samples -

Enables sample-efficient
characterization of high-dimensional

spaces, while respecting both input and
output constraints

N

learning
constraints

R. Roussel et. al.
Nat. Comm. 2021

proximal
biasing

(@) 2.00 ®) 2.00

—o— All
1.75 ® Valid 1.75
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1.25
< 1.00
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Validity probability
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online

Example:Warm Starts from Online Models E. Cropp et al, in preparation

" .

g = 2 : 55§

2 ._ | = : — _I_II_DI_I_ EES Can work even under distribution shift

\ = 7
."l Y — Eon 0.125 Train
i drifting inputs quads for flat - os I C Test(andtest) | F o100 B Jest (3hd test)
\o— beam transform T ., ; ‘ s ,
\ > ansto) ~.._new quad settings il E ooms ’
4 Gun RF read backs . 0.10 H distribution <
; . . 2 0.050
. (phase and amplitude) N // shift g gl
B N P 0.05 i © 0.025 i
QE.) Virtual Cathode Image Beam Statistics on Screen: | “‘. ajeto / 0.000 .
] Statistics (spot size, intensity) Oy ~i front 0.00 y ; - . 50 55 60 65
a Oy N 1Iljaser S otz(lf ( ixelsg)d 3“ Sun Velisge: (W)
S Other Magnet Settings Gy, ~q K_._ pesos 30
£ (solenoid, steering) ixel intensit; \ .
B Y \

L / X,y centroids \
Flat Beam Quads (3) @ / NN start point intialisolut
74
- 7 Iinitial solution
== Multi-Objective Genetic Algorithm from neural

network model
* Round-to-flat beam transforms are challenging to optimize
= 2019 study explored ability of a learned model to help

fine-tuning

* Trained neural network model to predict fits to beam
image, based on archived data

hand tune

* Tested online multi-objective optimization over model (3
quad settings) given present readings of other inputs

* Used as warm start for other optimizers

Hand-tuning in seconds vs. tens of minutes

* Trained DDPG Reinforcement Learning agent and tested on B . .
) . o - oost in convergence speed for other algorithms
machine under different conditions than training
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Uncertainty Quantification / Robust Modeling

Essential for decision making under uncertainty (e.g. safe opt., intelligent sampling, virtual diagnostics)

Pulse Energy (m))
N w »

[=]

BNN Predictions
ASTRA Simulation

0.5

White area
00 —values
left out of

training
-05

-10

0 20‘00 4000 60‘00 80‘00 10000 12600 14600 16000
Index

Scalar parameters for the
LCLS-Il injector
(Bayesian neural network)

A. Mishra et. al., PRAB, 2021
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longitudinal phase space
(quantile regression + ensemble)
O. Convery, et al,, PRAB, 202

Current approaches

. Ensembles

*  Gaussian Processes
e Bayesian NNs

. Quantile Regression

X . *xiL Gupta  Neural network with quantile
97.5% Quantile [ regression predicting FEL pulse

2.5% Quantile

° X Measurements Available for Training energy Gt LCLS

Measurements Removed from Training
Median
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Simulation Blur Neural Network
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