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the way we do particle physics from 
trigger/data acquisition to event 
reconstruction, simulation, data analysis, 
and interpretation
• It is an essential and versatile tool 

that we use to improve existing 
approaches

• It enables fundamentally new 
approaches

• In this talk, I’ll focus on fast inference 
of ML and how they can shift the 
paradigm
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• How can we trigger on more complex low-energy 
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Soft Bombs

We’ll focus on a particularly egregious scenario: Quasi-conformal,
strongly-coupled HV from Q to ⇤
[Strassler: 0801.0629; Hatta, Matsuo: 0804.4733; Hofman, Maldacena: 0803.1467]

• Large ‘t-Hooft coupling ⁄ ≥ g
2
N ∫ 1: large angle emission

• Quasi-conformal dynamics: maximally e�cient showering down to ⇤

• Leads to ≥ spherically symmetric event, with multiplicity scaling linearly
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3
Q
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41+1/
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Event resembles pile-up
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very low e�ciency

Dean Robinson dean.robinson@uc.edu Soft Bombs 6/20
6/20

SUEP

https://profmattstrassler.com/2024/03/15/searching-for-suep-at-the-lhc/
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A Kalman Filter for BMTF

Initialize

Propagate
Update

Propagate

Update

Propagate

Update

Propagate

Update

Vertex Unconstrained
Measurement

Vertex Constrained
Measurement

● Sequential algorithm: (mathematically equivalent to a χ2 fit)
● Propagate track inwards from station to station and match with a stub
● Update track parameters and continue

● After reaching station 1  save measurement without vertex constraint�

● Propagate to vertex and update  vertex constrained measurement�

● Challenge for an FPGA implementation  �Matrix algebra
 

https://profmattstrassler.com/2024/03/15/searching-for-suep-at-the-lhc/
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FIG. I. Network architecture for the DNN AE (top) and CNN AE (bottom) models. The corresponding VAE models are derived
introducing the Gaussian sampling in the latent space, for the same encoder and decoder architectures (see text).

of the number of parallel processors. Since 19 is a prime
number, we choose to extend the input size to 20 before
passing it through the Conv2D layer. After padding, the
input is scaled by a batch normalization layer and then
processed by a stack of two CNN blocks, each including a
2D convolutional layer followed by a ReLU [55] activation
function. The first layer has 16 3 ⇥ 3 kernels, without
padding to ensure that pT, ⌘ and � inputs do not share
weights. The second layer has 32 3 ⇥ 1 kernels. Both
layers have no bias parameters and a stride set to one.
The output of the second CNN block is flattened and
passed to a DNN layer, with 8 neurons and no activation,
which represents the latent space. The decoder takes
this as input to a dense layer with 64 nodes and ReLU
activation, and reshapes it into a 2⇥ 1⇥ 32 table. The
following architecture mirrors the encoder architecture
with 2 CNN blocks with the same number of filters as in
the encoder and with ReLU activation. Both are followed
by an upsampling layer, in order to mimic the result of a
transposed convolutional layer.

Finally, one convolutional layer with a single filter and

no activation function is added. Its output is interpreted
as the AE reconstructed input. The CNN VAE is derived
from the AE, including the ~µ and ~� Gaussian sampling
in the latent space.
All models are implemented in TensorFlow, and

trained on the background dataset by minimizing a
customized mean squared error (MSE) loss with the
Adam [56] optimizer. In order to aid the network learn-
ing process, we use a dataset with standardized pT as a
target, so that all the quantities are O(1). To account
for physical boundaries of ⌘ and �, for those features a
re-scaled tanh activation is used in the loss computation.
In addition, the sum in the MSE loss is modified in order
to ignore the zero-padding entries of the input dataset
and the corresponding outputs. When training the VAE,
the loss is changed to:

L = (1� �)MSE(Output, Input) + �DKL(~µ,~�) , (1)

where MSE labels the reconstruction loss (also used in the
AE training), DKL is the Kullback-Leibler regularization

Nat. Mach. Intell. 4, 154 (2022)
8

https://doi.org/10.1038/s42256-022-00441-3
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• (Variational) autoencoders for anomaly detection
• 1D convolutional neural networks for b-tagging
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The inputs to the network are the top ten 
PUPPI candidates ranked by pT within each jet. 
The information for each particle candidate is: 
particle type (one-hot encoded; 8 indices), 
kinematic information (pT, η, φ scaled relative 
to jet; 3 indices), and vertex information (z-
position and transverse impact parameter with 
respect to the primary vertex; 2 indices).


The neural network architecture is based 
around two 1D convolutional layers which act 
as featurizers for inputs from each jet. The 
resulting features are flattened and passed 
through 3 dense layers to produce a single 
value between 0 and 1. Scores close to 1 
indicate jets that are likely to have originated 
from bottom quarks, while scores close to 0 
indicate jets that are likely to have originated 
from light quarks or gluons.
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FIG. I. Network architecture for the DNN AE (top) and CNN AE (bottom) models. The corresponding VAE models are derived
introducing the Gaussian sampling in the latent space, for the same encoder and decoder architectures (see text).

of the number of parallel processors. Since 19 is a prime
number, we choose to extend the input size to 20 before
passing it through the Conv2D layer. After padding, the
input is scaled by a batch normalization layer and then
processed by a stack of two CNN blocks, each including a
2D convolutional layer followed by a ReLU [55] activation
function. The first layer has 16 3 ⇥ 3 kernels, without
padding to ensure that pT, ⌘ and � inputs do not share
weights. The second layer has 32 3 ⇥ 1 kernels. Both
layers have no bias parameters and a stride set to one.
The output of the second CNN block is flattened and
passed to a DNN layer, with 8 neurons and no activation,
which represents the latent space. The decoder takes
this as input to a dense layer with 64 nodes and ReLU
activation, and reshapes it into a 2⇥ 1⇥ 32 table. The
following architecture mirrors the encoder architecture
with 2 CNN blocks with the same number of filters as in
the encoder and with ReLU activation. Both are followed
by an upsampling layer, in order to mimic the result of a
transposed convolutional layer.

Finally, one convolutional layer with a single filter and

no activation function is added. Its output is interpreted
as the AE reconstructed input. The CNN VAE is derived
from the AE, including the ~µ and ~� Gaussian sampling
in the latent space.
All models are implemented in TensorFlow, and

trained on the background dataset by minimizing a
customized mean squared error (MSE) loss with the
Adam [56] optimizer. In order to aid the network learn-
ing process, we use a dataset with standardized pT as a
target, so that all the quantities are O(1). To account
for physical boundaries of ⌘ and �, for those features a
re-scaled tanh activation is used in the loss computation.
In addition, the sum in the MSE loss is modified in order
to ignore the zero-padding entries of the input dataset
and the corresponding outputs. When training the VAE,
the loss is changed to:

L = (1� �)MSE(Output, Input) + �DKL(~µ,~�) , (1)

where MSE labels the reconstruction loss (also used in the
AE training), DKL is the Kullback-Leibler regularization

CMS-DP-2022-021

Nat. Mach. Intell. 4, 154 (2022)
8

https://cds.cern.ch/record/2814728
https://doi.org/10.1038/s42256-022-00441-3
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• (Variational) autoencoders for anomaly detection
• 1D convolutional neural networks for b-tagging
• Graph neural networks for tracking

3

The inputs to the network are the top ten 
PUPPI candidates ranked by pT within each jet. 
The information for each particle candidate is: 
particle type (one-hot encoded; 8 indices), 
kinematic information (pT, η, φ scaled relative 
to jet; 3 indices), and vertex information (z-
position and transverse impact parameter with 
respect to the primary vertex; 2 indices).


The neural network architecture is based 
around two 1D convolutional layers which act 
as featurizers for inputs from each jet. The 
resulting features are flattened and passed 
through 3 dense layers to produce a single 
value between 0 and 1. Scores close to 1 
indicate jets that are likely to have originated 
from bottom quarks, while scores close to 0 
indicate jets that are likely to have originated 
from light quarks or gluons.
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ZeroPad (0,0),(1,1)

Block 5:
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FIG. I. Network architecture for the DNN AE (top) and CNN AE (bottom) models. The corresponding VAE models are derived
introducing the Gaussian sampling in the latent space, for the same encoder and decoder architectures (see text).

of the number of parallel processors. Since 19 is a prime
number, we choose to extend the input size to 20 before
passing it through the Conv2D layer. After padding, the
input is scaled by a batch normalization layer and then
processed by a stack of two CNN blocks, each including a
2D convolutional layer followed by a ReLU [55] activation
function. The first layer has 16 3 ⇥ 3 kernels, without
padding to ensure that pT, ⌘ and � inputs do not share
weights. The second layer has 32 3 ⇥ 1 kernels. Both
layers have no bias parameters and a stride set to one.
The output of the second CNN block is flattened and
passed to a DNN layer, with 8 neurons and no activation,
which represents the latent space. The decoder takes
this as input to a dense layer with 64 nodes and ReLU
activation, and reshapes it into a 2⇥ 1⇥ 32 table. The
following architecture mirrors the encoder architecture
with 2 CNN blocks with the same number of filters as in
the encoder and with ReLU activation. Both are followed
by an upsampling layer, in order to mimic the result of a
transposed convolutional layer.

Finally, one convolutional layer with a single filter and

no activation function is added. Its output is interpreted
as the AE reconstructed input. The CNN VAE is derived
from the AE, including the ~µ and ~� Gaussian sampling
in the latent space.
All models are implemented in TensorFlow, and

trained on the background dataset by minimizing a
customized mean squared error (MSE) loss with the
Adam [56] optimizer. In order to aid the network learn-
ing process, we use a dataset with standardized pT as a
target, so that all the quantities are O(1). To account
for physical boundaries of ⌘ and �, for those features a
re-scaled tanh activation is used in the loss computation.
In addition, the sum in the MSE loss is modified in order
to ignore the zero-padding entries of the input dataset
and the corresponding outputs. When training the VAE,
the loss is changed to:

L = (1� �)MSE(Output, Input) + �DKL(~µ,~�) , (1)

where MSE labels the reconstruction loss (also used in the
AE training), DKL is the Kullback-Leibler regularization

CMS-DP-2022-021

Nat. Mach. Intell. 4, 154 (2022)

Front. Big Data 5, 828666 (2022)
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• Reconstruct all events and reject 98% of them in ~10 μs

• Algorithms have to be <1 μs and process new events every (25 ns) ⨉ Ntmux

• Latency necessitates all FPGA design

• Algorithms have to fit on <1 FPGA

• How can we satisfy these constraints?
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Codesign

10

• Codesign: intrinsic development loop 
between ML design, training, and 
implementation 

• Pruning 

• Maintain high performance while 
removing redundant operations

• Quantization 

• Reduce precision from 32-bit 
floating point to 16-bit, 8-bit, …

• Parallelization 

• Balance parallelization (how fast) 
with resources needed (how costly)
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Accelerated Artificial Intelligence Algorithms for Data-Driven Discovery

Our Mission is to enable real-time AI techniques for scientific and engineering discovery by 
uniting three core components: Scientific Applications, Artificial Intelligence Algorithms, and 
Computing Hardware. 

Collaborators welcome! Check the a3d3.ai for events
OAC-2117997 

https://a3d3.ai/
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2117997
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Pros:  

• Reprogrammable interconnects  
between embedded components that  
perform multiplication (DSPs),  
apply logical functions (LUTs),  
or store memory (BRAM) 

• High throughput I/O: O(100)  
optical transceivers running at  
O(15) Gbps 

• Massively parallel 

• Low power 

Cons: 

• Requires domain knowledge to program (using VHDL/Verilog)

ALL FPGA ARCHITECTURE 16

FPGA 
“programmable hardware” 

DSPs (multiply-accumulate, etc.) 
Flip Flops (registers/distributed memory) 

LUTs (logic) 
Block RAMs (memories)

Typical modern FPGA: 

(Kintex ultrascale+)

1.3M FFs 

700k LUTs

5500 DSPs 

2200 BRAMs

O(50-100) optical 
transceivers 

running at  

~O(15) Gbs
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• hls4ml for scientists or ML experts to translate ML algorithms into RTL firmware
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https://fastmachinelearning.org/hls4ml/
https://arxiv.org/abs/1804.06913
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• FINN (NNs): https://finn.readthedocs.io/en/latest/ 

• Confier (BDTs): https://github.com/thesps/conifer 

• fwXMachina (BDTs): http://fwx.pitt.edu/ 

• FlowGNN: https://github.com/sharc-lab/flowgnnNode 
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Fig. 3. Our proposed baseline dataflow architecture and the improved FlowGNN architecture. (a) The baseline dataflow architecture can effectively pipeline
the Node Transformation (NT) and Message Passing (MP), but processes only one node and one edge at a time. (b) The improved FlowGNN architecture
can process multiple nodes and multiple edges simultaneously, enabled by an NT-to-MP adapter via on-the-fly multicasting.

More specifically, the GNN computation flow has the fol-
lowing stages, as demonstrated in Fig. 2:
Message Passing (Gather). In the gather phase, a.k.a. aggre-
gation, of a certain node n1, the messages from its neighbors
obtained in the previous layer are retrieved from a message
buffer. The messages are then aggregated in a permutation-
invariant manner, denoted by A(·) (e.g., sum, max, mean, std.
dev.). In advanced GNNs such as PNA, multiple aggregators
are used with learnable weights and scaled based on the degree
of the target node. The aggregated message is denoted by m

l
1.

Node Transformation. After aggregation, m
l
1 is processed

together with node n1’s current node embedding, denoted by
x
l
1, via a node transformation function �(·). This function,

with inputs m
l
1 and x

l
1, might be an identity, fully-connected

layer, weighted sum, or an MLP. �(·) produces a new node
embedding of n1, denoted by x

l+1
1 , and applies the update.

Message Passing (Scatter). After node transformation is the
scatter phase of message passing. The new node embedding
x
l+1
1 will be transformed by a message transformation function

�(·), usually together with an edge embedding e
l+1
src,dest, to

generate the node’s outgoing messages. Messages will be
dispatched to all neighbors, which will eventually be collected
by the gather stage of the next layer.
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Fig. 4. Different strategies of pipelining of node transformation (NT) and
message passing (MP). The proposed FlowGNN pipeline in (d) explores
node/edge level parallelism and can pipeline NT and MP within one node.

A complete GNN model may consist of multiple layers,
each with message passing and node transformation steps. For
graph-level tasks, a global pooling layer is needed, possibly
followed by MLP layers for final prediction.

C. Baseline Dataflow Architecture

To explicitly support the message passing mechanism, we
first propose the baseline dataflow architecture, shown in
Fig. 3(a). It has two major processing components: one Node
Transformation (NT) unit (yellow block), and one Message

5

https://finn.readthedocs.io/en/latest/
https://github.com/thesps/conifer
http://fwx.pitt.edu/
https://github.com/sharc-lab/flowgnn
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Can be done on the FPGA!

At each node, compute

ML framework: 
 

Loss function: Huber loss [Wikipedia]
 

Activation function: ReLU
 

Batch normalization: applied right after the 

        input layer and in each hidden layer

Training dataset: 2M muons
 

Testing dataset: 1M muons

pT assignment with NN

https://cds.cern.ch/record/2714892
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Figure 3.33: Left: endcap trigger rate comparison of the Phase-1 EMTF and the Phase-2
EMTF++ algorithms as a function of pT threshold for events with 200 average pileup. Right:
Trigger rate comparison as a function of PU for a pT > 20 GeV threshold.

The same 6 h zones are retained for a total of 54 patterns per 0.5-degree in f, as for the prompt
muon patterns. Figure 3.31 (right) shows these patterns.

The TP information in the stations from stubs that satisfy a displaced pattern are input to a NN
that in this case has been trained to perform a regression that returns simultaneously values for
1/pT and d0 of displaced muons. The NN configuration used is the same as that for prompt
muons, using 3 hidden layers with 30/25/20 nodes each. Batch normalization is inserted after
each layer, including the input layer. A total of 23 inputs are used in the NN, these are:

• 6 Df quantities between stations: S1-S2, S1-S3, S1-S4, S2-S3, S2-S4, S3-S4
• 6 Dq quantities between stations: S1-S2, S1-S3, S1-S4, S2-S3, S2-S4, S3-S4
• 4 bend angles: set to zero if no CSC stub is found and only RPC stub is used
• For ME1 only: 1 bit for front or back chambers and 1 bit for inner or outer h ring
• 1 track q taken from stub coordinate in ME2, ME3, ME4 (in this priority)
• 4 RPC bits indicating if ME or RE stub was used in each station (S1, S2, S3, S4)

At the time of this writing, information from the new Phase-2 detectors (GE1/1, GE2/1, ME0,
iRPC) has not been incorporated into the study, and neither has the more precise CSC bend
information described above. As such, this study is geared towards possible implementation of
this algorithm during Run-3. An update to incorporate new Phase-2 detector information is in
progress. The already positive conclusions on triggering on standalone displaced muons in the
endcap with only the Phase-1 detectors, as shown below, is expected to improve significantly
when all Phase-2 information is included.

Figure 3.34 shows, for events with single muons and no pileup, the q/pT and the d0 resolutions
as determined by the NN estimate of these quantities. The pT resolution is about 60%, which
is large compared to the 20% resolution obtained from EMTF++ for prompt muons. A bias
towards underestimating the pT can be observed. However, the d0 resolution is very good,
⇠ 5 cm. Figure 3.35 shows the trigger rates of the displaced muon algorithm for PU 200 events.
In order to keep the rates at approximately the same 10 kHz level as those from prompt muons,
reasonable L1 thresholds of, for example, pT > 20 GeV and |d0| > 20 cm can be applied.
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ML framework: 
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Activation function: ReLU
 

Batch normalization: applied right after the 
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• Fits within L1 trigger latency (240 ns!) and FPGA 
resource requirements (less then 30%)
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�1

Dense Network 
23 ➜ 30 ➜ 25 ➜ 20  

➜ momentum & classifier

Inference time: 280 ns 
Throughput: 104 Gb/s

AI circuit for ultrafast inference on FPGA
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Convolutional and Recurrent Neural 
Networks  
for real-time energy reconstruction of 
ATLAS LAr Calorimeter for Phase 2 

• Up to around 600 calorimeter channels 
processed by on device 

• 200 ns latency of predictions 

• Implemented on Intel FPGAs (previous 
examples are all AMD) 

- Team contributed majorly to RNN and 
Intel implementations of hls4ml

10.1007/s41781-021-00066-y

https://link.springer.com/article/10.1007/s41781-021-00066-y
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• Challenge: if new physics has an unexpected signature that doesn’t align with existing triggers, 
precious BSM events may be discarded at trigger level

• Can we use unsupervised algorithms to detect non-SM-like anomalies?

• Autoencoders (AEs): compress input to a smaller dimensional latent space then decompress and 
calculate difference

6

AUTOENCODERS FOR ANOMALY DETECT ION

Using Autoencoders for anomaly detection 
Encode input in smaller dimensional space 
Train on typical LHC background 
Anomalous data will have higher loss  
Calculating the loss requires to store the input until the 
output is computed

3.2 Baseline performance

The models described in the previous section are trained with floating point precision on an NVIDIA RTX2080 GPU.
We refer to these models as baseline (B). Figures 4 and 5 shows the distribution of the anomaly-detection scores
considered in this paper (IO AD for the AE models, Rz and DKL(ADs for the VAE models). For completeness, results
obtained from the IO AD score of the VAE models are also shown.

Figure 4: Distribution of four anomaly detection scores (IO AD for AE and VAE models, Rzand DKLADs for the VAE
models) for the DNN model, for the SM cocktail and the four new physics benchmark models.

The model performance is assessed using the four new physics benchmark models. The receiver operating characteristic
(ROC) curves in Fig. 6 show the dependence of the true positive rate (TPR) as a function of the false positive rate (FPR),
computing by changing the lower threshold applied on the different anomaly scores. We further quantify the anomaly
detection performance quoting the area under the ROC curve (AUC) and the TPR corresponding to to a working point
of SM false positive rate "SM = 10

�5 (see Table 1), which corresponds to the average of ⇡ 1000 SM events accepted
every month [1].
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Can be used to generate new samples 
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No need to store input and deployment of Encoder is enough 
(e.g. saves resources and latency in comparison to AE)
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term [57] usually adopted for VAEs

DKL(~µ,~�) = �
1

2

X

i

�
log(�2

i )� �2
i � µ2

i + 1
�
, (2)

and � is a hyperparameter defined in the range [0, 1] [58].

Both models are trained for 100 epochs with a batch size
of 1024, using early stopping if there is no improvement in
the loss observed after ten epochs. All models are trained
with floating point precision on an NVIDIA RTX2080
GPU. We refer to these as the baseline floating-point
(BF) models.

IV. ANOMALY DETECTION SCORES

An autoencoder is optimized to retain the minimal set
of information needed to reconstruct a accurate estimate
of the input. During inference, an autoencoder might have
problems generalizing to features it was not exposed to
during training. Selecting events where the autoencoder
output is far from the given input is often seen as an
e↵ective AD algorithm. For this purpose, one could use
a metric that measures the distance between the input
and the output. The simplest solution is to use the same
metric that defines the training loss function. In our case,
we use the MSE between the input and the output. We
refer to this strategy as input-output (IO) AD.

In the case of a VAE deployed in the L1T, one cannot
simply exploit an IO AD strategy since this would require
sampling random numbers on the FPGA. The trigger
decision would not be deterministic, something usually
tolerated only for service triggers, and not for triggers
serving physics studies. Moreover, one would have to store
random numbers on the FPGA, which would consume
resources and increase the latency. To deal with this
problem, we consider an alternative strategy by defining
an AD score based on the ~µ and ~� values returned by
the encoder (see Eq. (1)). In particular, we consider two
options: the KL divergence term entering the VAE loss
(see Eq. (2)) and the z-score of the origin ~0 in the latent
space with respect to a Gaussian distribution centered at
~µ with standard deviation ~� [10]:

Rz =
X

i

µ2
i

�2
i

. (3)

These two AD scores have several benefits we take advan-
tage of: Gaussian sampling is avoided; we save significant
resources and latency by not evaluating the decoder; and
we do not need to bu↵er the input data for computation
of the MSE. During the model optimization, we tune
� so that we obtain (on the benchmark signal models)
comparable performance for the DKL AD score and the
IO AD score of the VAE.

V. PERFORMANCE AT FLOATING-POINT
PRECISION

The model performance is assessed using the four new
physics benchmark models. The anomaly-detection scores
considered in this paper are IO AD for the AE models,
Rz and DKL ADs for the VAE models. For completeness,
results obtained from the IO AD score of the VAE models
are also shown. The receiver operating characteristic
(ROC) curves in Figures II and III show the true positive
rate (TPR) as a function of the false positive rate (FPR),
computed by changing the lower threshold applied on the
di↵erent anomaly scores. We further quantify the AD
performance quoting the area under the ROC curve (AUC)
and the TPR corresponding to a FPR working point of
10�5 (see Table I), which on this dataset corresponds to
the reduction of the background rate to approximately
1000 events per month.

From the ROC curves, we conclude that DKL can be
used as an anomaly metric for both the DNN and CNN
VAE. This has the potential to significantly reduce the
inference latency and on-chip resource consumption as
only half of the network (the encoder) needs to be evalu-
ated and that there no longer is a need to bu↵er the input
in order to compute an MSE loss. The Rz metric per-
forms worse and is therefore not included in the following
studies.

VI. MODEL COMPRESSION

We adopt di↵erent strategies for model compression.
First of all, we compress the BF model by pruning the
dense and convolutional layers by 50% of their connec-
tions, following the same procedure as Ref. [19]. Pruning
is enforced using the polynomial decay implemented in
TensorFlow pruning API, a Keras-based [59] inter-
face consisting of a simple drop-in replacement of Keras
layers. A sparsity of 50% is targeted, meaning only 50%
of the weights are retained in the pruned layers and the
remaining ones are set to zero. The pruning is set to start
from the fifth epoch of the training to ensure the model
is closer to a stable minimum before removing weights
deemed unimportant. By pruning the BF model layers
to a target sparsity of 50%, the number of floating-point
operations required when evaluating the model, can be
significantly reduced. We refer to the resulting model
as the baseline pruned (BP) model. For the VAE, only
the encoder is pruned, since only that will be deployed
on FPGA. The BP models are taken as a reference to
evaluate the resource saving of the following compression
strategies, including QAT and PTQ.
Furthermore, we perform a QAT of each model de-

scribed in Section III, implementing them in the QKeras
library [23]. The bit precision is scanned between 2 and
16 with a 2-bit step. When quantizing a model, we also
impose a pruning of the dense (convolutional) layers by
50%, as done for the DNN (CNN) BP models. The results

Key observation: Can build an anomaly score 
from the latent space of VAE directly! No need 
to run decoder!

https://doi.org/10.1038/s42256-022-00441-3
https://mpp-hep.github.io/ADC2021
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CMS has implemented a similar idea: AXOL1TL 

• L1 Hardware implemented VAE-based AD trigger 
(based on https://arxiv.org/abs/2108.03986)  

• Trained on 2018 zerobias data, ran in 2023 Global 
Trigger Test Crate 

• CMS is also developing CICADA, a calorimeter only 
AD trigger

Event display of the 
highest anomaly score

CMS-DP-2023-079

Similar effort is ongoing  in ATLAS 

https://cds.cern.ch/record/2876546
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Transformer Block

Inputs

Flatten

Feed Forward (3 Dense)
Units = [32, 16, 8]

Output Layer
Softmax

Output 
class probability: b / c / light

x 3

 Observed Inference Latency ~ 2-6 s μ

arXiv:2402.01047

https://arxiv.org/abs/2402.01047
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Compute 
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1 MB/evt
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Data reduction and reconstruction on 
sensor for silicon pixel detectors 

We can reduce the data rate read out by a 
futuristic pixel detector using AI on-chip 

• Factor of ~20 from pT filter 
• Additional savings from compression

Dataset available on zenodo

State-of-the-art dataset for developing 
algorithms for implementation on-ASIC 
• Simulated MIP interactions in a futuristic 
pixel detector

arXiv:2310.02474
arXiv:2312.11676

https://zenodo.org/records/7331128
https://arxiv.org/abs/2310.02474
https://arxiv.org/abs/2312.11676


Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference 

HL-LHC Data Processing

22

1 ns 1 μs 1 s1 ms

Compute 
Latency

High-Level 
Trigger

7.5 kHz 
1 MB/evt

40 MHz
L1 Trigger

750 kHz

Offline



Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference 

HL-LHC Data Processing

22
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Compute 
Latency

High-Level 
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7.5 kHz 
1 MB/evt

40 MHz
L1 Trigger

750 kHz

Offline

Second stage of 
LHC trigger
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FPGAs

EFFICIENCY

Control 
Unit 
(CU)

Registers

Arithmetic 
Logic Unit 

(ALU) + + + +

+ +
+

Silicon alternatives

FLEXIBILITY

CPUs GPUs
ASICs

Image: Microsoft

FPGAs

EFFICIENCY

Control 
Unit 
(CU)

Registers

Arithmetic 
Logic Unit 

(ALU) + + + +

+ +
+

Silicon alternatives

FLEXIBILITY

CPUs GPUs
ASICs

Second stage of LHC 
trigger

https://microsoft.github.io/ai-at-edge/docs/hw_acceleration/
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A. Gholami

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8
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Who to include these different processors into our computing system?
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Coprocessors: specialized processors like GPU, FPGA, TPU, 
GraphCore, other AI chips, etc 

Increased usage of specialized processors in the future 

FPGAs

EFFICIENCY

Control 
Unit 
(CU)

Registers

Arithmetic 
Logic Unit 

(ALU) + + + +

+ +
+

Silicon alternatives

FLEXIBILITY

CPUs GPUs
ASICs

Coprocessor 
GPU, FPGA, 

TPU ..

Direct Connection:  Different heterogeneous  systems 
are directly connected to each other
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Coprocessors: specialized processors like GPU, FPGA, TPU, 
GraphCore, other AI chips, etc 

Increased usage of specialized processors in the future 

FPGAs

EFFICIENCY

Control 
Unit 
(CU)

Registers

Arithmetic 
Logic Unit 

(ALU) + + + +

+ +
+

Silicon alternatives

FLEXIBILITY

CPUs GPUs
ASICs

Coprocessor 
GPU, FPGA, 

TPU ..

Direct Connection:  Different heterogeneous  systems 
are directly connected to each other

Advantage: fast and stable 
Disadvantage: not flexible and not fully utilized due to inferences’ complexity varies.



Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference 

Inference as-a-Service
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Client - Server connections are made 
through network 

• Server running on single / multiple GPUs 

• Single server can process multiple client 
requests

Advantage: flexible and CPU-coprocessor ratio can be optimized 
Disadvantage: network topology and stability affect the inference 
throughput and latency
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Demonstration on how it would work in the ‘CMS 
offline computing’ reality, and how much do we gain

• Roughly 13% gain in throughput 
• The distance between the client and server does 

not impact the latency  

ATLAS is currently working on making GNN-based 
tracking as-a-service 

ACAT 2024 talk

CMS-PAS-MLG-23-001

https://indico.cern.ch/event/1330797/contributions/5796611/attachments/2820244/4924638/ACTS_as_a_service_ACAT2024.pdf
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1 ns 1 μs 1 s1 ms

Compute 
Latency

High-Level 
Trigger

7.5 kHz 
1 MB/evt

40 MHz
L1 Trigger

750 kHz

Offline
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1 ns 1 μs 1 s1 ms

Compute 
Latency

High-Level 
Trigger

7.5 kHz 
1 MB/evt

40 MHz
L1 Trigger

750 kHz

Offline

Second stage of 
LHC trigger
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ML-based Par7cle Flow 
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• Gen. particles, reco. tracks and calorimeter 
hits, reco. Pandora PF particles in 
EDM4HEP format 

• CLIC detector (CLIC_o3_v14) simulation with 
Geant4, reco. with Marlin interfaced via 
Key4HEP including Pandora PF reco. 

• Processes generated with Pythia8 at 

 

• , , , ,  

• Single-particle: , , , , ,  between 

 
• 2.5 TB, 6 million events in total

s = 380 GeV
e+e− → tt qq ZH(ττ) WW tt + PU10

e± μ± K0
L n π± γ

[1,100] GeV

https://www.coe-raise.eu/od-pfr

doi:10.5281/zenodo.8260741 

https://arxiv.org/abs/1812.07337
https://www.coe-raise.eu/od-pfr
https://doi.org/10.5281/zenodo.8260741
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MLPF Performance
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MLPF

baseline

arXiv:2309.06782

https://arxiv.org/abs/2309.06782
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• Generalizes to samples (e.g., ) never used in traininge+e− → WW → hadrons

MLPF

baseline

arXiv:2309.06782

https://arxiv.org/abs/2309.06782
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MLPF Performance
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• Generalizes to samples (e.g., ) never used in traininge+e− → WW → hadrons
• ~50% improvement in jet response width over the baseline*

MLPF

baseline MLPF

baseline

*Defined with gen. particle status = 1

arXiv:2309.06782

https://arxiv.org/abs/2309.06782
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Summary and Outlook
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• ML allows us to better reconstruct our data and  
save potentially overlooked data

• Codesign principles can enable ML on hardware  
with stringent constraints

• Alternative computing solutions like as a service 
approach will help us adopt to the growing discovery of 
computing hardware
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Summary and Outlook
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• Community (fastmachinelearning.org, e-group  
hls-fml@cern.ch) and Institute (a3d3.ai) developing  
open-source tools and techniques to enable this 

• hls4ml: expanding open-source  
toolkit for translating ML into hardware aimed  
at trigger applications and more… 

• Applications range from momentum regression,  
to b-tagging, tracking, and more! 

• Enhance future particle physics program

https://fastmachinelearning.org/
https://e-groups.cern.ch/e-groups/EgroupsSubscription.do?egroupName=hls-fml
http://a3d3.ai
http://fastmachinelearning.org/hls4ml
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Towards Future Collider
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As the computing developments are very dynamic it is very 
difficult to guess the  future solutions 

•  Larger ML models are becoming common 
•  Faster hardware are emerging  

HL-LHC is a good checkpoint for upgrading our software / 
hardware infrastructure for Fast Inference (with 
heterogeneous computing)  
• Integrate more AI/ML into wide range of activities 

As a community we need to continue pushing the frontier 
and stay at the front of this rapid development

AMD MI300A APU

https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/data-sheets/amd-instinct-mi300a-data-sheet.pdf


Thank You



BACKUP
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16 inputs

64 nodes

32 nodes

32 nodes

5 outputs

Small NN benchmark correctly identifies particle “jets” 70-80% of the time


