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I Outline

Multi Objective Optimization

Need for Al in detector design — The AID(2)E project
Closure Test and Project workflows

Selected works and future studies
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Multi Objective Optimization

Design space spanned by ‘x’

min / max fi,(x),m=1,...,M

s.t. g5(x) <0,5=1,...,J

Guo, Kai, et al. Materials Horizons 8.4 (2021): 1153-1172.
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Fig. 2. Schematic of the different approaches toward molecular design. |
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Multiobjective genetic algorithm approach to optimize beam matching
and beam transport in high-intensity hadron linacs

31, Tehran, Iran
23, Switzerland

BoTorch

Bavesian OpTIMIZATION IN PYTORCH

Multi-objective Optimization in Python
he(x)=0,k=1,....K . pymoo

(]

FCC Week 2024 AI/ML mini workshop

jMetalPy

Al Assisted Detector Design for EIC




I Multi Objective Optimization A

BoTorch

Bavesian OpTIMIZATION IN PYTOR

Multi-objective Optimization in Python
. /\
Design space spanned by ‘x’ Pymoo

jMetaIPy
min / max fi,(x),m=1,...,M  Objectives to optimize
s.t. gi(x) <0,,5=1,...,J

hk(X)ZO,,kJZ].,...,K

L
)
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I Multi Objective Optimization

Design space spanned by ‘x’

min / max f,(x),m=1,..., M

s.t. gi(x) <0,,5=1,...,

J
he(x)=0,k=1,...,K
N

L
)
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BoTorch

Bavesian OpTIMIZATION IN PYTOR
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Multi-objective Optimization in
ATorch] pymoo

jMetaIPy

Constraints

Python
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I Multi Objective Optimization A

Design space spanned by ‘x’

min / max fy,(x), m
s.t. g;(x) <0,,j=1,.
hy(x) =0,k=1,.

xiL<:c-

—1,...

BoTorch

BAYESIAN OPTIMIZATION IN P

u' </
Multi-objective Optimization in Python
ATorch] pymoo

jMetaIPy
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Bounded Design Space
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I Multi Objective Optimization : Visual Intro

e Multiple “objectives”
® Momentum resolution —
® @ resolution O
® KEF efficiency
® projected @ resolution @ PID
Goal : “Optimize” these Objectives

13 : ’ 113 . : 29 , :
Map: “Design” space — “Objective 7 A
Space Objective Space Design Space

Non-Feasible region to be avoided
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I Multi Objective Optimization : Visual Intro

e What is “Optimal”?
e Non-dominated (Pareto) Solutions

e How to rank solutions?
e “Fronts” of solutions
e Methods of MOO
e Evolutionary | .
e Bayesian fi :f Ji :fB h

Objective Space Design Space
e Preferential Learning, etc.
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I Multi Objective Optimization through surrogate modelling

Prediction

Surrogate Model — A model that will be able
to successfully approximate the true
function.

Acquisition Model — A quick evaluator to
choose the next point to be computed

o  Based on Exploration and Exploitation in the
search space.

o Critically important, since, this is key in
CB = —u(x) +Ao(x)

Next Point

Acquisitoin Function

convergence.
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I Large Scale Experiments : An Ideal MOO problem

GEANT4 — computation

. . curse of
1ntensive.

- dimensionality
Curse of dimensionality due to

multiple Objectives and
multidimensional design space

Each Design point requires
multiple physics studies and
hence increased computational
needs

Estimated simulation requirements 2022
based on observed performance in 2023 - 2024

2021. 2025 - 2028
2029 - 2030
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https://indico.bnl.gov/event/16586/contributions/68649/attachments/43703/73634/2021010%20-%20AI4EIC%20workshop%20Ax%20BoTorch%20MOO%20tutorial.pdf

I Workflow for Al Assisted detector design
-.TI"

Benefits from rapid turnaround time from

simulations to analysis of high-level

reconstructed observables r‘

The EIC SW stack offers multiple features .J l L‘
that facilitate Al-assisted design (e.g.,

modularity of simulation, reconstruction, Desi gn Parameters Obj ectives

analysis, easy access to design parameters,
automated checks, etc.) A

Leverages heterogeneous computing

Need to develop end to end pipeline

v

Physics Events Detector Simulations Reconstructed Events

Desired kinematic range

FCC Week 2024 AI/ML mini workshop Al Assisted Detector Design for EIC




[2405.16279] Al-Assisted Detector Design for the EIC (AID(2)E) (2024)

I The AID(2)E Project

AID(2)E:
AI-Assisted Detector Design at EIC

BNL, T. Wenaus
CUA, T. Horn

Duke, A. Vossen
JLab, M. Diefenthaler
W&M, CF

DE-FOA-0002785

oy
~ i CATHOLIC
E._ Brookhaven yniversiTy Duke Jefferson Lab ., H

National Laboratory  opAMERICA oM uwrvEes AM & MARY

\I CHARTERED 1693
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https://arxiv.org/abs/2405.16279

The AID(2)E Project

SURROGATE ——
f) MODEL xcmmnns
SELECTION

objectives

) https://ai4eicdetopt.pythonanywhere.com/

 design parameters Multi-Objective
objectives Bayesian Optimization |

acqmsutlon

& A PARETO FRONT (/
i UPDATE OBJECTIVES AT

DESIGN CANDIDATE

low via PanDA/IDDS

(i) Will contribute to advance the
boundaries of MOBO complexity to i _ (iii) Will leverage cutting-edge
accommodate a large number of (i) Development of suite of data workload management systems
objectives and will explore usage of ~Science tools for interactive navigation capable of operating at massive

physics-inspired approaches of Pareto front (multi-dim design with data and handle complex
mUItlpIe ObjectiveS) workflows

Examining solutions on the Pareto front of ePIC at different values of the budget can have great cost benefits

A fractional improvement in the objectives translates to a more efficient use of beam time which will make up a
majority of the cost of the EIC over its lifetime
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I Project Workflow

AID(2)E Wrapper

A

4

AID(2)E Pipeline

Thrusts of development

Optimizer

(0

eg. MOBO Algorithm

Computations
during an iteration

Total number of
iterations to converge
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Detector

Simulations
EIC-SIM-RECON

Distributed
Computing

ePIC Software

Heavy simulations

EIC Analysis

Physics/Detector

responsce
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Simulations :
Complexity of the problem,
large design space,

Test Functions

Al-assisted Al-assisted

Distributed Distributed
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I Closure Test 1 — Stress testing SOTA MOBO

Gaussian Process EESEIED. Sa”?p"”g L0
o(n?) posteriors
NUTS - O (Md%/4)IIs]

Acquisition function
gNEHVI — O (M(n + i)M)d

The PDF prior distribution, that
describes the Design space to

objective. This is the surrogate

model. Sample L points from the A “cheaper” function to evaluate as a
posterior distribution. proxy for the black box function

SAASH! priors have been prove_n HMC is a popular algorithm . . .

to be successful upto 388 design Identifies points of maximum

dimensions. Mainly depends on the Number of improvements hence, the name

objectives and design space
Assumes several design dimensions Scales nonlinearly with iteration,

variables has increased total points explored, design space

importance compared to others il:(l:\rsa?olrr:lmal dependence on and objective space.

Computational expensive as GPU acceleration through JAX FEIUEL I?eneﬁtted oy Gl
iteration increases backend. acceleration.

Benefit from GPU hardware
acceleration
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https://arxiv.org/pdf/2105.08195.pdf
https://proceedings.mlr.press/v161/eriksson21a/eriksson21a.pdf
https://arxiv.org/pdf/1111.4246.pdf

I Closure Test 1 — Stress testing MOBO 8 M= 2 Objectives

¢ M = 3 Objectives
® M = 4 Objectives

Total number of points to converge

Stress test the SoTA algorithm used for
optimization

20 40 60 80
Number of design dimensions [n]

MOBO stress-testing for problems with

increasing complexity (design and objectives)

and known Pareto

—— Fit: y=xx3.86%, A =3.86 + 0.79
+10 uncertainty
¢ d =10, q =4, iteration = 15

arxiv:2405.16279

Time taken by Acquisition function

3.0 3.5 4.0
Number of objectives
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https://arxiv.org/pdf/2405.16279

I Closure Test 2: PanDA/1iDDS integration

Stress test scalability across
distributed resources

Integrate PanDA/iDDS AI/ML
service to support MOBO
workflow for design
optimization

v,

generate

A jobs
auth’

Client

. submit
—A, tasks

request JOb
or P|Iot

o
Tools % PanDA Server

Central

. database
%&k /Monitor tasks,
g jobs, and system

~.

~..| PanDA
Monitor

get/update
job
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Computing
request Resource

Lightweight Harvester submit

database submit Filot
job+Pilot update job .

| =
Computing Lightweight
Resource database

PanDA: Production and Distributed Analysis
System. Comput Softw Big Sci 8. 4 (2024)
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https://link.springer.com/article/10.1007/s41781-024-00114-3
https://link.springer.com/article/10.1007/s41781-024-00114-3

I Current Detector Subsystems for optimization in ePIC

d-RICH detector at EIC BO detector

wﬁ

/’ﬂﬁaf combined function magnet

Far Forward — BO System

Design params: z positions of disks
Objectives: Momentum resolution,
Acceptance

Design params: Mirror, sensor placement, gas, mirror material

Objectives: PID performance in bins of momentum, cost
Ao
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I Summary and Conclusion
Coupling the MOBO to EIC is done. Closure test 1 nearly done.

Working on code base for a common framework for distributed optimization using PanDA and
SLURM.

EIC can be the first large-scale experiment to be realized with assistance of Al

Ultimately, we can realize a framework that can optimize holistically a large-scale detector, and
that is scalable and distributed. The Detector-2 at EIC an ideal candidate

Exploring solutions on EIC detector Pareto front across budget values yields significant cost
advantages during construction phases.

Efficient objectives = cost-effective EIC beam time.

This framework inherently offers broader impacts, can be adapted in various experiments and

suitable for compute-intensive applications that necessitate MOO (e.g., calibrations, alignments,

etc)
FCC Week 2024 AI/ML mini workshop 20 Al Assisted Detector Design for EIC
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I GP as a Surrogate Model

Optimization problem:
minimize
i

subject to

Question: What would be the
next point to explore from this?

Choose a region?

FCC Week 2024 AI/ML mini workshop

Prediction

GP Prediction

Explored points

In practice we do not know the True f.

o
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I GP as a Surrogate Model

Prediction

... GP Prediction
minimize
xXr

subject to : ) . Explored points

The task: To minimize. So
should we even care on regions
which are not minimum?
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I The Acquisition function Prediction
2 GP Prediction

Define a function that scans through the
search space for values of f (X ) using the
built GP.

Much faster than evaluations.

Carefully choose the next point to
evaluate™.

Model inaccurate in region out of interest

Explored points

Widely used Acquisition functions

e (Confidence Bound
e Probability of Improvement
e Expected Improvement

*Since evaluations are supposed to be very costl
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Prediction

Confidence Bound

Hyper parameter

LCB = —pu(z) + )\{T(CIZ)

/ \

Exploitation Exploration

Can now control where the
search will happen in
subsequent iterations.

CB = —u(x)+Ao(x)
Next Point

c
19
B
[}
c
=
| Y
=
o
=
)
=
o
Q
<<

UCB_Acq(input_range, gp_model, Lambda )iz

Usually’ bias is towards the xs = np.linspace(start input_range[9], stop = input_range[-1], num
. o . . . . y, y_std gp_model.predict(xs.reshape(-1, 1), return_std )
mean. Since 1t 1s optimization Y & Lanbdaty <ta
*0
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Probability of Improvement

Prediction

min(f(x))— f(xx*
( (f(=))—£( ))

o(x)+e

PI = CDF

Choose the point, that has the maximum
probability of improvement.

Note: NO consideration of actual value.

20, Pprobability of

Improvement
Acquisition Function

Next Point
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I Expected Improvement Bt = (min(f(z) - f(w#))COF(*Z50) o () PDE(*H0E22)

Prediction

Considers the Magnitude of

improvement along with its
probability-!

Now, With the suggested point,
Start running iterations. Choose
the first q points suggested by the
Acquisition function.

Run for N iterations

Implement early stopping criterion
if necessary

o
'S
L

o

o
N

5
/

Expected Improvement
Next Point

Acquisition Function

o
o
1
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https://ekamperi.github.io/machine%20learning/2021/06/11/acquisition-functions.html

IThe Summary of MOGA Pipeline

Initial population creation (N_pop)

The Evolution Cycle

21

Py | aee| enn | nen [ eae [Foot R

Rank & sort - NSGA2 (Objs

P3

Py

LAmmemes

Py | = [
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Genetic Evolution of designs

[P1 [P> [Ps [Ps [Ps [Ps [P7 [Ps |Ps [Pro|Pul
[Py [P [P [P4 [Ps [Ps [P1 [Ps [Py [Pro]Pu]

2 Parents create Offspring

[Py [Py [Ps [Py [Ps [Ps [Py [Ps [Py [Pro[Pui]

N_Offsprings for next call

Healthy Design points

[Py [P, ps TP Tps TPs [Po 1Ps [Ps [Py [P

8 o
c O
QS
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o
=y
90
©c ©
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-
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P1

By [By B [Pu [Bs |Ps [Pr [Py [Po |Pro|Pu]
[Py 1P, 1Ps TPa [Ps [Ps [Ps [Ps [Ps [PuolPu]
1Py [P, -P4 1Ps |Ps .Mpg |P10.

ePIC dd4hep Sim + eic-recon
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Yields Performance of the design.
Objectives that decide evolution
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I Multi Objective Evolutionary Algorithms

* Inspired by Biological Systems. Swa{mAllthtnthms

Bees algorithm
Particle swarm optimization

Cuckoo search

* Semi heuristic in nature.

: : : Genetic Algorithms
* Quite successful in solving MOO problems. Default Genemggm-mm

NSGA

« Embedding constraints relatively easier . UNSGAI 4

Differential Evolution

jMetalPy TMVA
ci

O
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Elitist Non-Dominated
Sorting Genetic (NSGA)

Crowding
distance
sorting

Non-dominated
sorting

L]
-« Rejected
[1] Deb, K., et al. "A fast and elitist multiobjective

genetic algorithm" |EEE transactions on
evolutionary computation 6.2 (2002): 182-197.

This is one of the most popular approach

(>35k citations on google scholar), characterized by:
Use of an elitist principle

Explicit diversity preserving mechanism
Emphasis in non-dominated solutions

FCC Week 2024 AI/ML mini workshop

The population R is classified in non-dominated fronts.
Not all fronts can be accommodated in the N slots of available in the new
population P _,. We use crowding distance to keep those points in the last front
that contribute to the highest diversity.

d, of

point i is a measure of the

() objective space around i which
is not occupied by any other
solution in the population.

Cuboid

i1

This is to illustrate
Binary Cross-over




IMOEA or MOBO ?
MOEA

Has been widely used for solving MOO
problems

population /off spring — diversity —
Relatively easier to implement
Complexity relatively easy to compute
Ideal — Cost of computing “cheap”

Successful with large Design and Objective

parameters

No Map : “Design” “Objectives”

—o0
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Has been around for a while, gaining popularity
Sequential Strategy — global minimization
Relatively harder to implement

Complexity relatively easy to compute

Ideal — simulations can be heavily parallelized

Currently, Not recommended beyond 4-5
Objective parameters

Can Map : “Design” “Objectives” — Fast

simulator can be built
o— 5 : 31
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A roadmap for scalable optimization

o Slurm
. Single e Multiple

Job
. Al Suggested DASK

= . . GPU g a given site.
At Design points i Less queue time overhead Mgderate queue time
1 Simulation, relatively

s : overhead.
cheap. (FastSim, Single Moderately heavy

& particle tracking only) simulations(Calorimet
& S e
Use Joblib to parallelize .
. across a massive single UOUO BiMe 7 il M
Evaluation of the hode e Use dask, MPI for

Design points JLab’s ifarm1900s scheduling. /i DASK
machine (128 cores) e

e Distribute across nodes in

ZN

Sort solutions Full Sim, Physics-driven
Approximate Pareto front objectives. i
Suggest next set of design points , Across different OSG sites

Need for better visualizations

i i _ : : ¢ Weights & Biases
Monitoring — MLOps s Beyond 3D Pareto visualizations
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Far Forward Updates

Problem

Optimize the momentum resolution subject to the non-homogenous Magnetic field and to increase

occupancy at BO ECAL.

Objective Space =2

Objective Parameter

Remarks

Momentum resolution (p..)

Momentum range of 80 - 100 GeV/c is of interest and specifically
proton tracks

B0 ECAL acceptance

Ratio of number of tracks before 1st tracking disk to the number of
showers detected by BOECAL

Design Space =4

Design Parameter

Range [cm]

Least count for variation
[cm]

Zl

583.0-630.0

1.0

AZ, AZ,, AZ,

10.0 - 40.0

1.0

Constraints = 2

Z,+Y, 4 AZ <6855 cm

Z,.,+Z]>10.0 cm
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