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AI/ML for Accelerator Design/Control at LBNL



AI/ML for accelerators is used across several groups in the ATAP division
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• AI/ML for design optimization of accelerators

• AI/ML for accelerator operation

• Adapting simulation tools for integration with AI/ML

Outline
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We use ML to accelerate simulation-based design of particle accelerators.

● Designing accelerators often involve simultaneously tuning many parameters 

(focusing, accelerating cavities, etc.) to reach the design with optimal performance, 

i.e. maximize 𝑓(𝒙)

● Each combination of parameters needs to be evaluated with expensive simulations.

𝒙: vector of accelerator parameters

𝑓: function to maximize (“objective function”)



We use ML to accelerate simulation-based design of particle accelerators.

“Conventional” optimization algorithms:

e.g.

• Gradient descent

• Genetic algorithms

• Nelder-Mead algorithm (a.k.a. simplex)

• …

The next evaluations are based on simple rules

that the depend on the last few evaluations.

Typically require many evaluations of f.

Optimization algorithms based on machine learning:

Progressively learn a global model of the objective 

function 𝑓(𝒙) over the parameter space.

Use this model to only evaluate the most promising 𝒙.

Typically require fewer evaluations of f.

Model of f

A. Ferran Pousa et al., Bayesian optimization of laser-plasma accelerators assisted by 

reduced physical models, PRAB (2023)

Y. Lu et al., Demonstration of machine learning-enhanced multi-objective optimization of 

ultrahigh-brightness lattices for 4th-generation synchrotron light sources, NIMA (2023)



We are fostering interoperability across open-source optimization software.

Xopt

github.com/ChristopherMayes/Xopt

Optimization algorithms

• Several open-source optimization frameworks are being used in the accelerator community 

(each with their respective strengths)

optimas

github.com/optimas-org/optimas

Optimization algorithms

rsopt

github.com/radiasoft/rsopt

Optimization algorithms

powered by libensemble

github.com/Libensemble/libensemble

• Ongoing efforts by the developers to standardize optimizers and foster interoperability.

https://www.google.com/imgres?imgurl=https%3A%2F%2Fupload.wikimedia.org%2Fwikipedia%2Fcommons%2Fthumb%2F6%2F65%2FLogo_desy.svg%2F1200px-Logo_desy.svg.png&imgrefurl=https%3A%2F%2Fcommons.wikimedia.org%2Fwiki%2FFile%3ALogo_desy.svg&tbnid=qCLmY141ulOrJM&vet=12ahUKEwjl-eGu2N36AhVuHTQIHTziDakQMygBegUIARCrAQ..i&docid=eSlPoUeaD31_bM&w=1200&h=1200&q=desy%20logo&client=firefox-b-1-d&ved=2ahUKEwjl-eGu2N36AhVuHTQIHTziDakQMygBegUIARCrAQ
https://www.google.com/imgres?imgurl=https%3A%2F%2Fshinstitute.org%2Fwp-content%2Fuploads%2F2015%2F08%2Fanl-logo-1.gif&imgrefurl=https%3A%2F%2Fshinstitute.org%2Fget-involved%2Fsupporters%2Fanl-logo-1%2F&tbnid=gdbC_Cd1ebkc5M&vet=12ahUKEwjR8vi12N36AhV6LzQIHZezCOQQMygDegUIARDAAQ..i&docid=PCpiaGNOQQh9BM&w=1980&h=782&q=anl%20logo&client=firefox-b-1-d&ved=2ahUKEwjR8vi12N36AhV6LzQIHZezCOQQMygDegUIARDAAQ
https://www.google.com/imgres?imgurl=https%3A%2F%2Fshinstitute.org%2Fwp-content%2Fuploads%2F2015%2F08%2Fanl-logo-1.gif&imgrefurl=https%3A%2F%2Fshinstitute.org%2Fget-involved%2Fsupporters%2Fanl-logo-1%2F&tbnid=gdbC_Cd1ebkc5M&vet=12ahUKEwjR8vi12N36AhV6LzQIHZezCOQQMygDegUIARDAAQ..i&docid=PCpiaGNOQQh9BM&w=1980&h=782&q=anl%20logo&client=firefox-b-1-d&ved=2ahUKEwjR8vi12N36AhV6LzQIHZezCOQQMygDegUIARDAAQ


• AI/ML for design optimization of accelerators

• AI/ML for accelerator operation

• Adapting simulation tools for integration with AI/ML
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AI/ML for accelerator operations covers a broad range of topics.

Superconducting magnets verification/protection:

• Detection/classification of quench precursors

from acoustic emission.

M. Marchevsky, arXiv:2203.08871 (2022)

• Check for cracks/defects in superconducting 

cables with automated image analysis

Cracks

A. Scheinker, et. al., Scientific Reports (2021)

A. Scheinker, et. al, Phys. Rev. E 107 (2023)

F. Cropp, et. al., Phys. Rev. Accel. Beams 26 (2023)

Control and autotuning at compact LBNL 

accelerators (e.g., HiRES & NDCX-II):

https://arxiv.org/abs/2203.08871


ML is used in operation at the Advanced Light Source, to stabilize beam size.

• The ALS is a storage ring light source.

• The parameters of insertion devices 

(e.g. undulators) are frequently changing, 

due to changing modes of operation.

• These changes affect the beam size.

• The ALS now uses a neural network to predict

changes in beam size and correct them.

Leeman et al., PRL 123, 194801 (2019)

Hellert et al., accepted in PRAB (2024)

• Used in routine operation



ML is used in operation at the Advanced Light Source, to stabilize beam size.

• The machine configuration drifts over time.

To always remain accurate, the neural network 

needs to be periodically retrained.

• The ALS team developed an extensive 

framework to automatically monitor, retrain,

archive and deploy the neural network.

Collect data from

current user run 

Fine-tune NN model

(retraining)

Replace NN model

~ seconds

Online model



The BACI group is developing tools to run AI/ML on FPGA.
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• Some accelerator control applications require 

very low latency, necessitating FPGA hardware.

• The Marble-Mini is an FPGA-based board that

is widely used in low-level RF control for accelerators.

• The BACI group at LBNL is developing a framework

to run neutral networks on Marble-Mini.

L.Doolittle, Q. Du and D. Wang, Software Disclosure 

2024-008: Generic Multi-Layer Perceptron Inference 

Accelerator on FPGA (vneuron) v1.0

+ LBNL LDRD led by Dan Wang

github.com/BerkeleyLab/Marble-Mini

• Example use case: neural network that 

controls the phases of 9 coherently 

combined laser beams

• 3-layer neural network with ~1600 weights

Inference time: 131 cycles (1046 ns)

Uses only 16% of the chip resources



We are working towards digital twins to guide accelerator tuning in real time.

12

• Real-time accelerator tuning requires to 

simultaneously adjust multiple parameters 

(e.g. focusing elements, accelerator cavities) 

to achieve optimal operation.

• Corresponds to optimization in high-dimensional space, 

time-consuming if the number of parameters is large.

• Leveraging information from numerical simulations 

can significantly speed-up real-time tuning.

e.g. Hanuka et al., Physics model-informed 

Gaussian process for online optimization 

of particle accelerators (2021)

Experimental 
data

Simulation

data

ML model

Predict 

experimental 

outcome for 

unexplored 

parameters



We are working towards digital twins to guide accelerator tuning in real time.
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Framework for deployment (”Superfacility”)

• Ongoing collaboration with SLAC to develop

corresponding software framework.

(funding: LDRD + NESAP program)

• Will leverage existing software 

for parts of this workflow

e.g., github.com/slaclab/lume-services

ML challenges

• Experimental and simulation data

oftentimes don’t match exactly.

The ML model needs to handle them 

differently.

• Several possible techniques:

• Multi-fidelity Gaussian process

A. Ferran Pousa, PRAB (2023)

• Calibration of neural networks

T. Boltz, arxiv 2403.0322 (2024)

Supercomputer:

• Updates ML model

• Launch new simulations

Experimental facility:

• Real-time tuning

• Data collection

Automated

feedback



• AI/ML for design optimization of accelerators

• AI/ML for accelerator operation

• Adapting simulation tools for integration with AI/ML
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ML surrogate models can speed-up simulations.
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• In a given lattice, some elements can be more computationally-expensive to model.

Extreme example: laser-plasma acceleration stages

Focusing
plasma 

stage 2
Focusing

plasma

stage 1
Drift Drift

Simulation time: (with full geometry/physics)
hrs <sec

on several GPUs on 1 GPU

WarpX
(full EM-PIC)

ImpactX
(tracking code)

WarpX
(full EM-PIC)

• Under certain conditions (here: negligible collective effects, specific range of parameters), 

computationally-expensive elements can be replaced by ML models, trained over past simulations.

RT Sandberg et al., IPAC23, DOI:10.18429/JACoW-IPAC2023-WEPA101 (2023)
RT Sandberg et al., PASC24 Best Paper (2024)

Focusing
plasma 

stage 2
Focusing

plasma

stage 1
Drift Drift

ImpactX
(tracking code)

WarpX-trained
neural network

WarpX-trained
neural network

LDRD

few pC
e- beam

DOE GARD



We adapt our accelerator simulation codes for seamless integration with ML surrogates.
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few pC
e- beam

ImpactX
(C++, compiled for GPU)

• This workflow requires to pass beam data across elements 

(position/momentum for each particle)

Focusing
plasma stage 

2
Focusing

plasma

stage 1
Drift Drift

Neural
network
(Python)

Neural
network
(Python)

• Our C++ simulation codes expose beam data (in GPU memory) through a Python interface. 

→ Seamless, GPU-Accelerated Coupling of accelerator simulation & ML Frameworks.

A Huebl et al. pyAMReX: GPU-Enabled, Zero-Copy AMReX Python Bindings including AI/ML. 

software, 2023. DOI:10.5281/zenodo.8408733 github.com/AMReX-Codes/pyamrex ;

A. Myers et al., AMReX and pyAMReX: Looking Beyond ECP. arXiv:2403.12179

github.com/AMReX-Codes/pyamrex

github.com/ECP-WarpX/WarpX

github.com/ECP-WarpX/ImpactX

(based on pybind11

and python standards 

for GPU arrays)

LDRD

DOE GARD

http://github.com/AMReX-Codes/pyamrex
https://arxiv.org/abs/2403.12179


Even tighter ML integration can be achieved with differentiable simulations
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Regular simulation code

Input Output

Simulation

code
𝑿 𝑓(𝑿)

Example: Output: 

final beam emittance
Input:

accelerator parameters

Differentiable simulation code

Input Output

Simulation

code
𝑿

𝑓(𝑿)

𝜕𝑓

𝜕𝑿
(𝑿)



● Sensitivity studies 
𝜕𝑓

𝜕𝑿
quantifies how sensitive the output is to the input.

● Optimization in high-dimensional space (e.g. of accelerator designs)
𝜕𝑓

𝜕𝑿
can be used in gradient-based optimizers, which often converge faster

● Allows training of a neural network that is combined with a differentiable code

Differentiable codes have several advantages.
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Traditional training of neural network Training of neutral network combined with a code

Input/output pairs, from a data set

Differentiable 

simulation 

code

Example: R. Roussel et al., Phase Space Reconstruction from 

Accelerator Beam Measurements Using Neural Networks and 

Differentiable Simulations, PRL (2023)

Neural

network
Neural

network



We are exploring frameworks for differentiable codes.

● Several algorithms are available to make a code differentiable. e.g. 

J. Qiang, Differentiable self-consistent space-charge simulation for accelerator design, PRAB (2023)

● Several efforts to build differentiable accelerator simulation codes, 

based on auto-differentiation frameworks.

○ pytorch

Cheetah: accelerator code based on pytorch

github.com/desy-ml/cheetah

○ Julia 

Bmad-Julia: proposal to implement Bmad algorithms in Julia

github.com/bmad-sim

○ Enzyme AD 

Takes existing C++ code and makes it auto-differentiable at compile time.

Could be leveraged to make BLAST codes (ImpactX, WarpX, …) differentiable.

https://www.google.com/imgres?imgurl=https%3A%2F%2Fupload.wikimedia.org%2Fwikipedia%2Fcommons%2Fthumb%2F6%2F65%2FLogo_desy.svg%2F1200px-Logo_desy.svg.png&imgrefurl=https%3A%2F%2Fcommons.wikimedia.org%2Fwiki%2FFile%3ALogo_desy.svg&tbnid=qCLmY141ulOrJM&vet=12ahUKEwjl-eGu2N36AhVuHTQIHTziDakQMygBegUIARCrAQ..i&docid=eSlPoUeaD31_bM&w=1200&h=1200&q=desy%20logo&client=firefox-b-1-d&ved=2ahUKEwjl-eGu2N36AhVuHTQIHTziDakQMygBegUIARCrAQ


• AI/ML is used in many accelerator-relevant applications, in the ATAP division.

• In the process, we are building software frameworks for robust deployment of AI/ML.

• Many of these frameworks are open-source and can be leveraged at other 

accelerator facilities. If interested, feel free to reach out!

Conclusion
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USPAS course on AI/ML for accelerators

Course on Optimization and Machine Learning for Accelerators at the 

U.S. Particle Accelerator School, since 2021

Some of the 

Instructors:

Next USPAS session:

Held in: Knoxville, Tennessee

Dates: Jan 27 - Feb 7, 2025

May include optimization and ML (not confirmed yet)



Thank you


