AI Assisted Detector Design for EIC

Karthik Suresh, for AID(2)E CollaborationDepartment of Data ScienceCollege of William and Mary

WILLIAM & MARY

CHARTERED 1693

FCC Week 2024 AI/ML mini workshop

AI Assisted Detector Design for EIC

Outline

- Multi Objective Optimization
- Need for AI in detector design The AID(2)E project
- Closure Test and Project workflows
- Selected works and future studies

Multi Objective Optimization

```
Design space spanned by 'x'
```

$$\min / \max \mathbf{f_m}(\mathbf{x}), m = 1, \dots, M$$

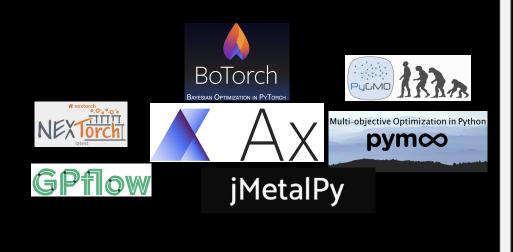
s.t.
$$g_j(\mathbf{x}) \le 0, \ j = 1, \dots, J$$

$$\mathbf{h}_{\mathbf{k}}(\mathbf{x}) = 0, \ k = 1, \dots, K$$

3

$$x_i^L \le x_i \le x_i^U, \ i = 1, \dots, N$$

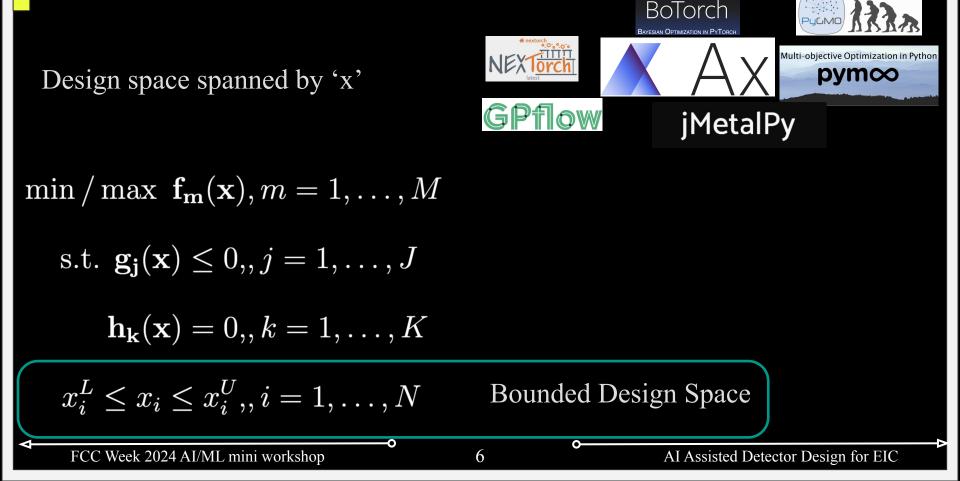
Table 1 Popular ML methods	in design of mechanical materials		Functional space	Direct	Inverse	Inverse
ML method	Characteristics	Example applications in mechanical materials design				
Linear regression; polynomial regression	Model the linear or polynomial relationship between input and output variables	Modulus ¹¹² or strength ¹²³ prediction			6.	
Support vector machine; SVR	Separate high-dimensional data space with one or a set of hyperplanes	Strength ¹³³ or hardness ¹²⁵ prediction; structural topology optimization ¹⁵⁹	Desired properties (redox			
Random forest	Construct multiple decision trees for classification or prediction	Modulus ¹¹³ or toughness ¹³⁰ prediction	potential, solubility, toxicity)			
Feedforward neural network (FFNN); MLP	Connect nodes (neurons) with information flowing in one direction	Prediction of modulus, ^{17,113} strength, ¹⁸ toughness ¹⁰⁰ or hardness, ⁷⁷ prediction of hyperelastic or plastic behaviore, ^{143,143} identification of collision load conditions; ¹⁴⁷ design of spinodoid metamaterials ¹⁶³		Experiment or simulation (Schrödinger	High-throughput virtual screening (e.g., with 3	Optimization, evolutionary strategies, generative models (VAE,
CNNs	Capture fostures at different hierarchical levels by calculating convolutions, operate on pixel-based or voxel-based data	Prediction of stanin field/ ^{30,60} or elastic perpeticie ^{183,83} of high-sontrast composites, modular of undiffectional composites, ¹¹⁴ stress fields in cantilevered atrustruss, ¹¹⁷ or yield trength of additive-mandattured metales, ¹¹⁵ prediction of faigure rack propagation in polycrystalline allosy1 ¹⁰³ prediction of crystal plasticity, ¹⁰⁵ design of casellate composites, ^{207,109} design of stretchable graphene kirigami, ²¹⁰	Chemical space	equation)	filtering stages)	GAN, RL)
			1000-00-13cm		- Sec.	wit to
			The second se	3 AMAR	* Thank the	Frence R.
Recurrent neural network (RNN); LSTM; GRU	Connect nodes (neurons) forming a directed graph with history information stored in hidden states; operate on sequential data	Prediction of fracture patterns in crystalline solids; ¹¹⁴ prediction of plassic behaviors in heterogeneous materials; ^{143,144} multi-scale modeling of percous medicing?	(Drug-like, photovoltaics, polymers, dyes)		A A A	12 pr rate
Generative adversarial networks (GANs)	Train two opponent neural networks to generate and discriminate separately until the two networks reach equilibrium; generate new data according to the distribution of training set	Prediction of models distribution by solving inverse classicity problems. ¹⁹ prediction of trains or stress fields in composites. ¹³ composite design. ¹⁵ structural topology optimization; ^{185–995} architected materials design. ¹⁵⁵	Fig. 2. Schematic of the different approaches toward molecular design. Inverse design starts from desired properties and ends in chemical space, unlike the direct approach that leads from chemical space to the properties.			
Gaussian process regression (GPR); Rayesian learning	Treat parameters as random variables and calculate the probability distribution of these variables; quantify the uncertainty of model predictions	Modulus ¹¹³ or strength ^{123,134} prediction; design of supercompressible and recoverable metamaterials ¹¹⁰	B. Sanchez-Lengeli	ng, A. Aspuru-Guzik. So	ience 361.6400 (2018):	360-365.
Active learning	Interacts with a user on the fly for labeling new data; augment training data with post-hoc experiments or simulations	Strength prediction ¹²⁴	Multiobjective genetic algorithm approach to optimize beam matchin and beam transport in high-intensity hadron linacs			
Genetic or evolutionary algorithms	Mimic evolutionary rules for optimizing objective function	Mardness prediction; ¹²⁶ designs of active materials; ^{160,161} design of modular metamaterials ¹⁶²				
Reinforcement learning	Maximize cumulative awards with agents reacting to the environments.	Deriving microstructure-based tractionon laws ³⁷⁴	M. Yarmohammadi Satri, ^{1,2,*} A. M. Lombardi, ² and F. Zimmermann ² ¹ School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran, Iran ² CERN, 1211 Geneva 23. Switzerland			
Graph neural networks (GNNs)	Operate on non-Euclidean data structures; applicable tasks include link prediction, node classification and graph classification	Hardness prediction; ³³⁷ architected materials design ³⁶⁸				



Multi Objective Optimization
Design space spanned by 'x'

$$\mathbf{M}$$

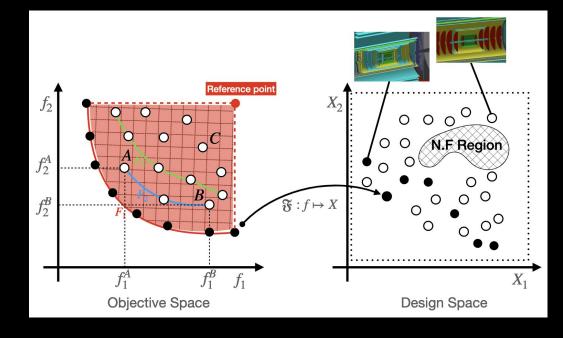
 \mathbf{M}
 \mathbf



Multi Objective Optimization

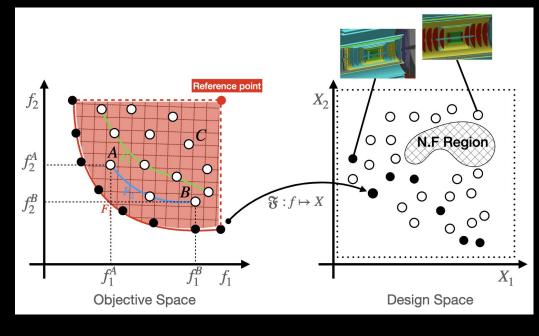
Multi Objective Optimization : Visual Intro

- Multiple "objectives"
 - Momentum resolution
 - *θ* resolution
 - KF efficiency
 - projected **9** resolution @ PID
- Goal : "Optimize" these Objectives
- Map: "Design" space "Objective" Space
- Non-Feasible region to be avoided



Multi Objective Optimization : Visual Intro

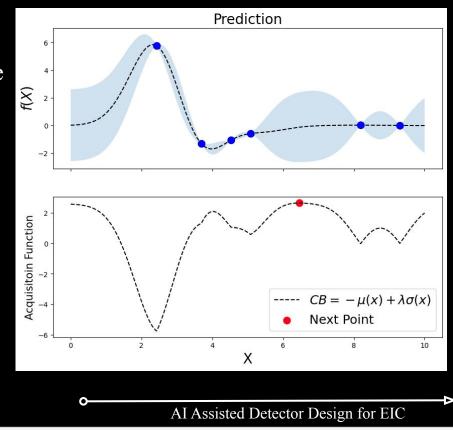
- What is "Optimal"?
 - Non-dominated (Pareto) Solutions
- How to rank solutions?
 - "Fronts" of solutions
- Methods of MOO
 - Evolutionary
 - Bayesian
 - Preferential Learning, etc.



Multi Objective Optimization through surrogate modelling

Q

- Surrogate Model A model that will be able to successfully approximate the true function.
- Acquisition Model A quick evaluator to choose the next point to be computed
 - Based on Exploration and Exploitation in the search space.
 - Critically important, since, this is key in convergence.



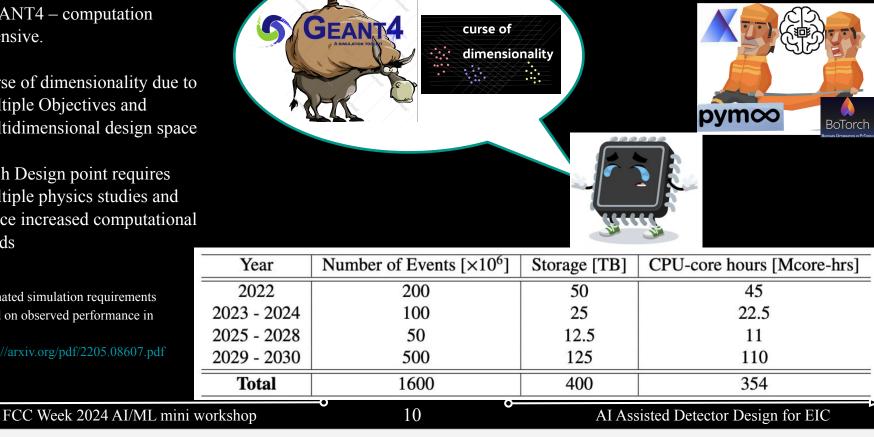
Large Scale Experiments : An Ideal MOO problem

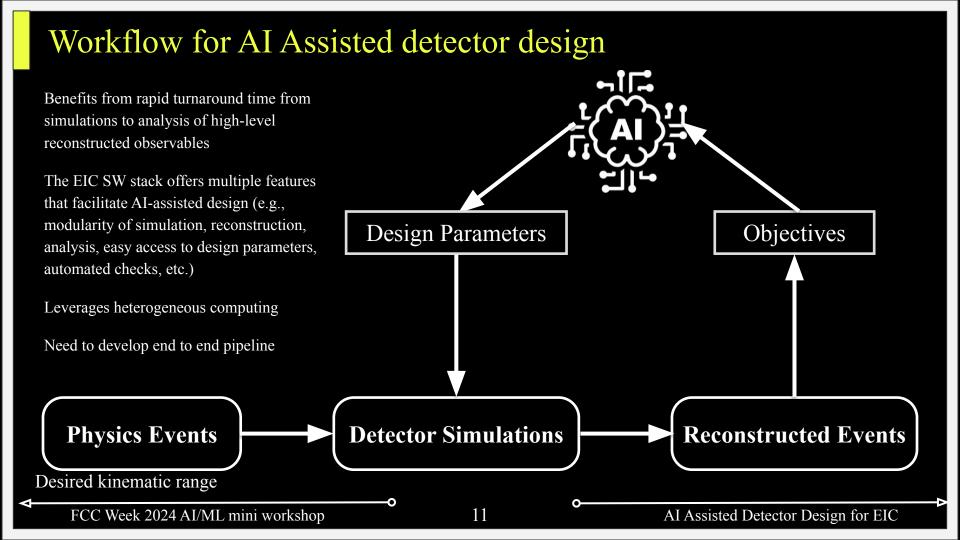
GEANT4 – computation intensive.

Curse of dimensionality due to multiple Objectives and multidimensional design space

Each Design point requires multiple physics studies and hence increased computational needs

Estimated simulation requirements based on observed performance in 2021. https://arxiv.org/pdf/2205.08607.pdf





The AID(2)E Project

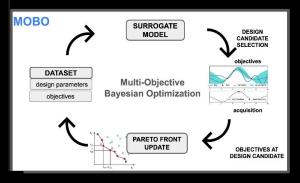
AID(2)E: AI-Assisted Detector Design at EIC

DE-FOA-0002785

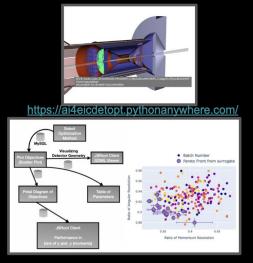
AIXE AIXE

BNL, T. Wenaus CUA, T. Horn Duke, A. Vossen JLab, M. Diefenthaler W&M, CF

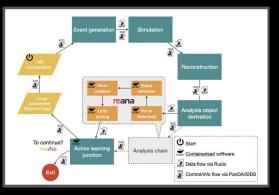
The AID(2)E Project



(i) Will contribute to advance the boundaries of MOBO complexity to accommodate a large number of objectives and will explore usage of physics-inspired approaches



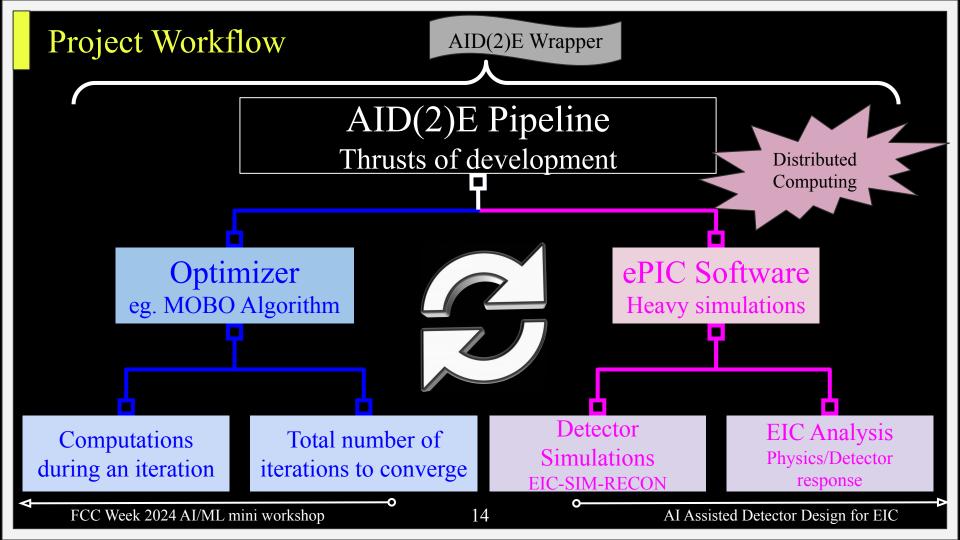
(ii) Development of suite of data science tools for interactive navigation of Pareto front (multi-dim design with multiple objectives)



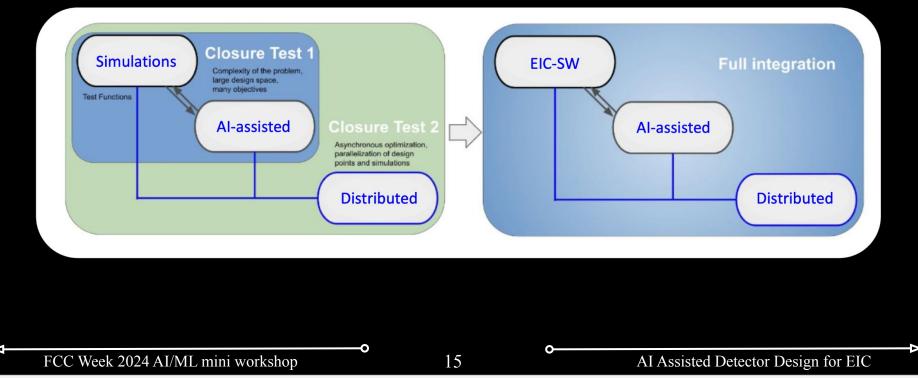
(iii) Will leverage cutting-edge workload management systems capable of operating at massive data and handle complex workflows

Examining solutions on the Pareto front of ePIC at different values of the budget can have great cost benefits

A fractional improvement in the objectives translates to a more efficient use of beam time which will make up a majority of the cost of the EIC over its lifetime



Project workflow



Closure Test 1 – Stress testing SoTA MOBO

Gaussian Process $O(n^3)$

Bayesian Sampling from posteriors NUTS – O (Md^{5/4})^[NUTS]

Acquisition function qNEHVI – O $(M(n + i)^{M})^{[2]}$

- The PDF prior distribution, that describes the Design space to objective. This is the surrogate model.
- SAAS^[1] priors have been proven to be successful upto 388 design dimensions.
- Assumes several design variables has increased importance compared to others
- Computational expensive as iteration increases
- Benefit from GPU hardware
 acceleration

- Sample L points from the posterior distribution.
- HMC is a popular algorithm
- Mainly depends on the Number of objectives and design space dimensions
- Has minimal dependence on iteration.
- GPU acceleration through JAX backend.

16

- A "cheaper" function to evaluate as a proxy for the black box function
- Identifies points of maximum improvements hence, the name
- Scales nonlinearly with iteration, total points explored, design space and objective space.
- Partially benefitted by GPU acceleration.

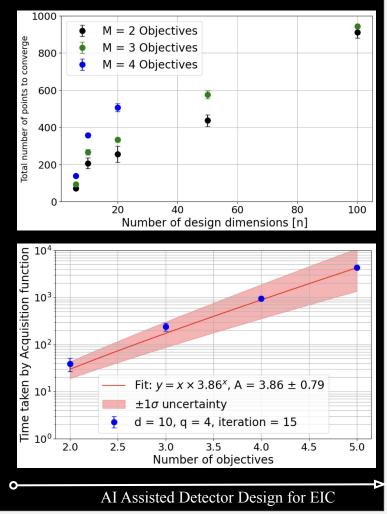
FCC Week 2024 AI/ML mini workshop

AI Assisted Detector Design for EIC

Closure Test 1 – Stress testing MOBO

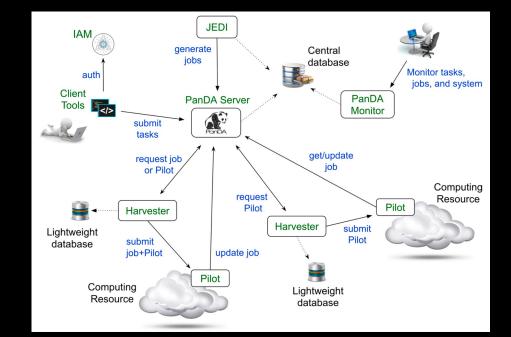
- Stress test the SoTA algorithm used for optimization
- MOBO stress-testing for problems with increasing complexity (design and objectives) and known Pareto

arXiv:2405.16279



Closure Test 2: PanDA/iDDS integration

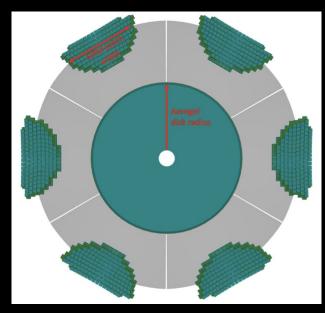
- Stress test scalability across distributed resources
- Integrate PanDA/iDDS AI/ML service to support MOBO workflow for design optimization



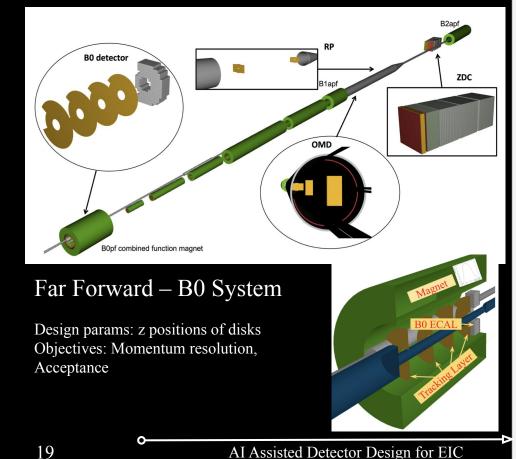
PanDA: Production and Distributed Analysis System. *Comput Softw Big Sci* **8**, 4 (2024)

Current Detector Subsystems for optimization in ePIC

d-RICH detector at EIC



Design params: Mirror, sensor placement, gas, mirror material Objectives: PID performance in bins of momentum, cost



FCC Week 2024 AI/ML mini workshop

Summary and Conclusion

- Coupling the MOBO to EIC is done. Closure test 1 nearly done.
- Working on code base for a common framework for distributed optimization using PanDA and SLURM.
- EIC can be the first large-scale experiment to be realized with assistance of AI
- Ultimately, we can realize a framework that can optimize holistically a large-scale detector, and that is scalable and distributed. The Detector-2 at EIC an ideal candidate
- Exploring solutions on EIC detector Pareto front across budget values yields significant cost advantages during construction phases.
- Efficient objectives = cost-effective EIC beam time.
- This framework inherently offers broader impacts, can be adapted in various experiments and suitable for compute-intensive applications that necessitate MOO (e.g., calibrations, alignments, etc)

FCC Week 2024 AI/ML mini workshop

Backups

FCC Week 2024 AI/ML mini workshop

0

-0

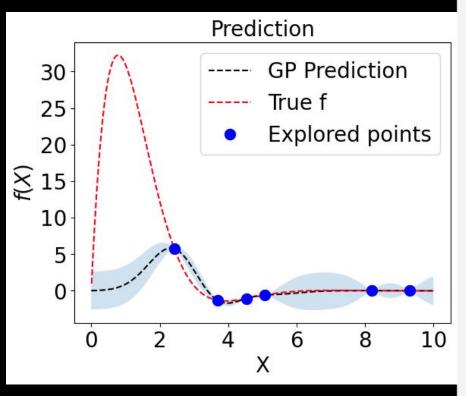
- 2

GP as a Surrogate Model

Optimization problem:

Question: What would be the next point to explore from this?

Choose a region?

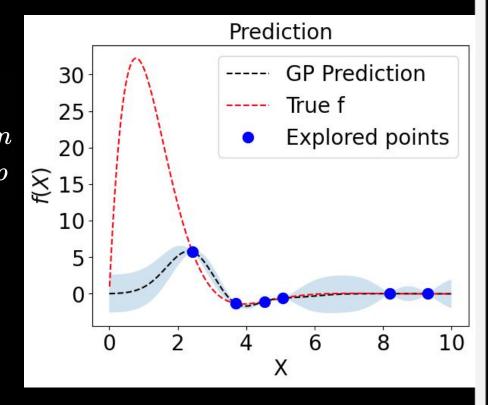


In practice we do not know the True f.

GP as a Surrogate Model

 $egin{array}{lll} \displaystyle \mathop{\mathrm{minimize}}_x & f(x) \ \mathrm{subject \ to} & g_i(x) \leq 0, \quad i=1,\ldots,m \ & h_j(x)=0, \quad j=1,\ldots,p \end{array}$

The task: To minimize. So should we even care on regions which are not minimum?

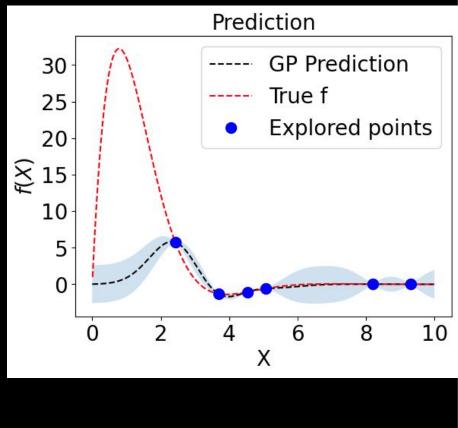


The Acquisition function

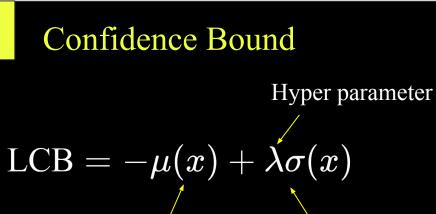
- Define a function that scans through the search space for values of f(x) using the built GP.
- Much faster than evaluations.
- Carefully choose the next point to evaluate*.
- Model inaccurate in region out of interest

Widely used Acquisition functions

- Confidence Bound
- Probability of Improvement
- Expected Improvement



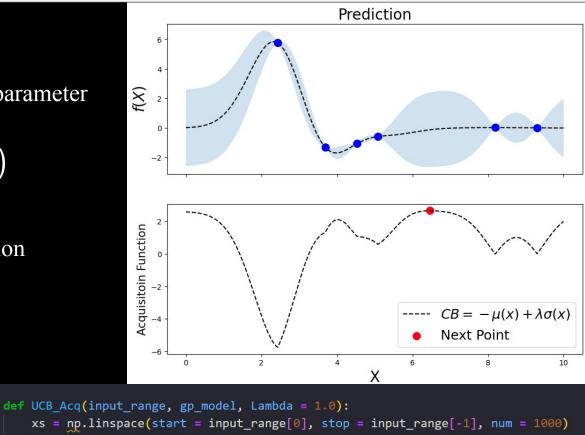
*Since evaluations are supposed to be very costly



Exploitation Exploration

Can now control where the search will happen in subsequent iterations.

Usually, bias is towards the mean. Since it is optimization



y, y_std = gp_model.predict(xs.reshape(-1, 1), return_std = True)

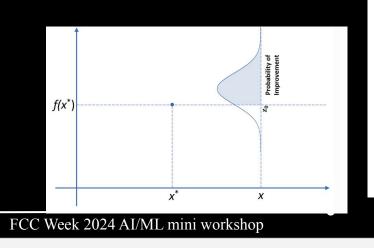
UCB = -y + Lambda*y_std

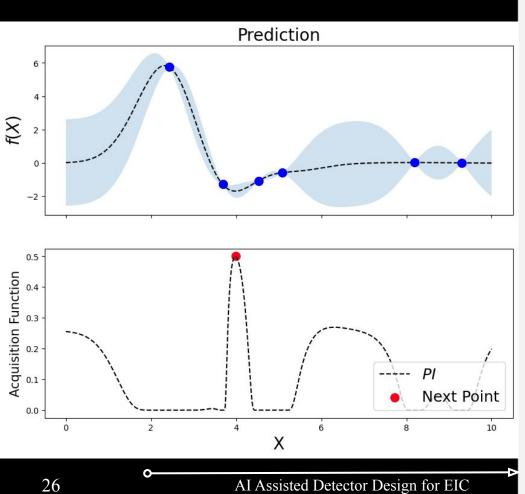
Probability of Improvement

$$\mathrm{PI} = \mathrm{CDF}(rac{min(f(x)) - f(x*)}{\sigma(x) + \epsilon})$$

Choose the point, that has the maximum probability of improvement.

Note: NO consideration of actual value.

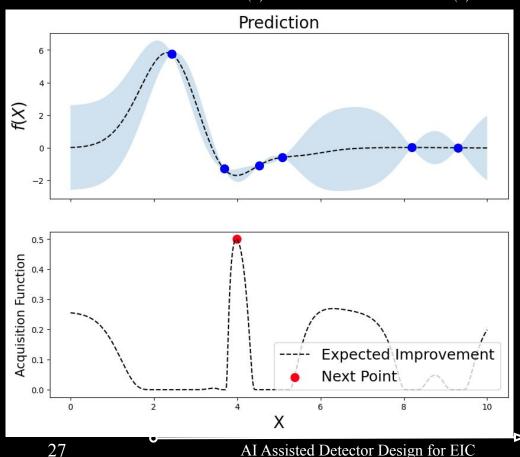




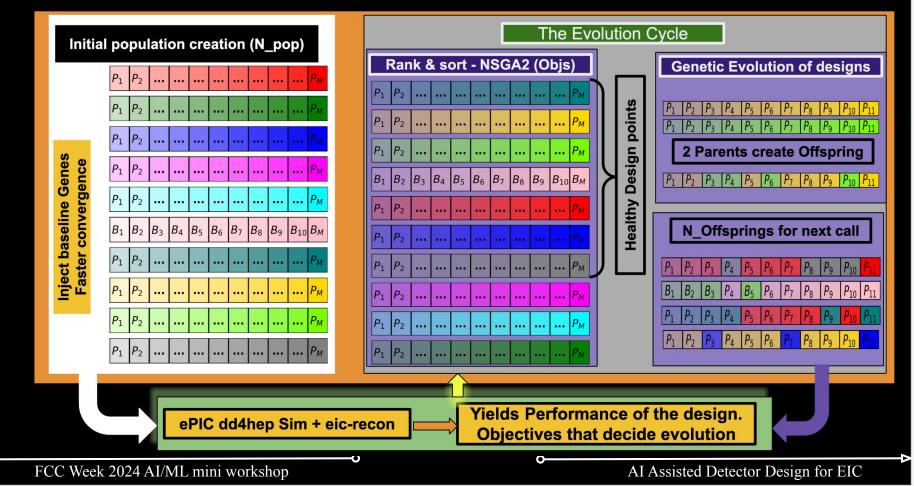
Expected Improvement $EI = (min(f(x) - f(x*)))CDF(\frac{min(f(x)) - f(x*)}{\sigma(x) + \epsilon}) + \sigma(x)PDF(\frac{min(f(x)) - f(x*)}{\sigma(x) + \epsilon})$

Considers the Magnitude of improvement along with its probability^[11]

- Now, With the suggested point, Start running iterations. Choose the first q points suggested by the Acquisition function.
- Run for N iterations
- Implement early stopping criterion if necessary



The Summary of MOGA Pipeline

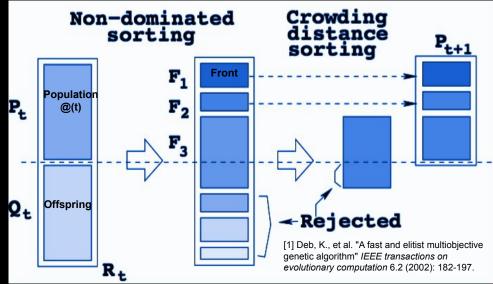


Multi Objective Evolutionary Algorithms

- Inspired by Biological Systems.
- Semi heuristic in nature.
- Quite successful in solving MOO problems.
- Embedding constraints relatively easier



Elitist Non-Dominated Sorting Genetic (NSGA)



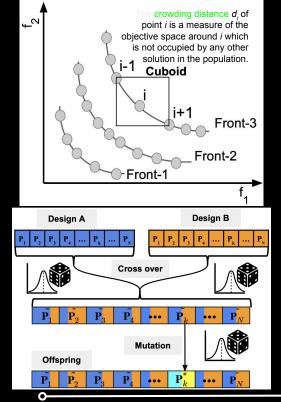
This is one of the most popular approach

(>35k citations on google scholar), characterized by:

- Use of an elitist principle
- Explicit diversity preserving mechanism
- Emphasis in non-dominated solutions

FCC Week 2024 AI/ML mini workshop

The population R_t is classified in non-dominated fronts. Not all fronts can be accommodated in the N slots of available in the new population P_{t+1} . We use **crowding distance** to keep those points in the last front that contribute to the highest diversity.



This is to illustrate Binary Cross-over

AI Assisted Detector Design for EIC 30°

MOEA or MOBO ?

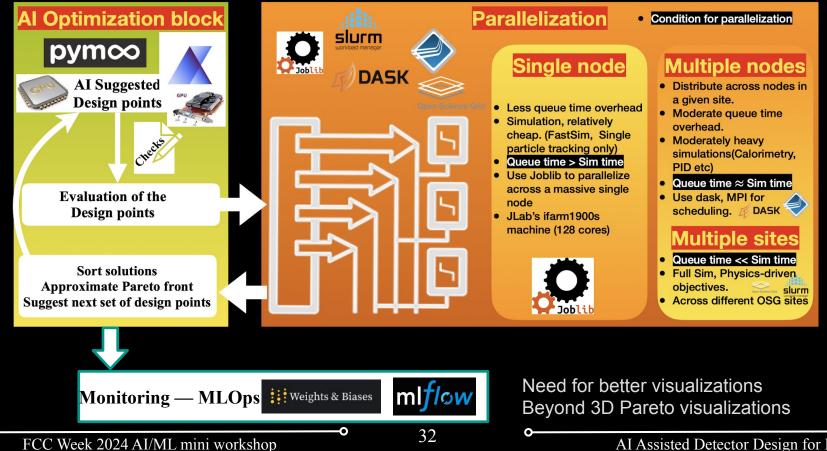
MOEA

- Has been widely used for solving MOO problems
- population /off spring diversity —
- Relatively easier to implement
- Complexity relatively easy to compute
- Ideal Cost of computing "cheap"
- Successful with large Design and Objective parameters
- No Map : "Design" "Objectives"
 FCC Week 2024 AI/ML mini workshop

MOBO

- Has been around for a while, gaining popularity
- Sequential Strategy global minimization
- Relatively harder to implement
- Complexity relatively easy to compute
- Ideal simulations can be heavily parallelized
- Currently, Not recommended beyond 4-5 Objective parameters
- Can Map : "Design" "Objectives" Fast simulator can be built

A roadmap for scalable optimization



AI Assisted Detector Design for EIC

Far Forward Updates

	Problem	Optimize the momentum resolution subject to the non-homogenous Magnetic field and to increase occupancy at B0 ECAL.					
		Objective Parameter	Remarks				
	Objective Space = 2	Momentum resolution ($p_{\rm T}$)	Momentum range of 80 - 100 GeV/c is of interest and specifically proton tracks				
		B0 ECAL acceptance	Ratio of number of tracks before 1st tracking disk to the number of showers detected by B0ECAL				
		Design Parameter	Range [cm]	Least count for variation [cm]			
	Design Space = 4	Z_1	583.0 - 630.0	1.0			
		$\Delta Z_2, \Delta Z_3, \Delta Z_4$	10.0 - 40.0	1.0			
	Constraints = 2	$Z_1 + \sum_{i=2,3,4} \Delta Z_i \le 685.5 \text{ cm}$					
	Constraints – 2	$ Z_{i+1} + Z_i \ge 10.0 \text{ cm}$					
Þ	FCC Week 2024 AI/ML mini workshop 33 AI Assisted Detector Design for EIC						