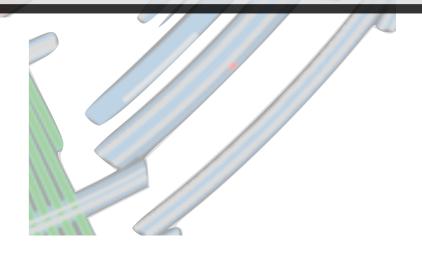


Fast Machine Learning Inference

University of California, San Diego

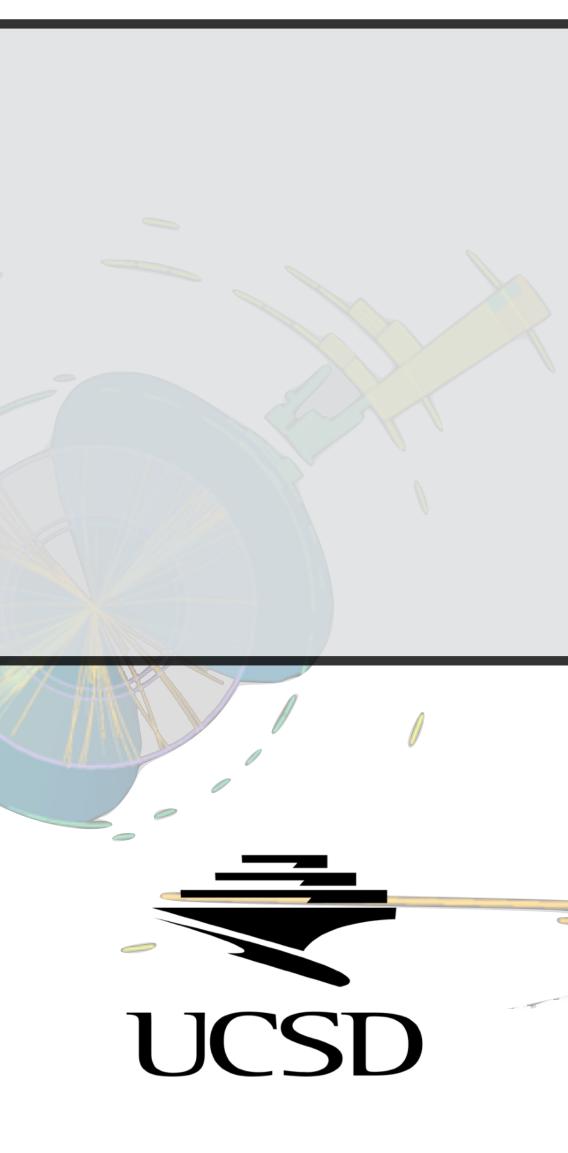
Accelerated AI Algorithms for Data-Driven Discovery



Elham E Khoda

FCC Workshop 2024 June 13, 2024

 \checkmark



Thanks!

- Javier Duarte (UCSD) for helping me prepare the slides
- Lindsey Gray, Jennet Dickinson, Nhan Tran (Fermilab), Shih-Chieh Hsu (UW), Dylan Rankin (Penn) for helping with inputs for the presentation

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Many thanks to

 Machine learning has already changed the way we do particle physics from trigger/data acquisition to event reconstruction, simulation, data analysis, and interpretation

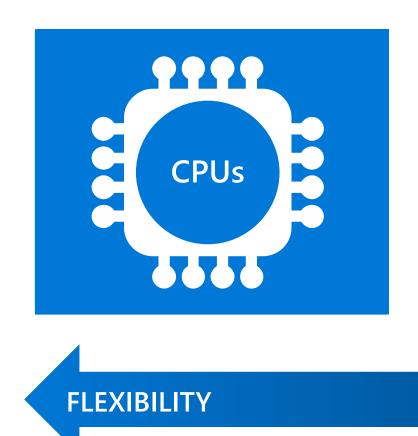


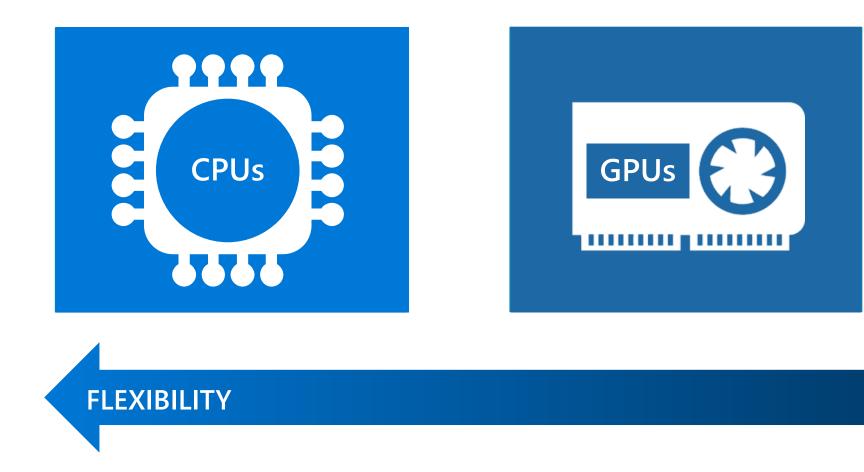
- Machine learning has already changed the way we do particle physics from trigger/data acquisition to event reconstruction, simulation, data analysis, and interpretation
 - It is an essential and versatile tool that we use to improve existing approaches

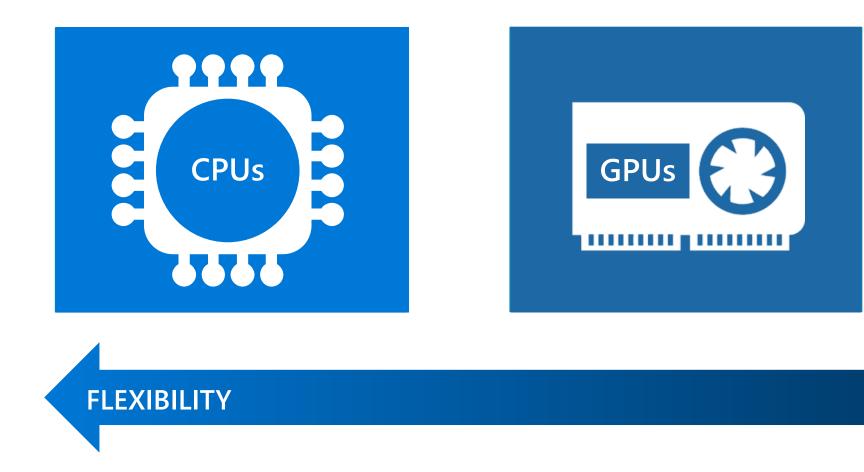
- Machine learning has already changed the way we do particle physics from trigger/data acquisition to event reconstruction, simulation, data analysis, and interpretation
 - It is an essential and versatile tool that we use to improve existing approaches
 - It enables fundamentally new approaches

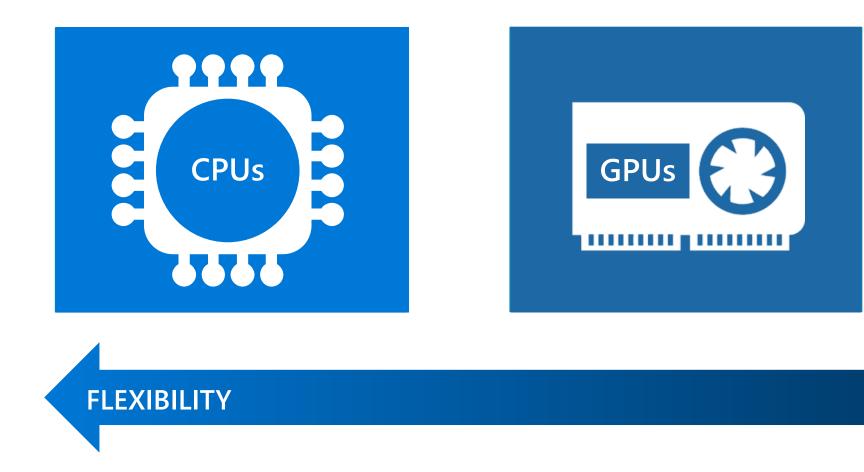
- Machine learning has already changed the way we do particle physics from trigger/data acquisition to event reconstruction, simulation, data analysis, and interpretation
 - It is an essential and versatile tool that we use to improve existing approaches
 - It enables fundamentally new approaches

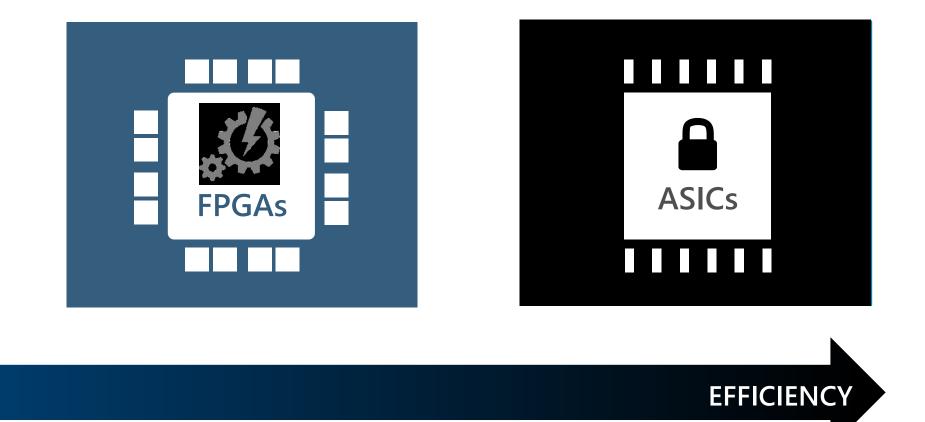
- Machine learning has already changed the way we do particle physics from trigger/data acquisition to event reconstruction, simulation, data analysis, and interpretation
 - It is an essential and versatile tool that we use to improve existing approaches
 - It enables fundamentally new approaches
- In this talk, I'll focus on fast inference of ML and how they can shift the paradigm

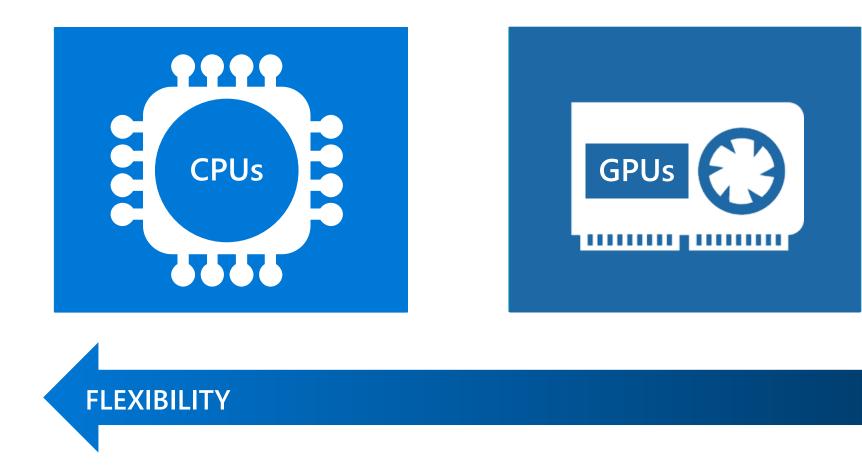


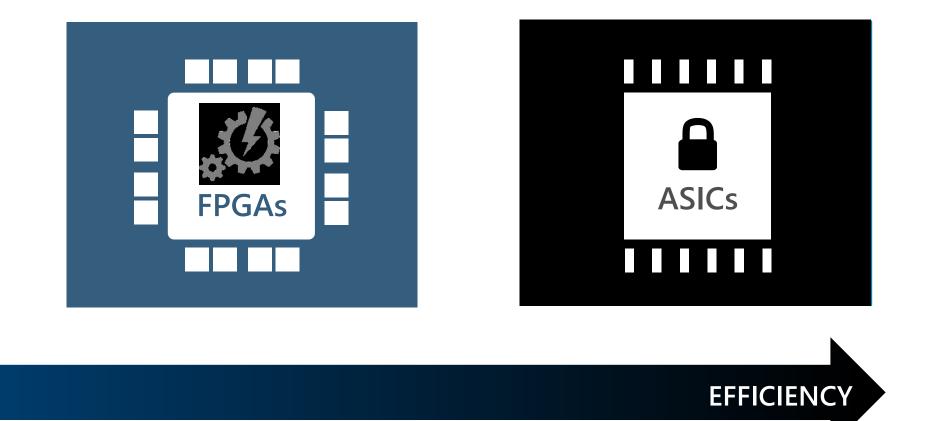


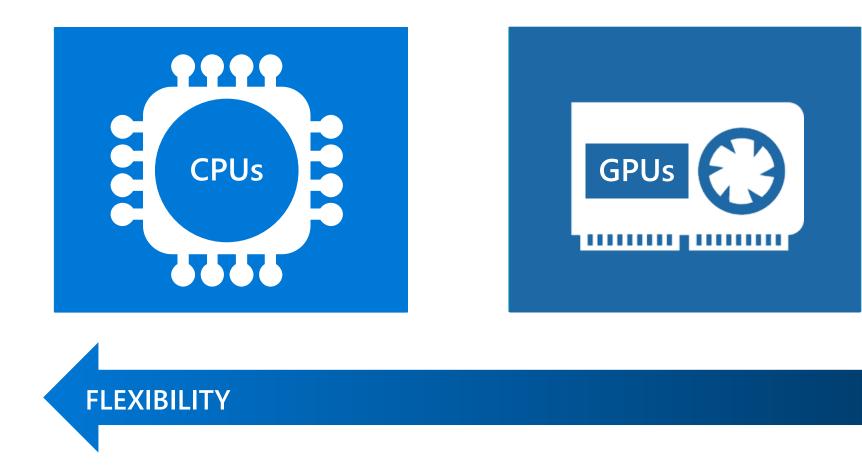


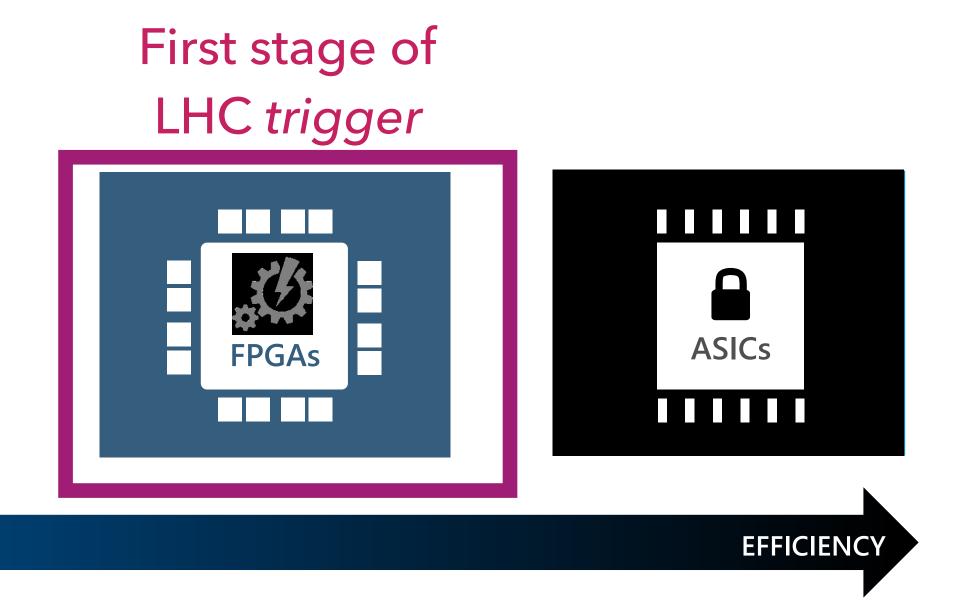




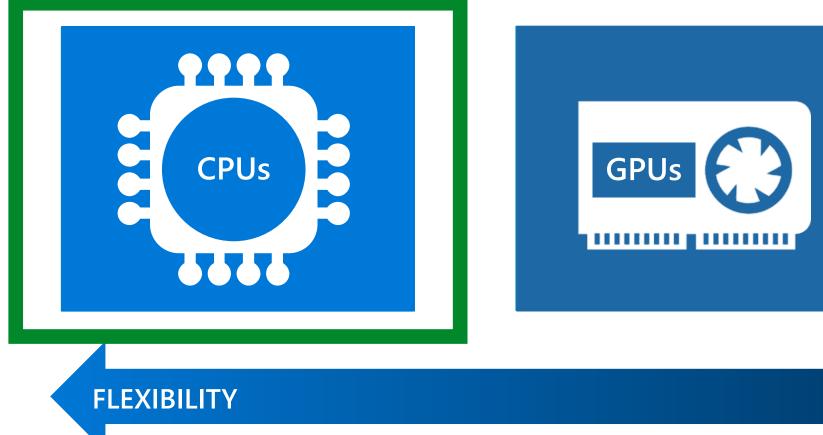


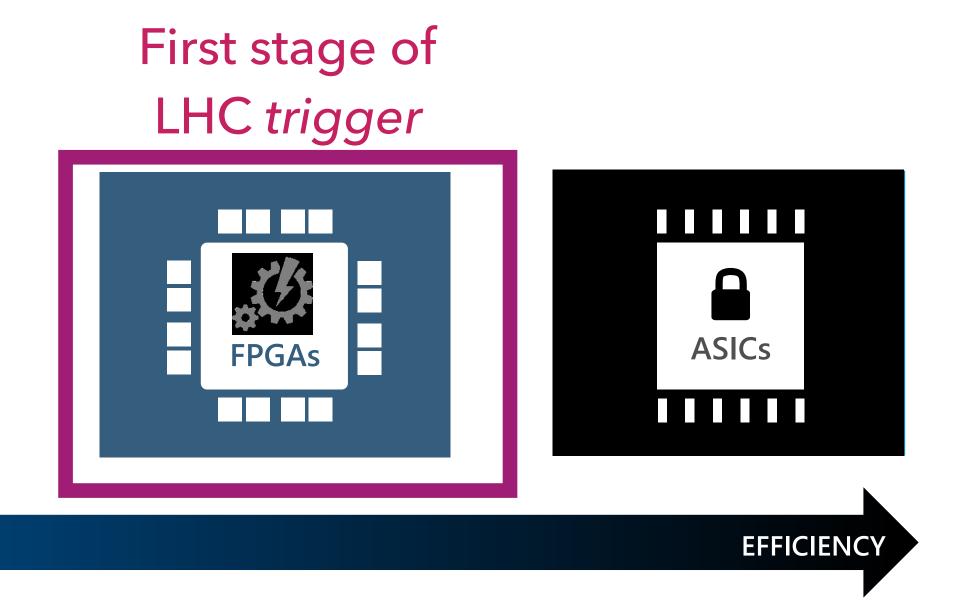


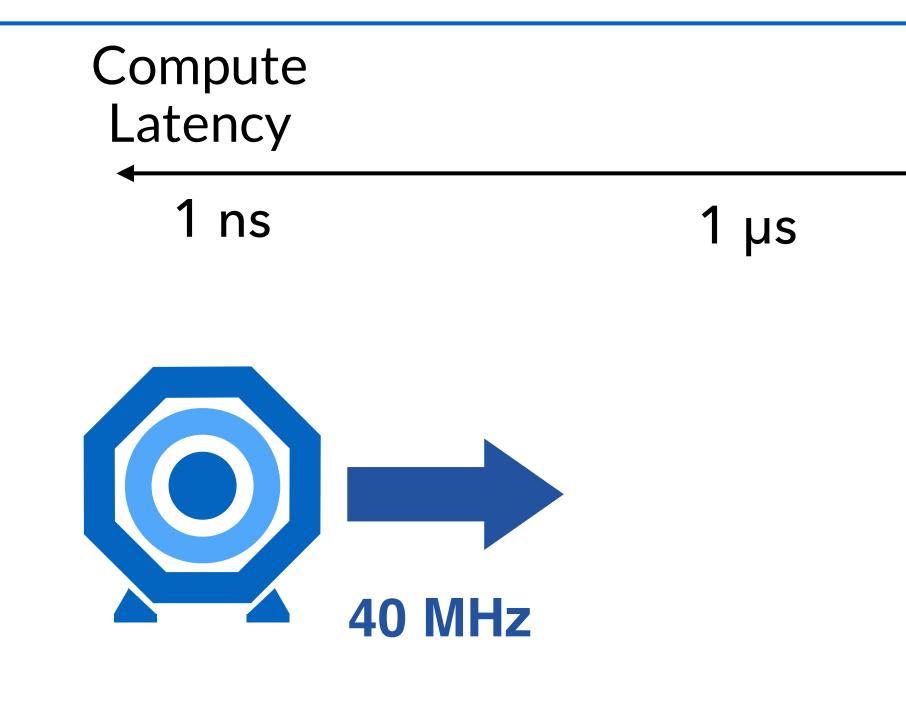




Second stage of LHC trigger





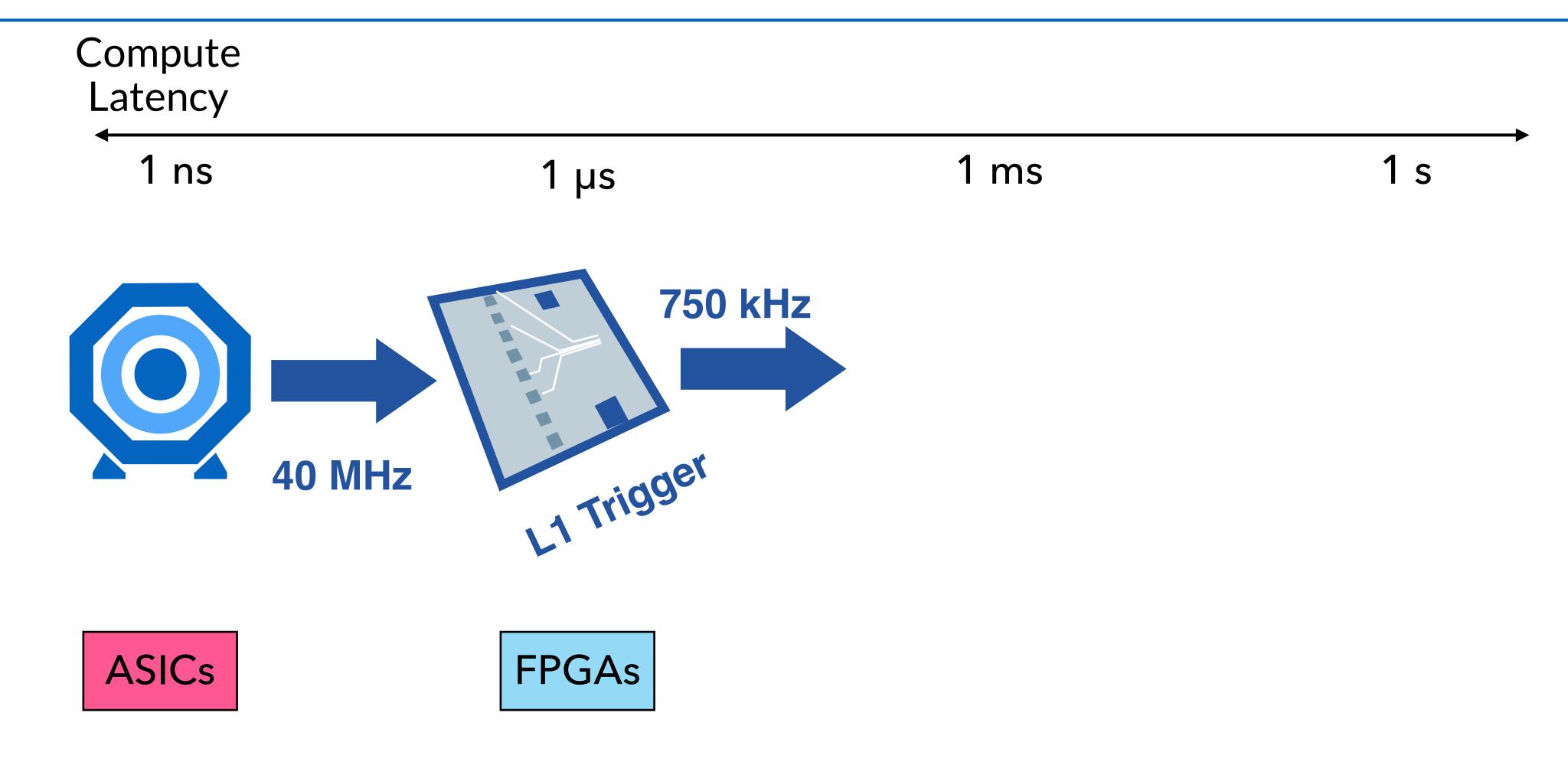


Challenges: Each collision produces O(10³) particles The detectors have O(10⁸) sensors Extreme data rates of O(100 TB/s)

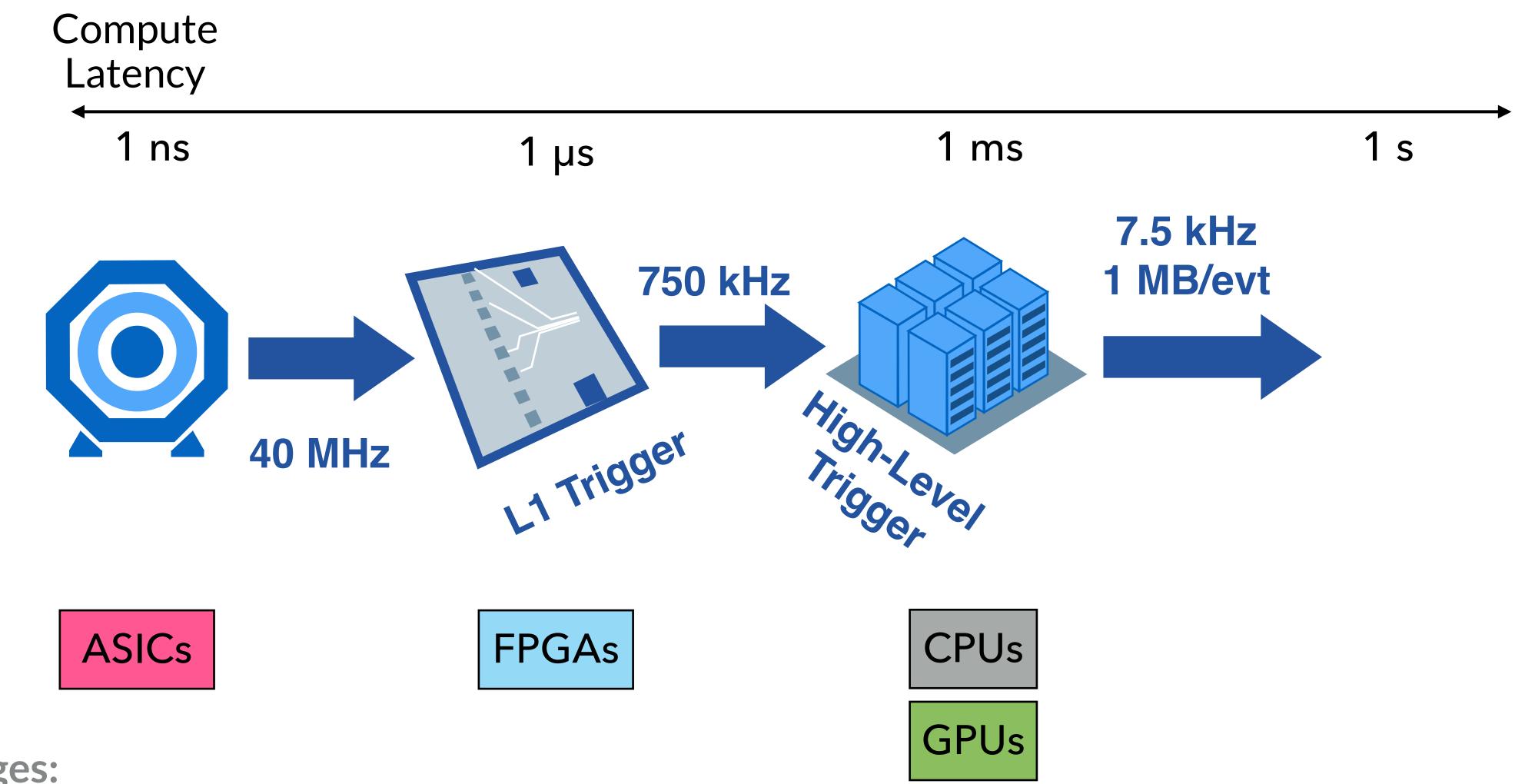
Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

1 ms

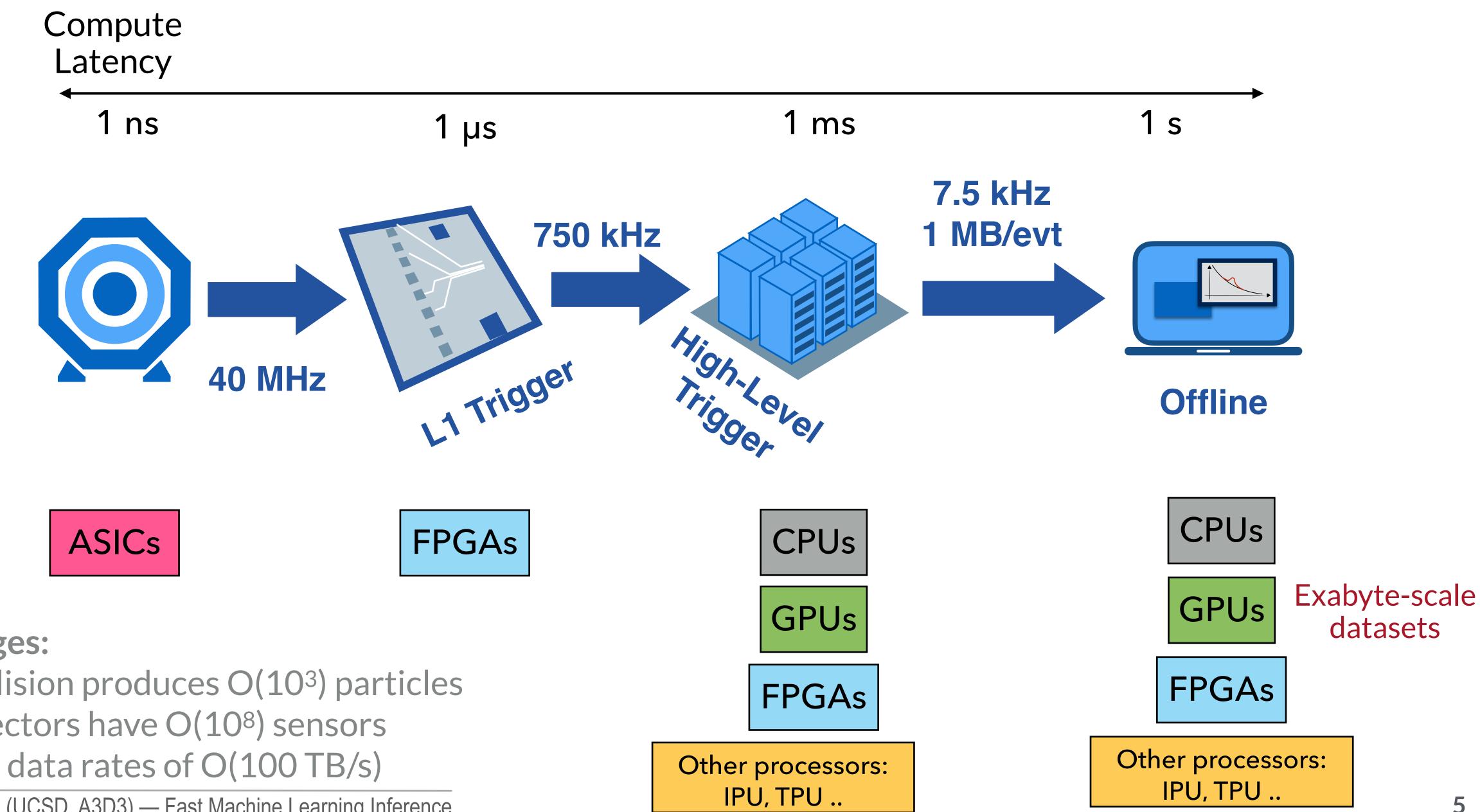
1 s



Challenges: Each collision produces O(10³) particles The detectors have O(10⁸) sensors Extreme data rates of O(100 TB/s)



Challenges: Each collision produces O(10³) particles The detectors have O(10⁸) sensors Extreme data rates of O(100 TB/s)



Challenges: Each collision produces O(10³) particles The detectors have O(10⁸) sensors Extreme data rates of O(100 TB/s)

<u>CMS-TDR-021</u>

Thresholds set by backgrounds, limited resolution @ L1, and rate budget

CMS-TDR-021

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Trigger

Threshold [GeV]

Single/double/triple muons/electrons

Thresholds set by backgrounds, limited resolution @ L1, and rate budget

CMS-TDR-021

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Trigger

Threshold [GeV]

• Single/double/triple muons/electrons

Thresholds set by backgrounds, limited resolution @ L1, and rate budget

<u>CMS-TDR-021</u>

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Trigger	Threshold [GeV
1μ	22
2μ	15, 7
3 μ	5, 3, 3
1 e	36
2 e	25, 12

6

- Single/double/triple muons/electrons
- Photons

Thresholds set by backgrounds, limited resolution @ L1, and rate budget

<u>CMS-TDR-021</u>

Trigger	Threshold [GeV
1μ	22
2μ	15, 7
3 μ	5, 3, 3
1 e	36
2 e	25, 12
1γ	36
2γ	22, 12

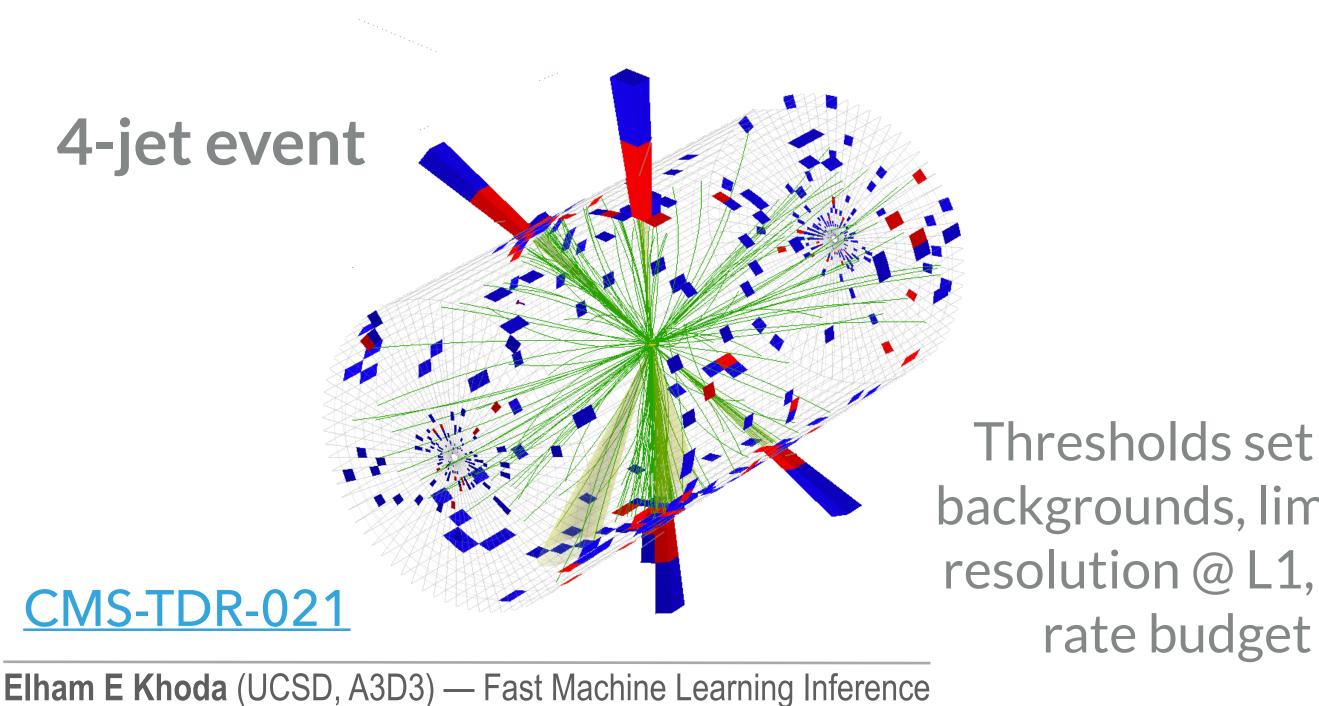
- Single/double/triple muons/electrons
- Photons
- Taus

Thresholds set by backgrounds, limited resolution @ L1, and rate budget

CMS-TDR-021

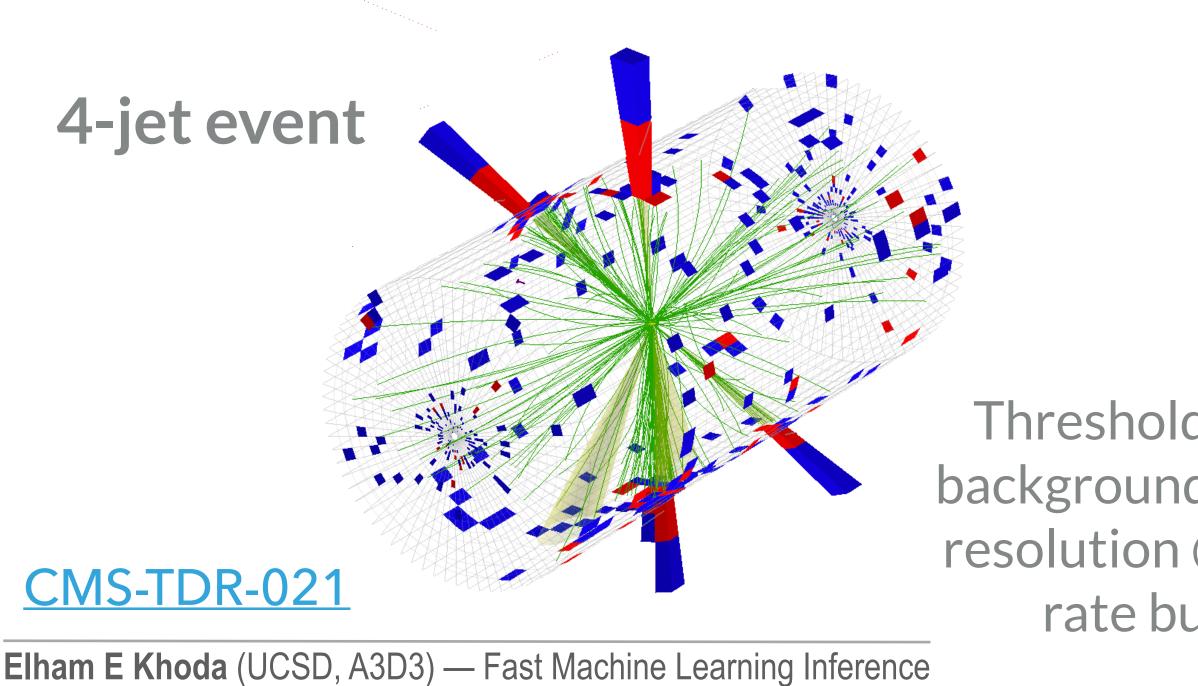
Trigger	Threshold [GeV
1μ	22
2μ	15, 7
3 μ	5, 3, 3
1 e	36
2 e	25, 12
1γ	36
2γ	22, 12
1 т	150
2 т	90, 90

- Single/double/triple muons/electrons
- Photons
- Taus
- Hadronic



	Trigger	Threshold [GeV
	1μ	22
ds set by ds, limited @ L1, and udget	2μ	15, 7
	3 μ	5, 3, 3
	1 e	36
	2 e	25, 12
	1γ	36
	2γ	22, 12
	1 т	150
	2 т	90, 90
	1 jet	180
	2 jet	112, 112
	H _T	450
	4 jet + H⊤	75, 55, 40, 40, 40
udget		

- Single/double/triple muons/electrons
- Photons
- Taus
- Hadronic
- Missing transverse energy



	Trigger	Threshold [GeV
	1μ	22
	2μ	15, 7
	3 μ	5, 3, 3
ds set by ids, limited @ L1, and udget	1 e	36
	2 e	25, 12
	1γ	36
	2γ	22, 12
	1 т	150
	2 т	90, 90
	1 jet	180
	2 jet	112, 112
	H _T	450
	4 jet + H⊤	75, 55, 40, 40, 40
	PT ^{miss}	200

- Single/double/triple muons/electrons
- Photons
- Taus
- Hadronic

4-jet event

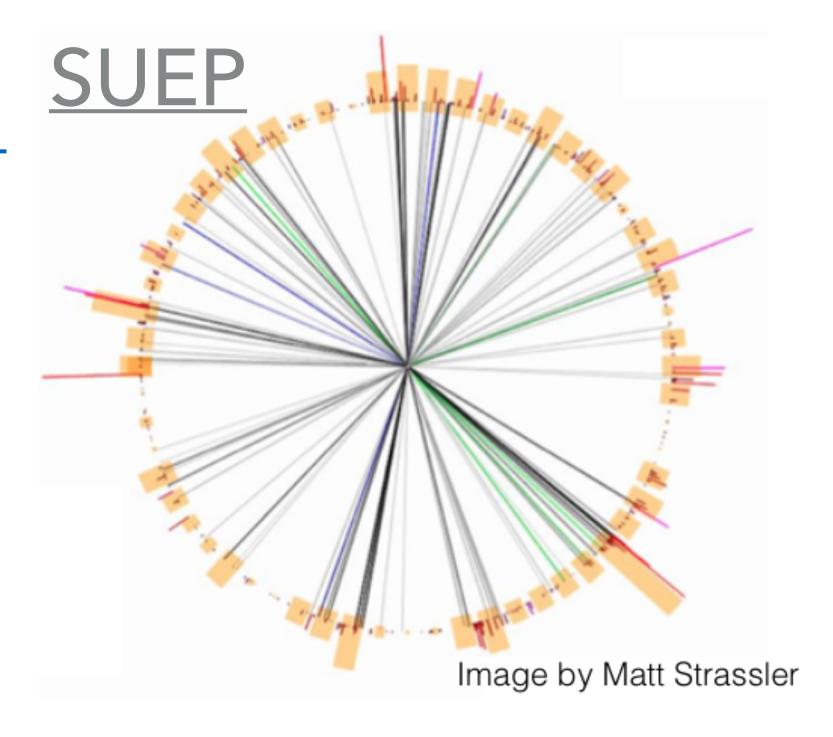
- Missing transverse energy
- "Cross" triggers (not shown)

Threshold background resolution rate bu

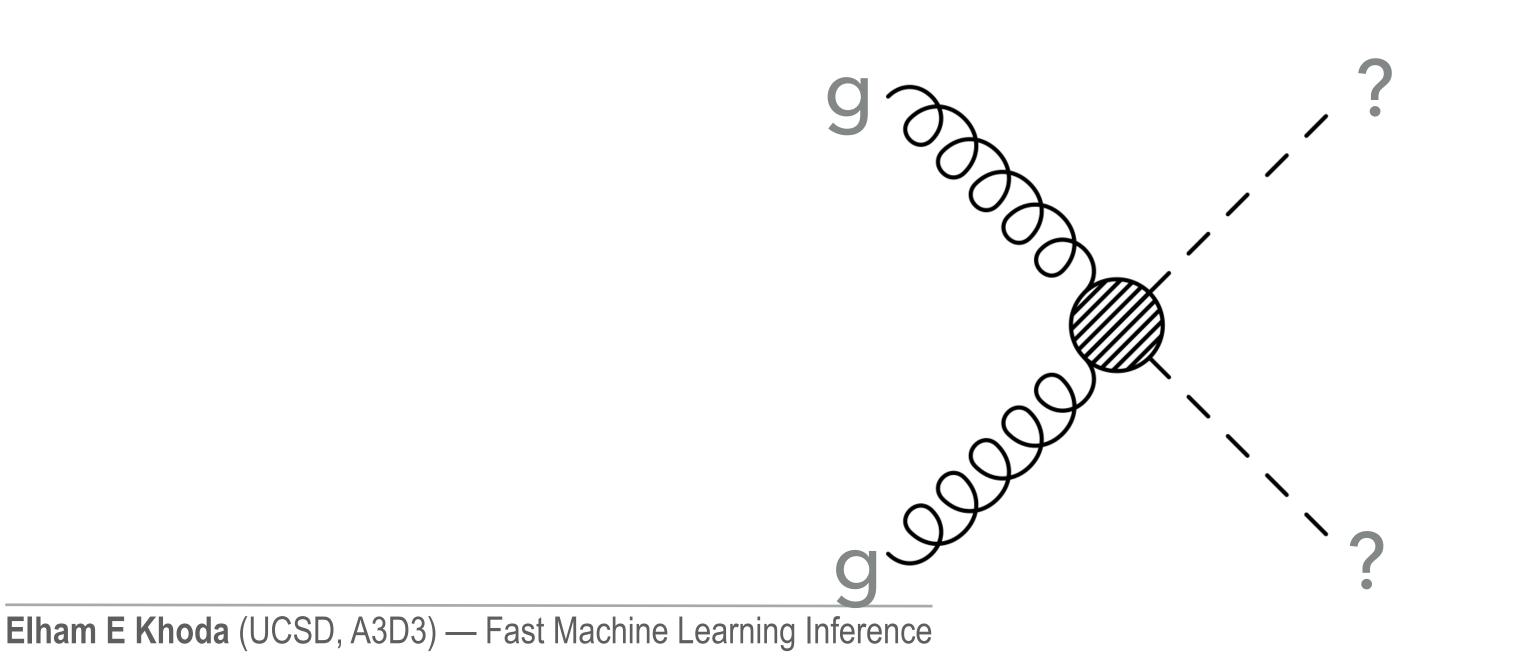
CMS-TDR-021

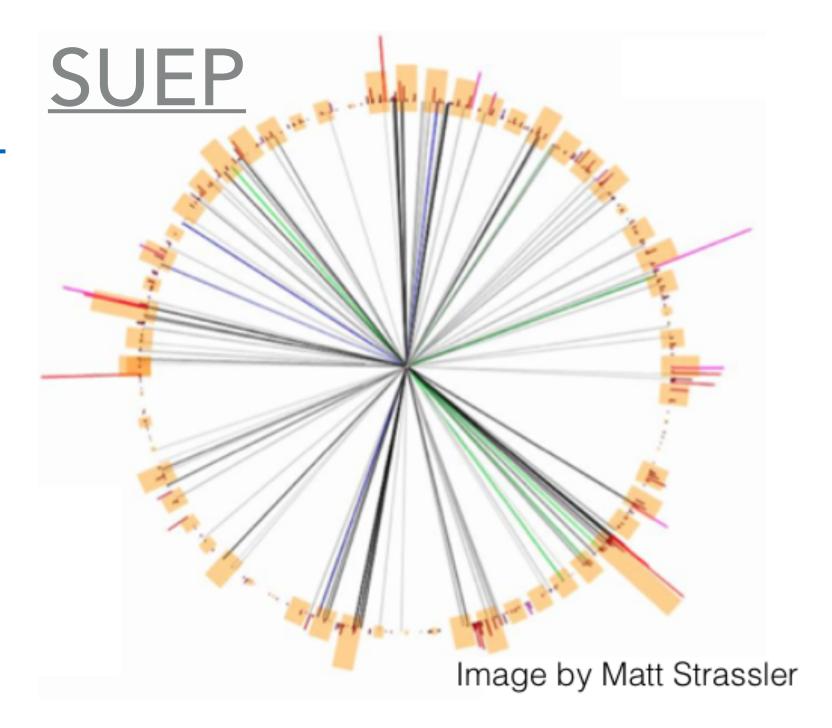
	Trigger	Threshold [GeV
	1μ	22
	2μ	15, 7
	3 μ	5, 3, 3
ds set by ids, limited @ L1, and udget	1 e	36
	2 e	25, 12
	1γ	36
	2γ	22, 12
	1 т	150
	2 т	90, 90
	1 jet	180
	2 jet	112, 112
	H _T	450
	4 jet + H⊤	75, 55, 40, 40, 40
	PT ^{miss}	200

• How can we trigger on more complex low-energy hadronic signatures? Long-lived/displaced particles?

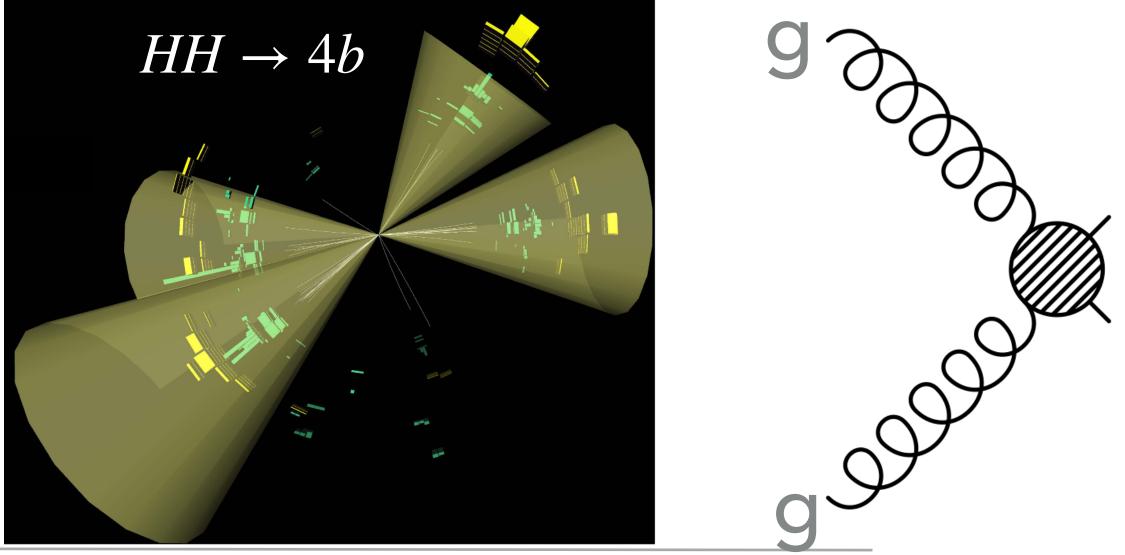


- How can we trigger on more complex low-energy hadronic signatures? Long-lived/displaced particles?
- What if we don't know exactly what to look for?



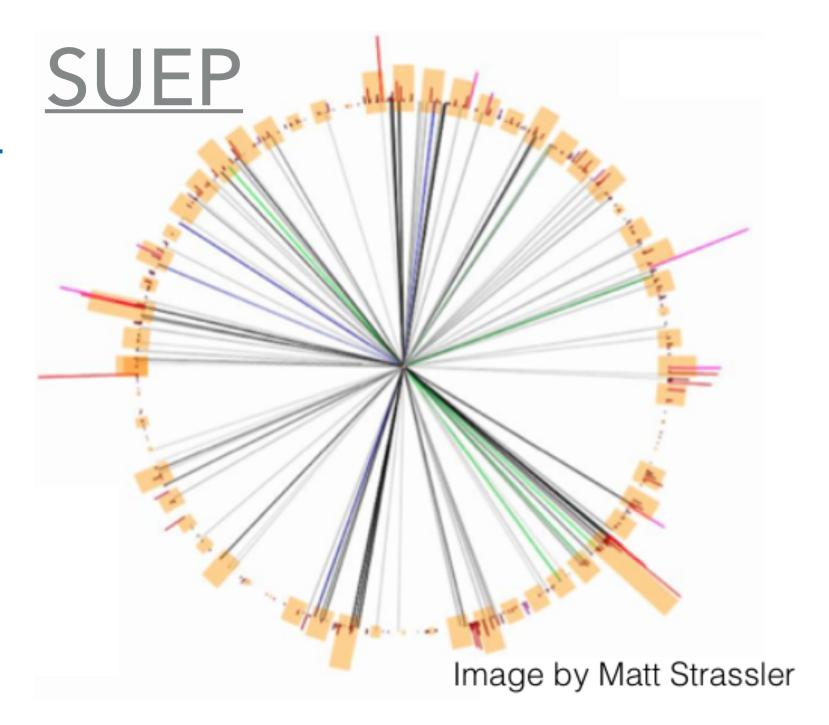


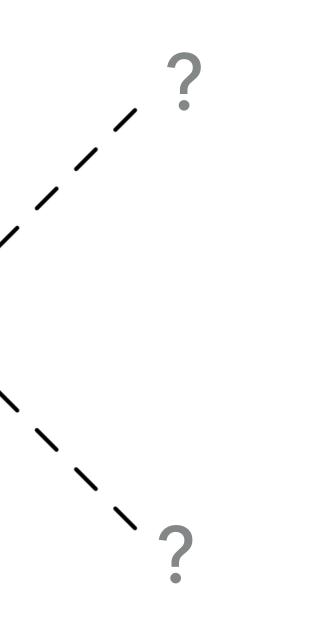
- How can we trigger on more complex low-energy hadronic signatures? Long-lived/displaced particles?
- What if we don't know exactly what to look for?
- What if our signatures require complex multivariate algorithms (e.g. b tagging)?



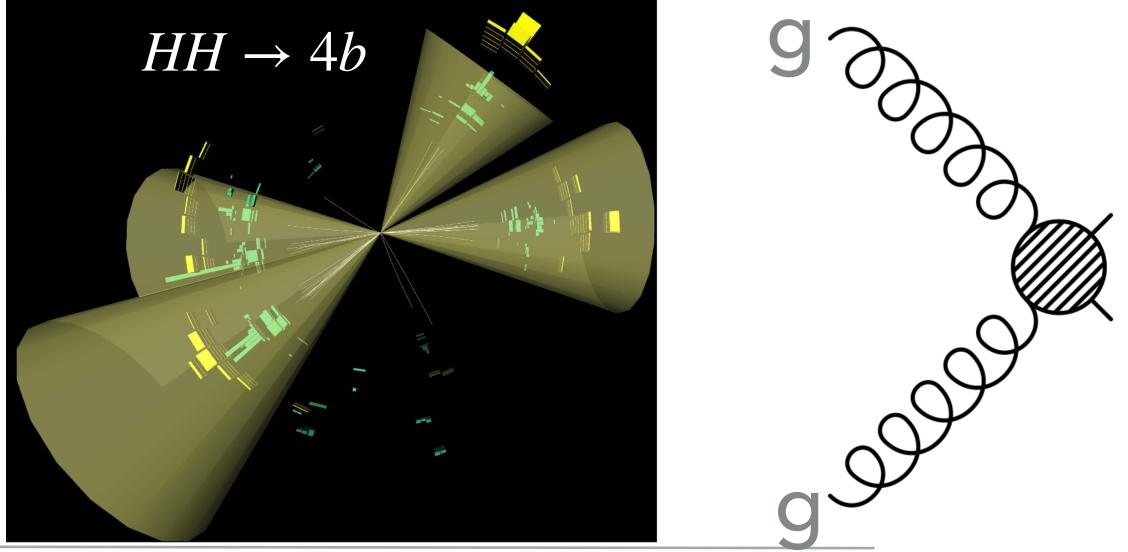
Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

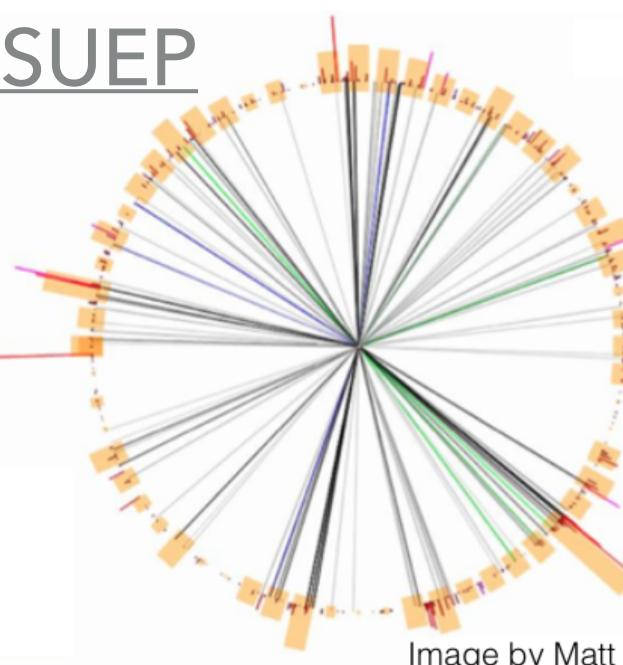
low-energy aced particles? b look for? ex multivariate

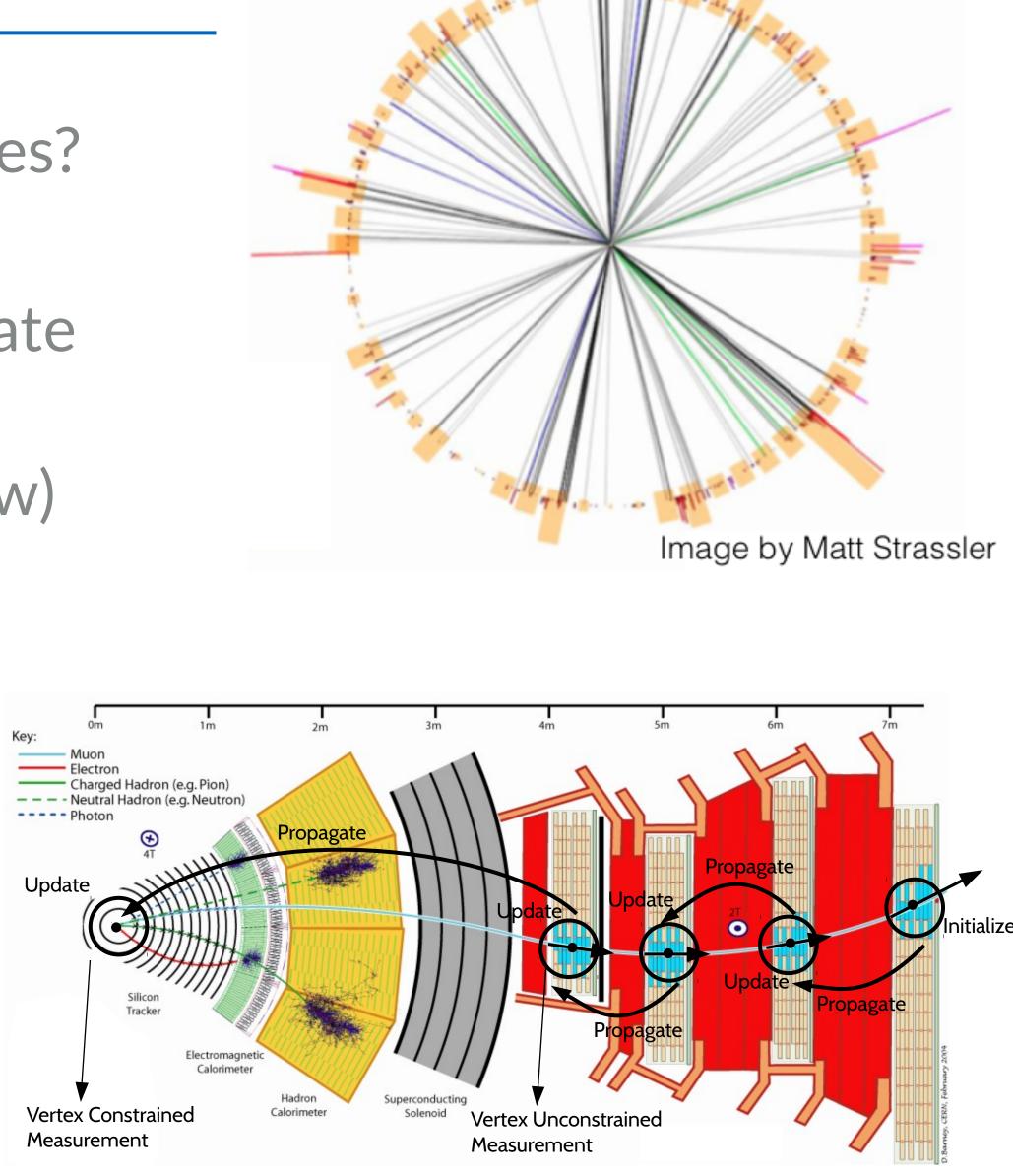




- How can we trigger on more complex low-energy hadronic signatures? Long-lived/displaced particles?
- What if we don't know exactly what to look for?
- What if our signatures require complex multivariate algorithms (e.g. b tagging)?
- How can we improve on our traditional (often slow) reconstruction algorithms?







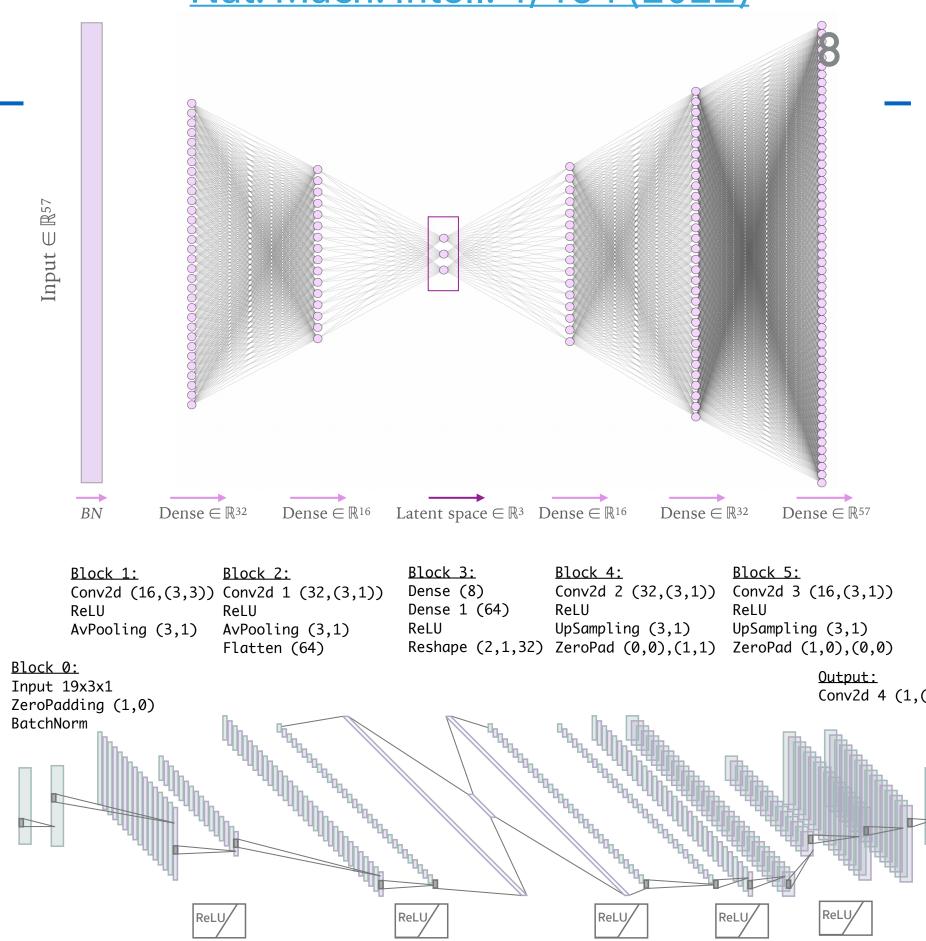
ML in Trigger

ML in Trigger

• (Variational) autoencoders for anomaly detection

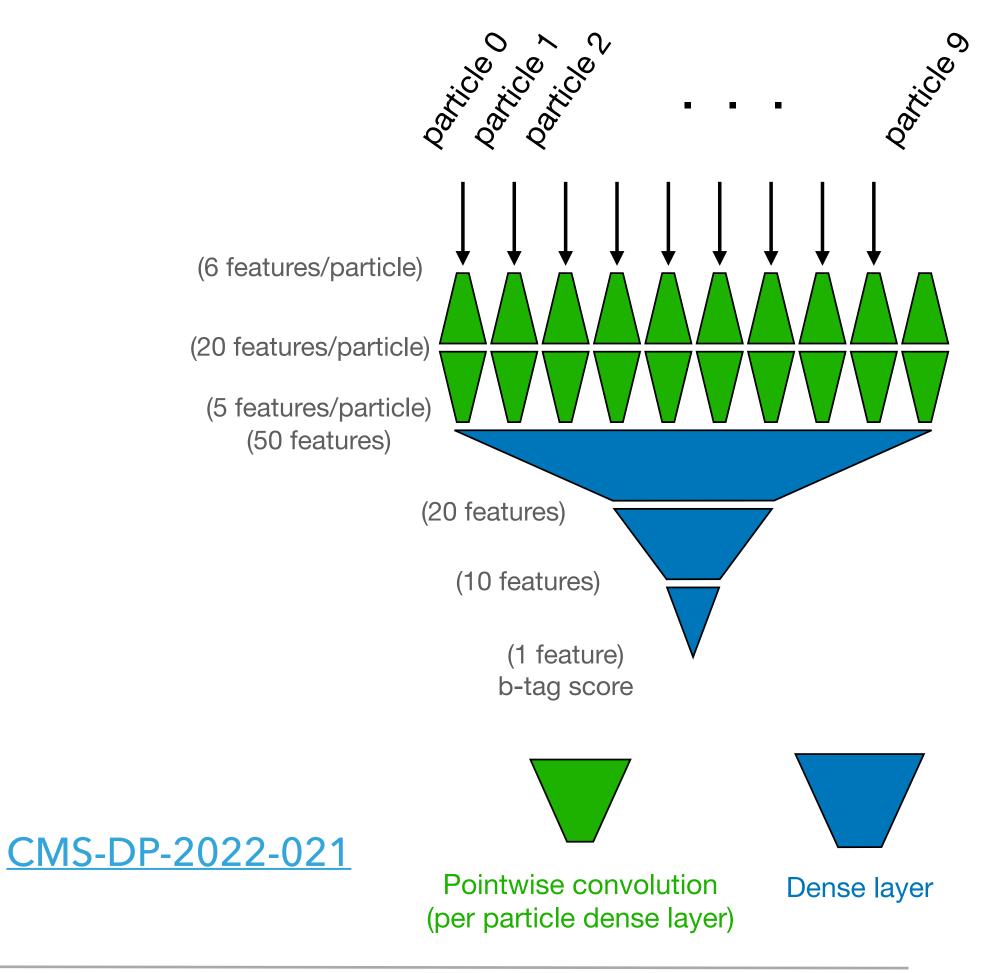
Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Nat. Mach. Intell. 4, 154 (2022)



ML in Trigger

- (Variational) autoencoders for anomaly detection
- 1D convolutional neural networks for b-tagging



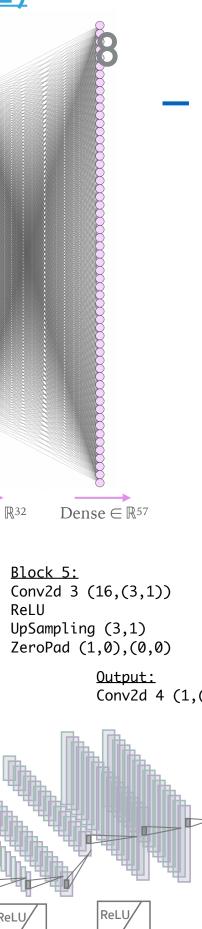
Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Nat. Mach. Intell. 4, 154 (2022) $\in \mathbb{R}^{57}$ 0 Input (BNDense $\in \mathbb{R}^{32}$ Dense $\in \mathbb{R}^{32}$ Dense $\in \mathbb{R}^{16}$ Latent space $\in \mathbb{R}^3$ Dense $\in \mathbb{R}^{16}$ <u>Block 1:</u> <u>Block 2:</u> <u>Block 3:</u> <u>Block 4:</u> <u>Block 5:</u> Conv2d 2 (32,(3,1)) Conv2d (16,(3,3)) Conv2d 1 (32,(3,1)) Dense (8) Dense 1 (64) ReLU ReLU ReLU ReLU UpSampling (3,1) AvPooling (3,1) AvPooling (3,1) ReLU Reshape (2,1,32) ZeroPad (0,0),(1,1) ZeroPad (1,0),(0,0) Flatten (64) <u>Block 0:</u> Input 19x3x1 ZeroPadding (1,0) BatchNorm

ReLU

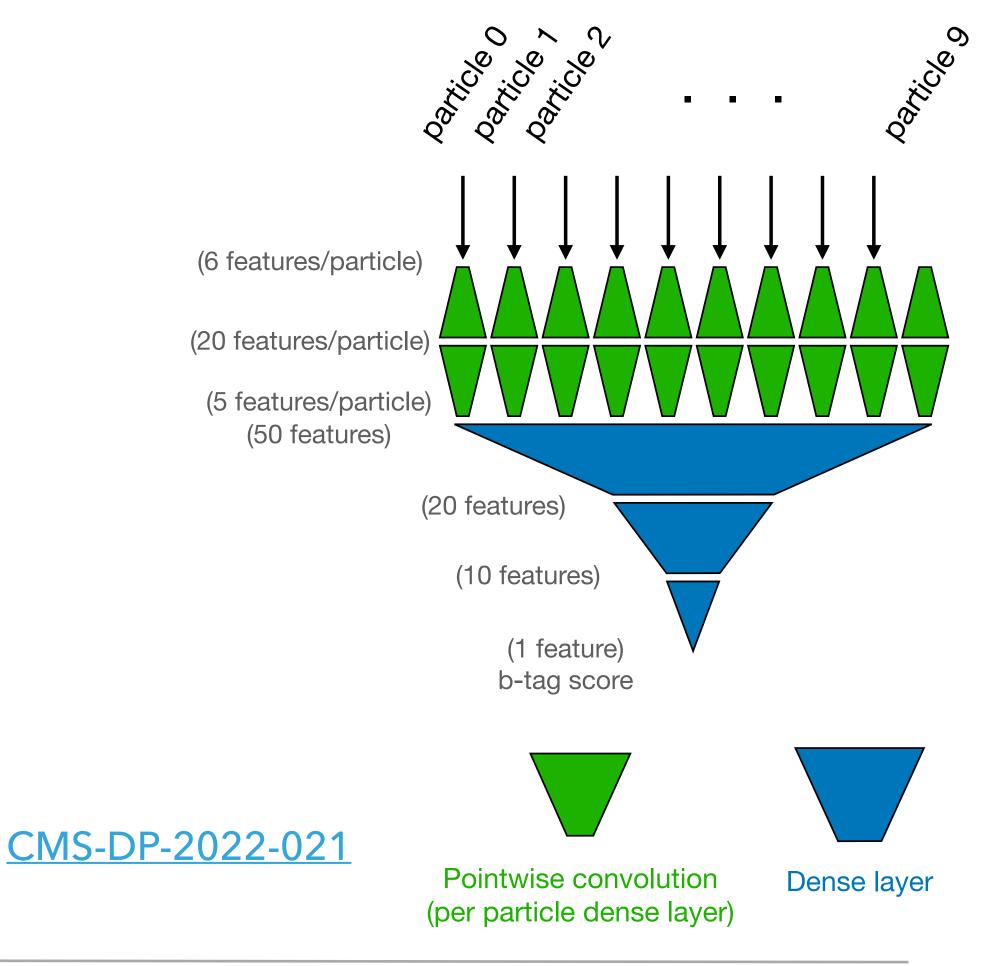
ReLU/

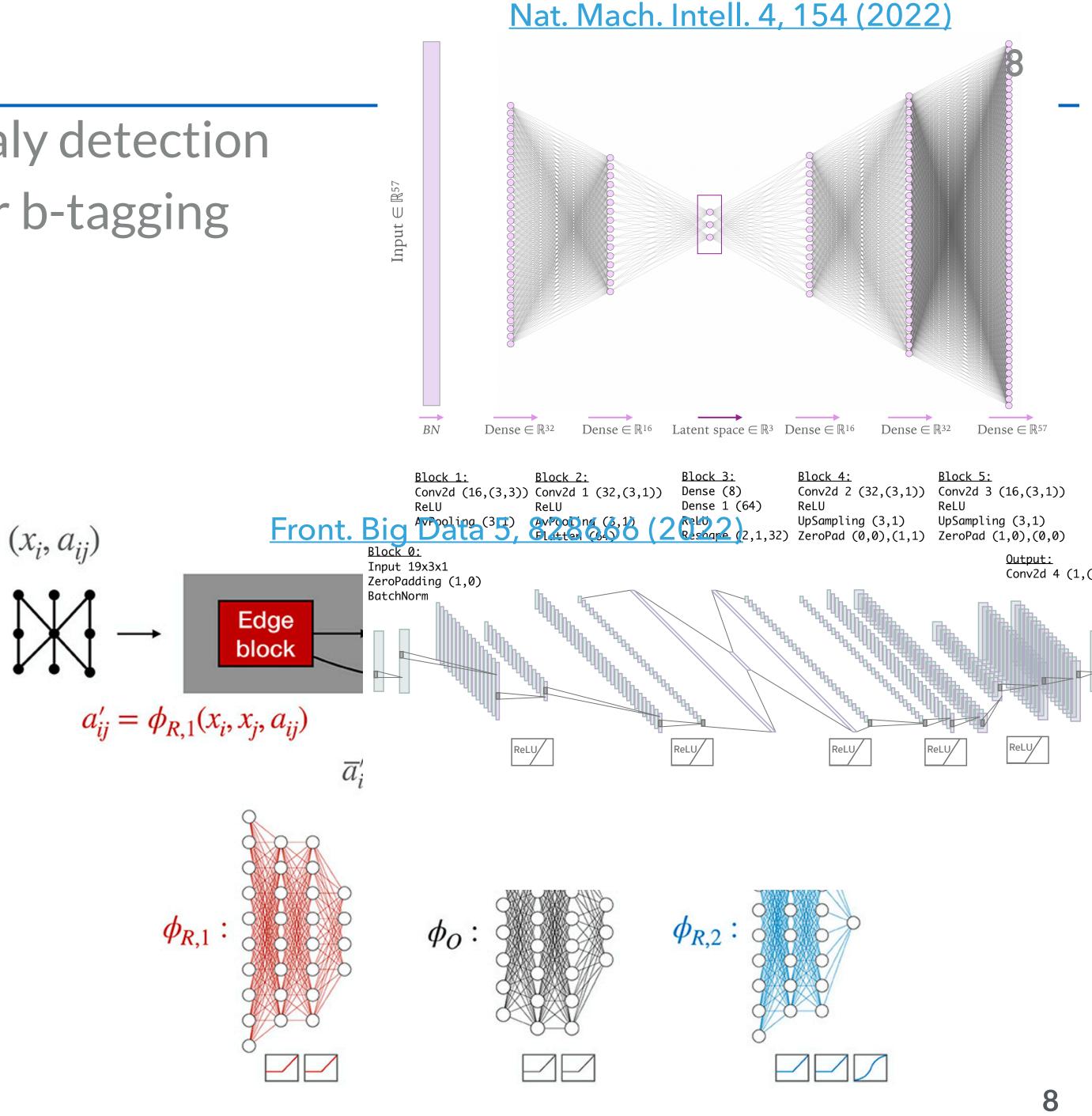
ReLU



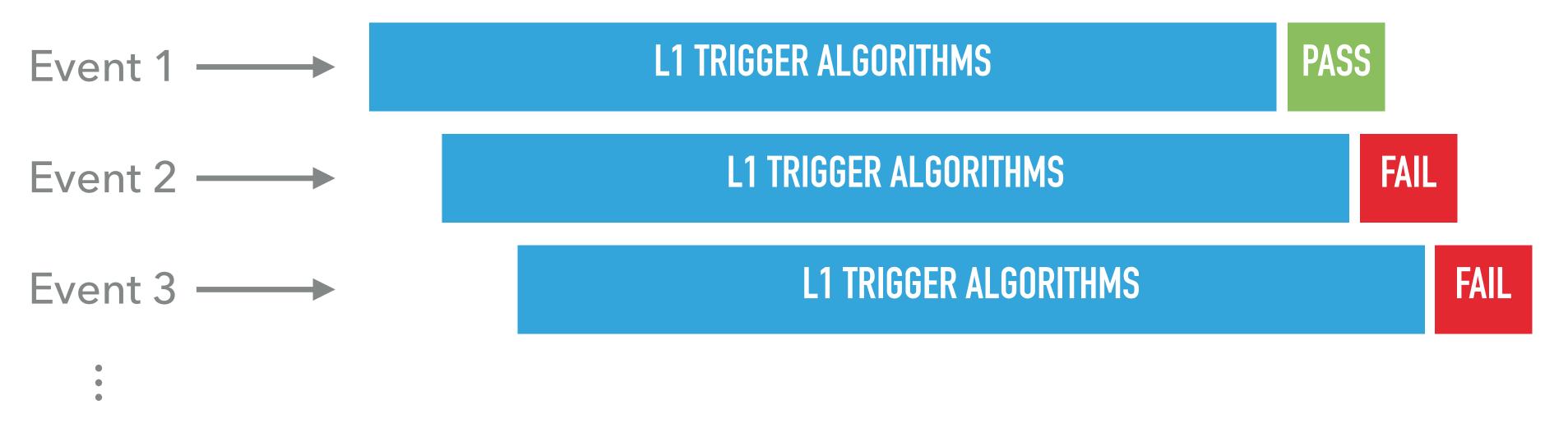
ML in Trigger

- (Variational) autoencoders for anomaly detection
- 1D convolutional neural networks for b-tagging
- Graph neural networks for tracking





• Reconstruct all events and reject 98% of them in ~10 μ s

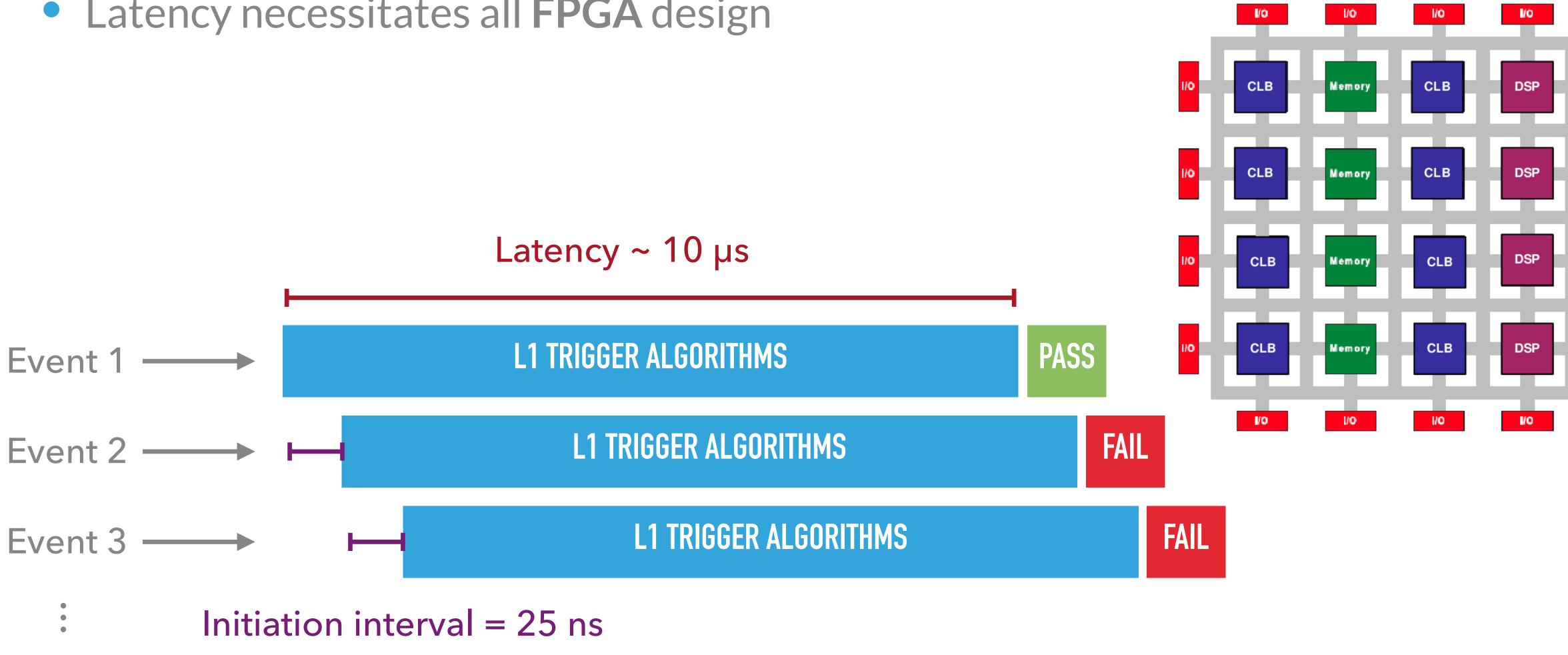


• Reconstruct all events and reject 98% of them in ~10 μ s

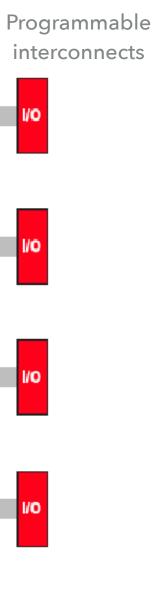


Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

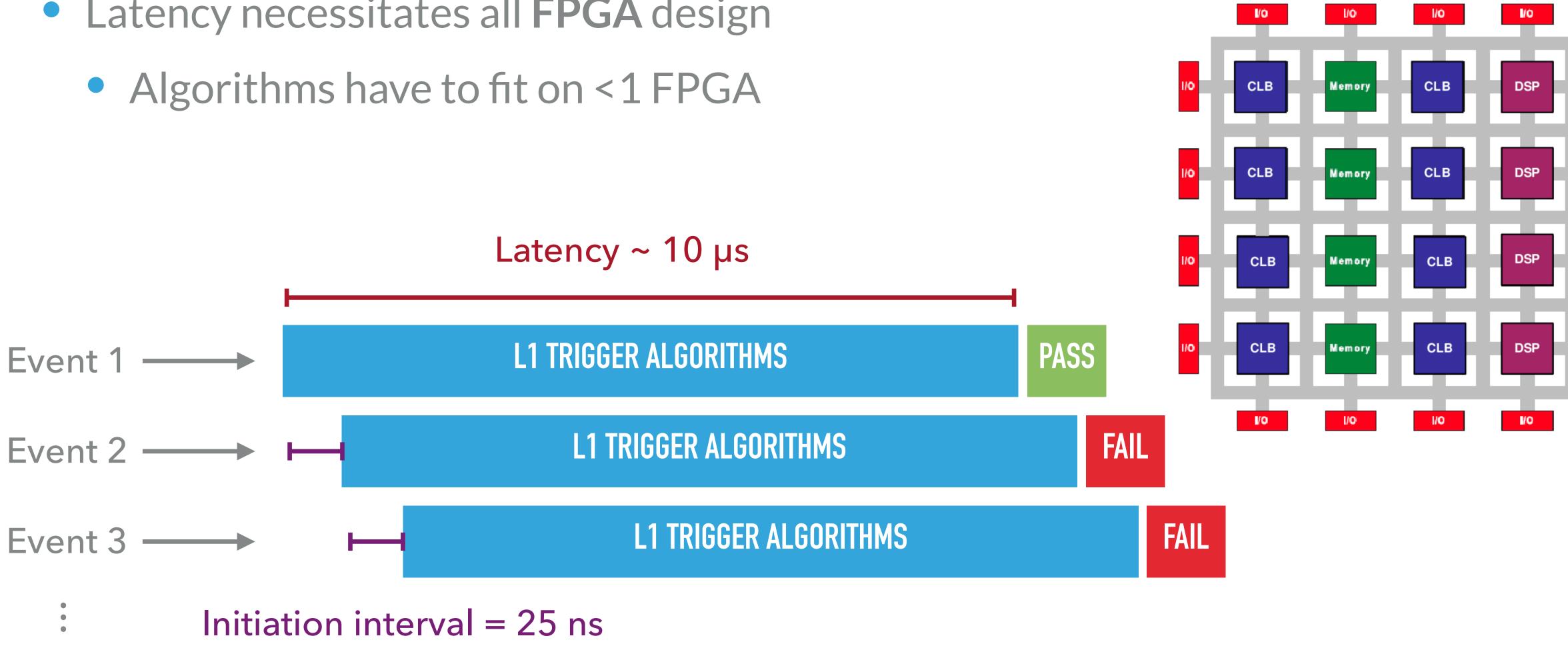
- Reconstruct all events and reject 98% of them in ~10 μ s
- Latency necessitates all FPGA design



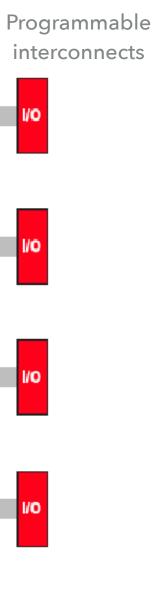
Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference



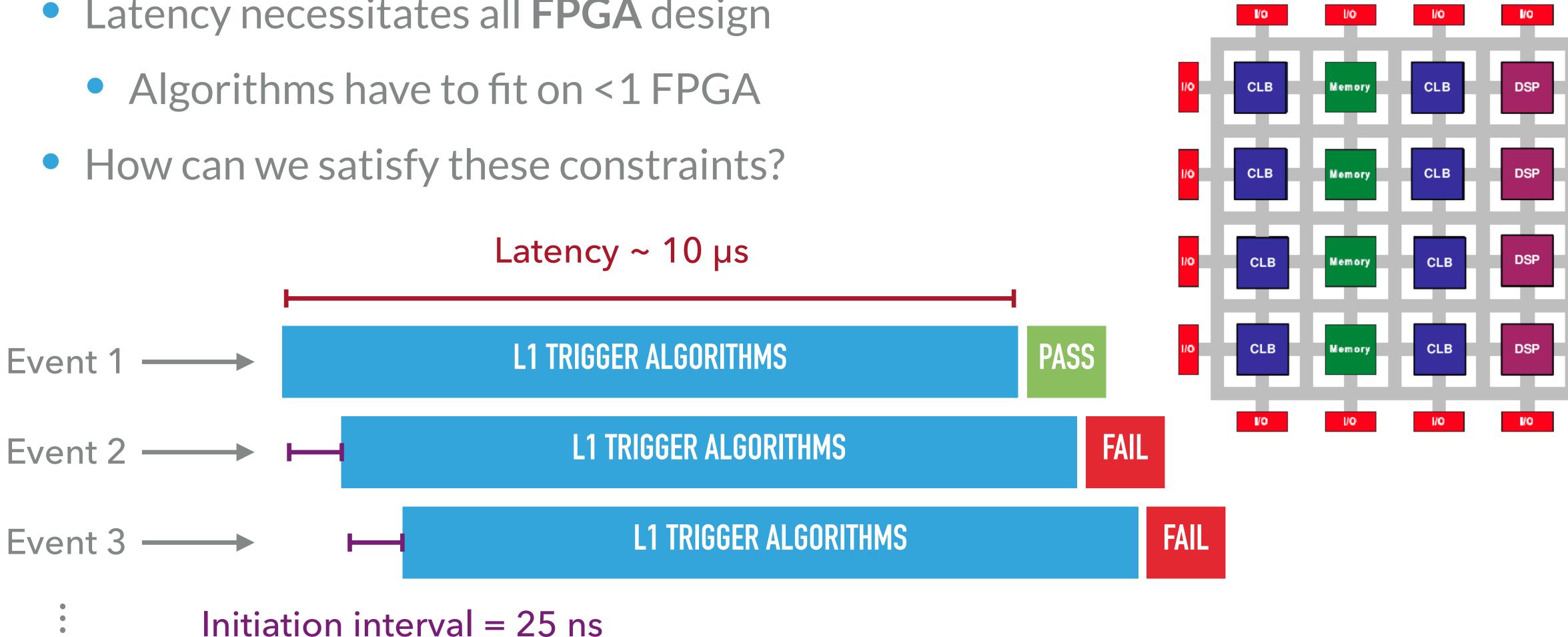
- Reconstruct all events and reject 98% of them in ~10 μ s
- Latency necessitates all FPGA design



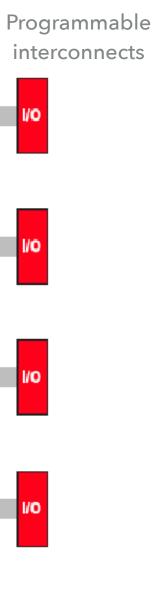
Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference



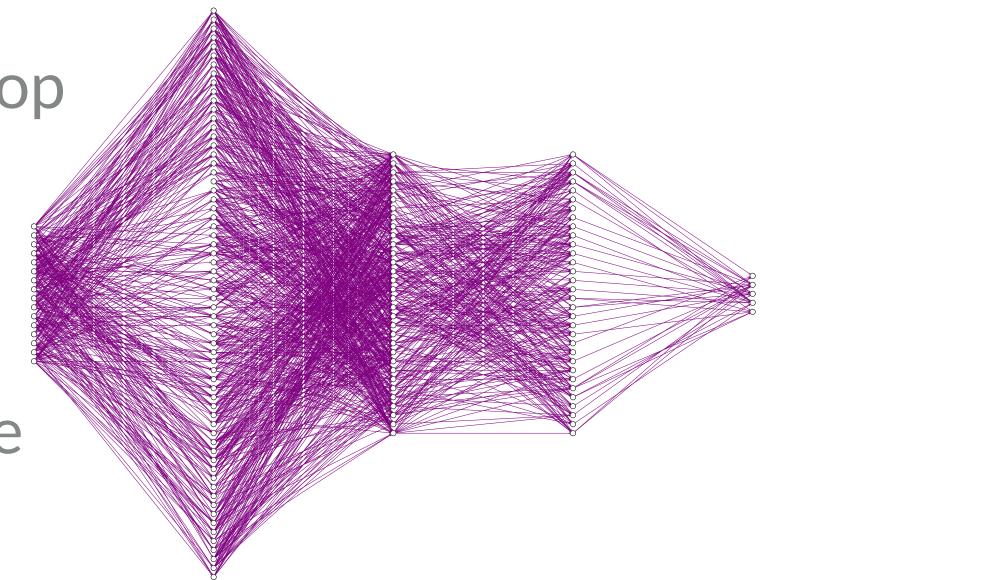
- Reconstruct all events and reject 98% of them in ~10 μ s
- Latency necessitates all FPGA design



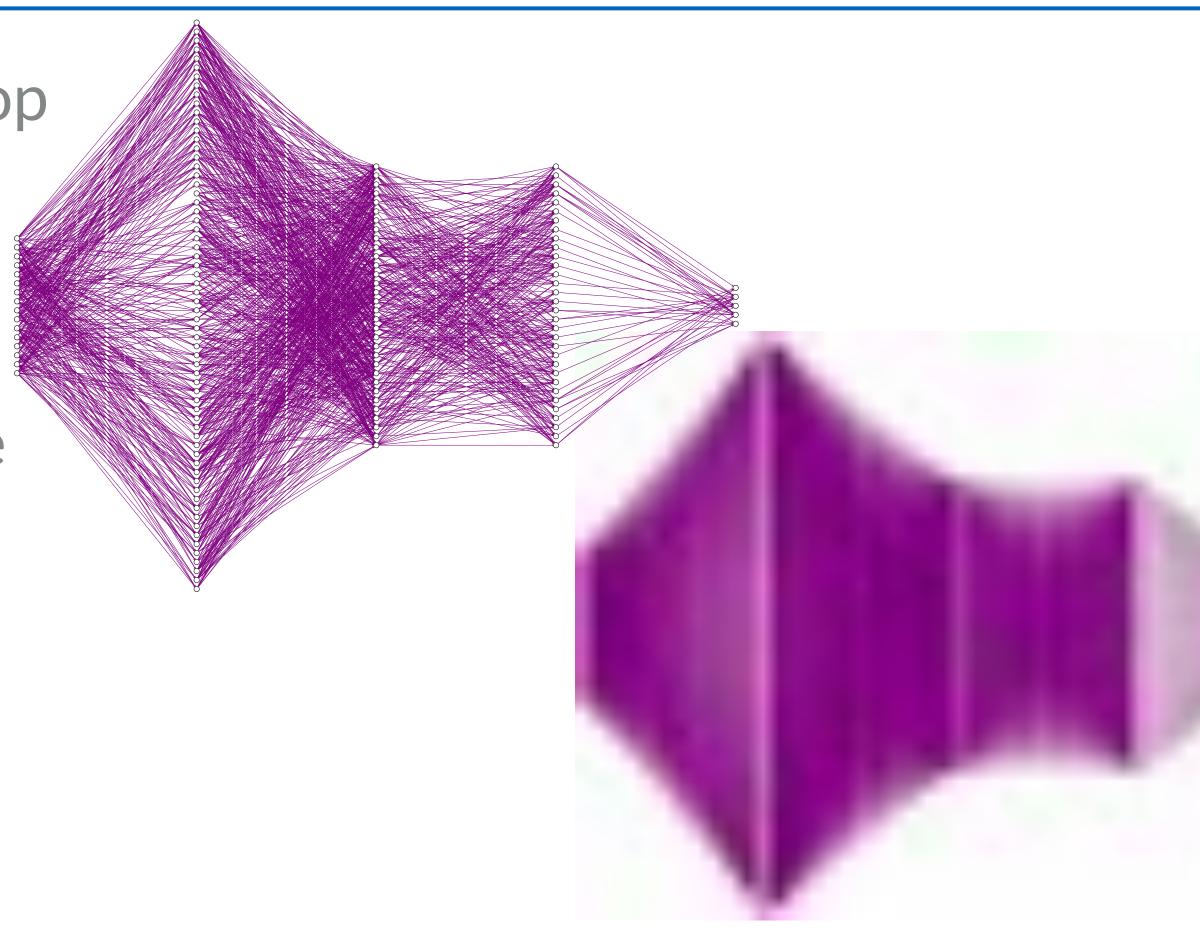
Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference



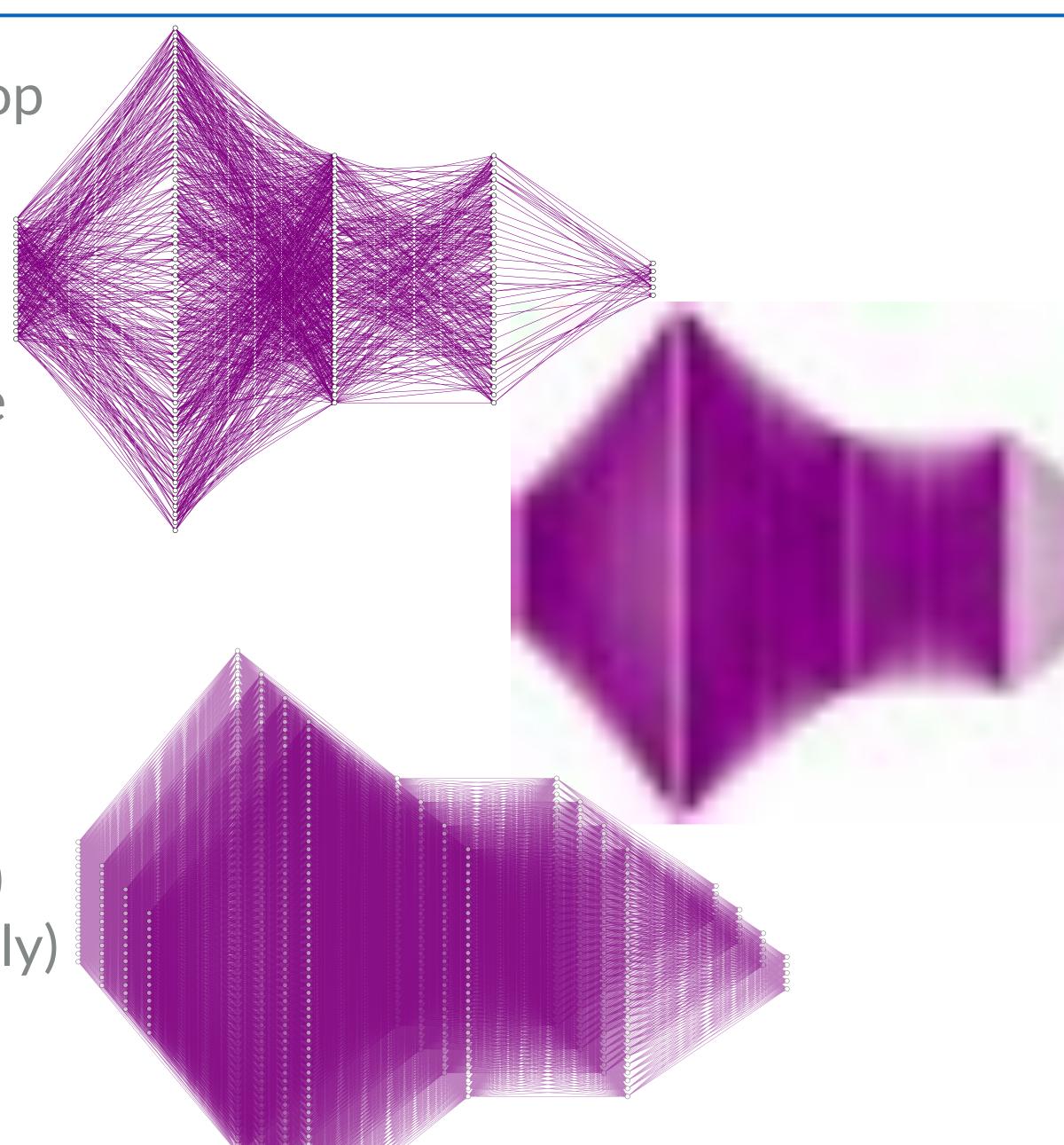
- Codesign: intrinsic development loop between ML design, training, and implementation
- Pruning
 - Maintain high performance while removing redundant operations



- Codesign: intrinsic development loop between ML design, training, and implementation
- Pruning
 - Maintain high performance while removing redundant operations
- Quantization
 - Reduce precision from 32-bit floating point to 16-bit, 8-bit, ...



- Codesign: intrinsic development loop between ML design, training, and implementation
- Pruning
 - Maintain high performance while removing redundant operations
- Quantization
 - Reduce precision from 32-bit floating point to 16-bit, 8-bit, ...
- Parallelization
 - Balance parallelization (how fast) with resources needed (how costly)

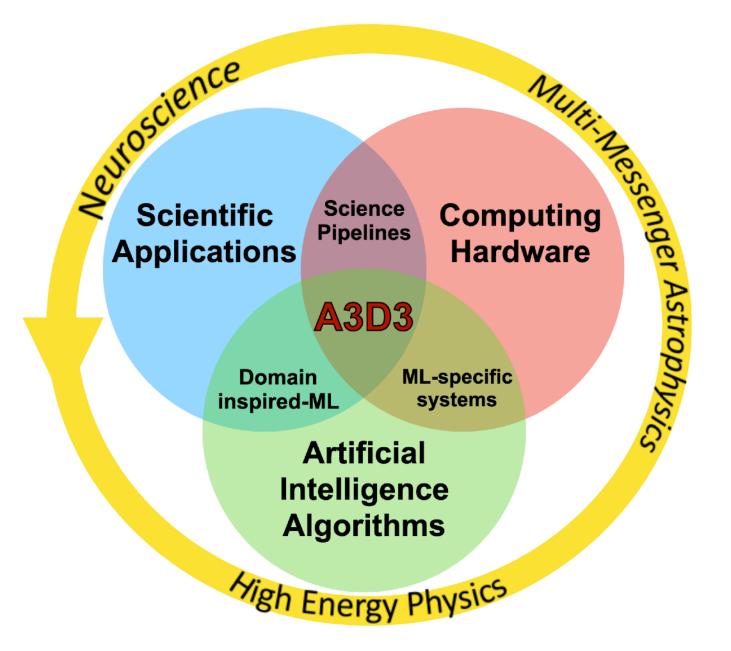


NSF A3D3 Institute

Accelerated Artificial Intelligence Algorithms for Data-Driven Discovery

Our Mission is to enable real-time AI techniques for scientific and engineering discovery by uniting three core components: Scientific Applications, Artificial Intelligence Algorithms, and Computing Hardware.

Collaborators welcome! Check the <u>a3d3.ai</u> for events



Modern FPGAs

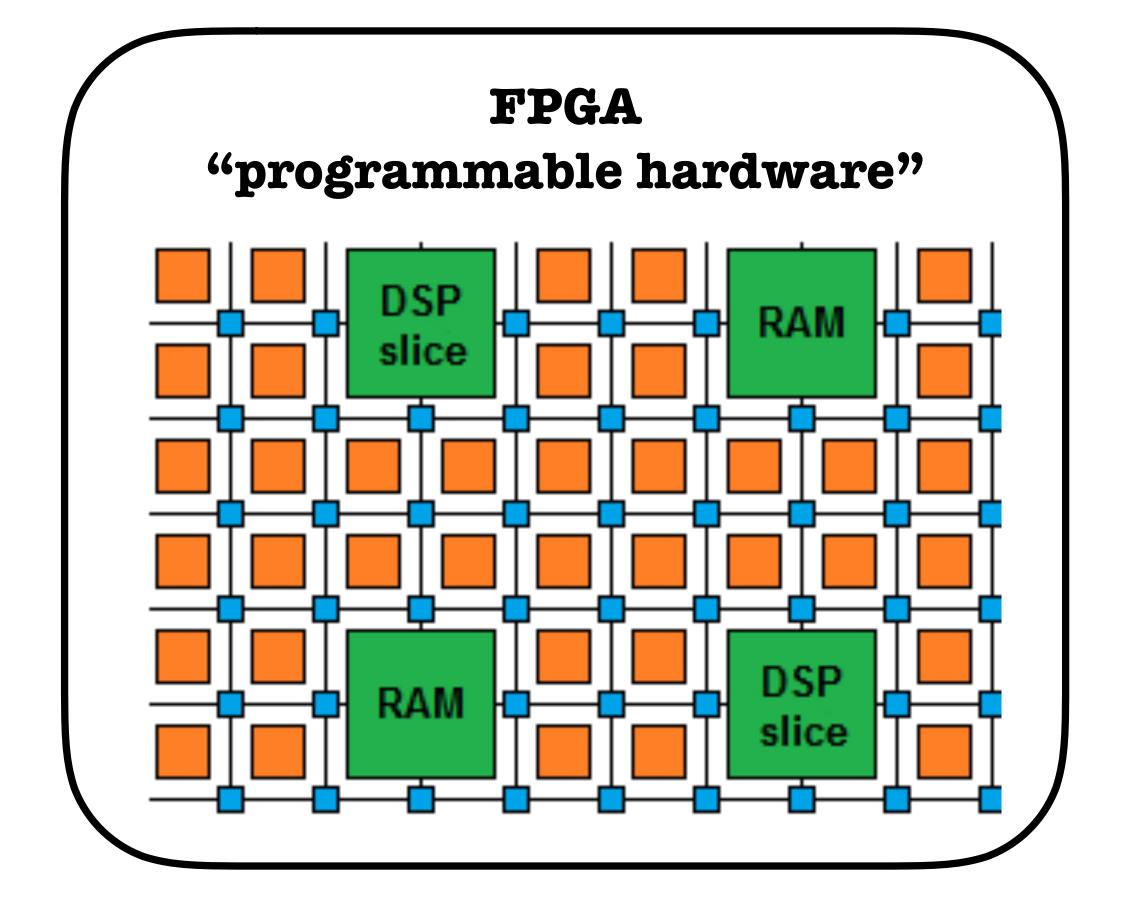
Pros:

- Reprogrammable interconnects between embedded components that perform multiplication (DSPs), apply logical functions (LUTs), or store memory (BRAM)
- High throughput I/O: O(100) optical transceivers running at O(15) Gbps
- Massively parallel
- Low power

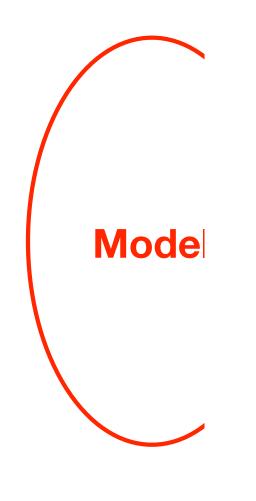
Cons:

Requires domain knowledge to program (using VHDL/Verilog)

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

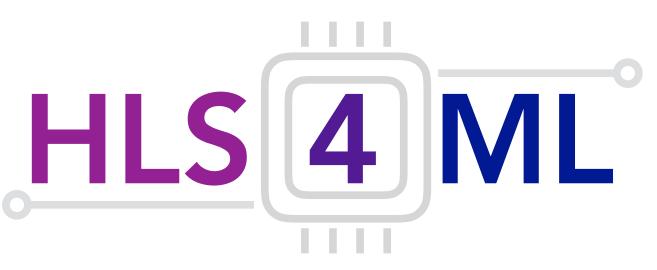


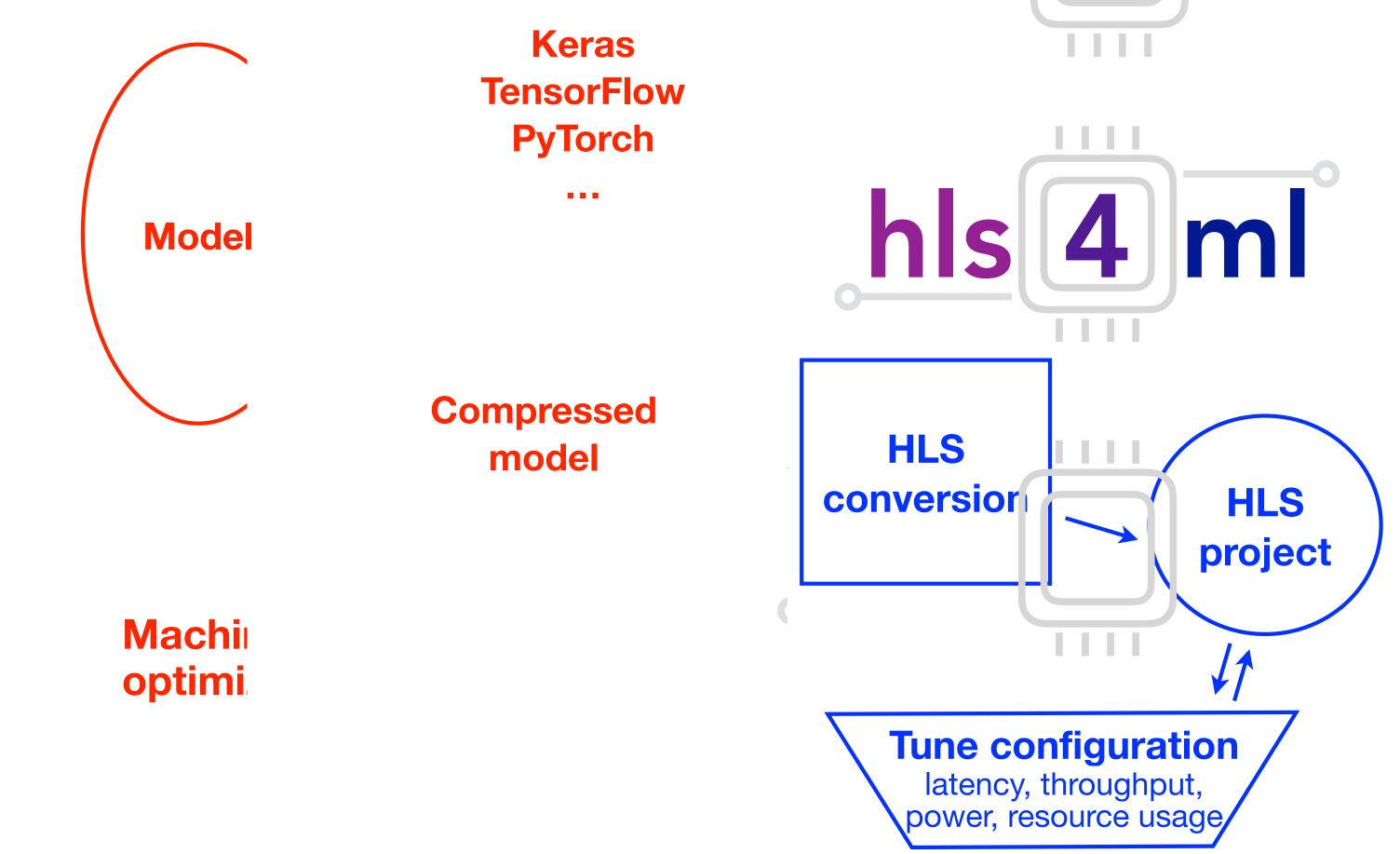
• <u>hls4ml</u> for scie



Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

JINST 13, P07027 (2018)



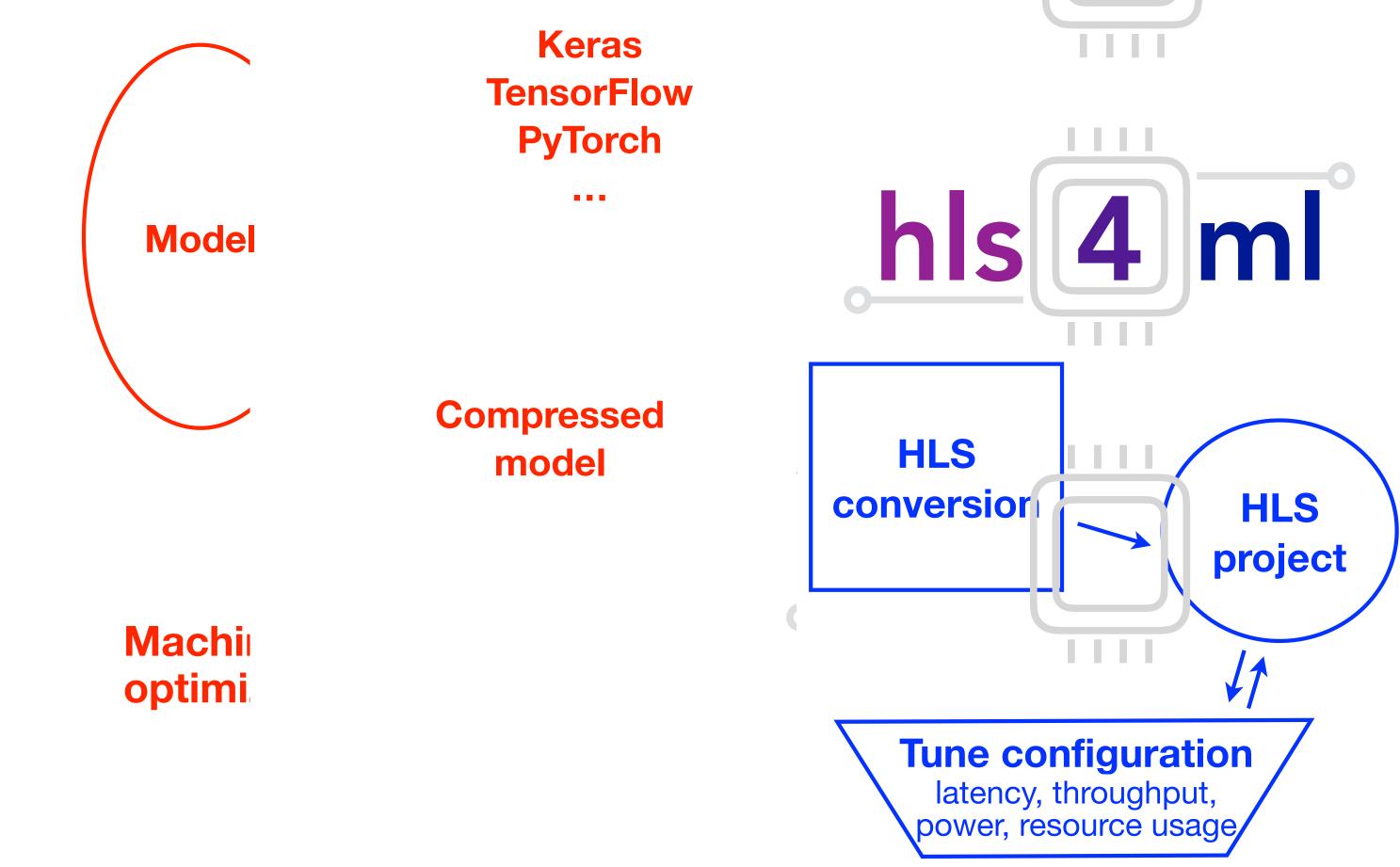


Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

JINST 13, P07027 (2018)

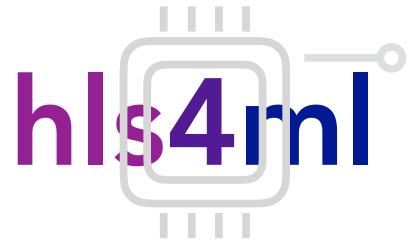
FPGA flow

ASIC flow

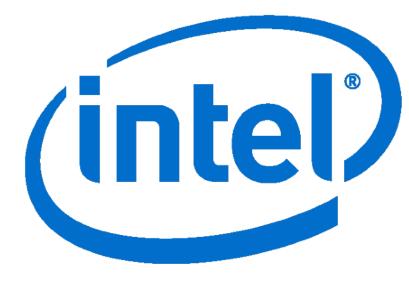


Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

JINST 13, P07027 (2018)



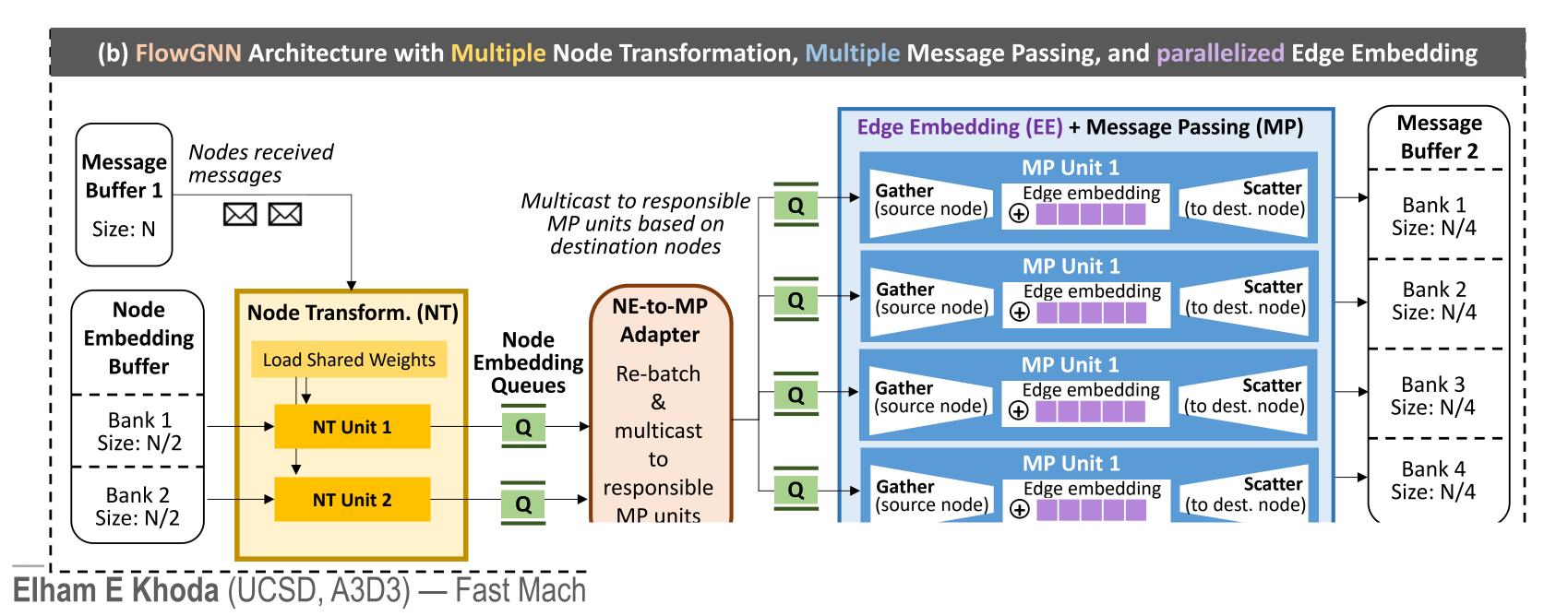
FPGA flow



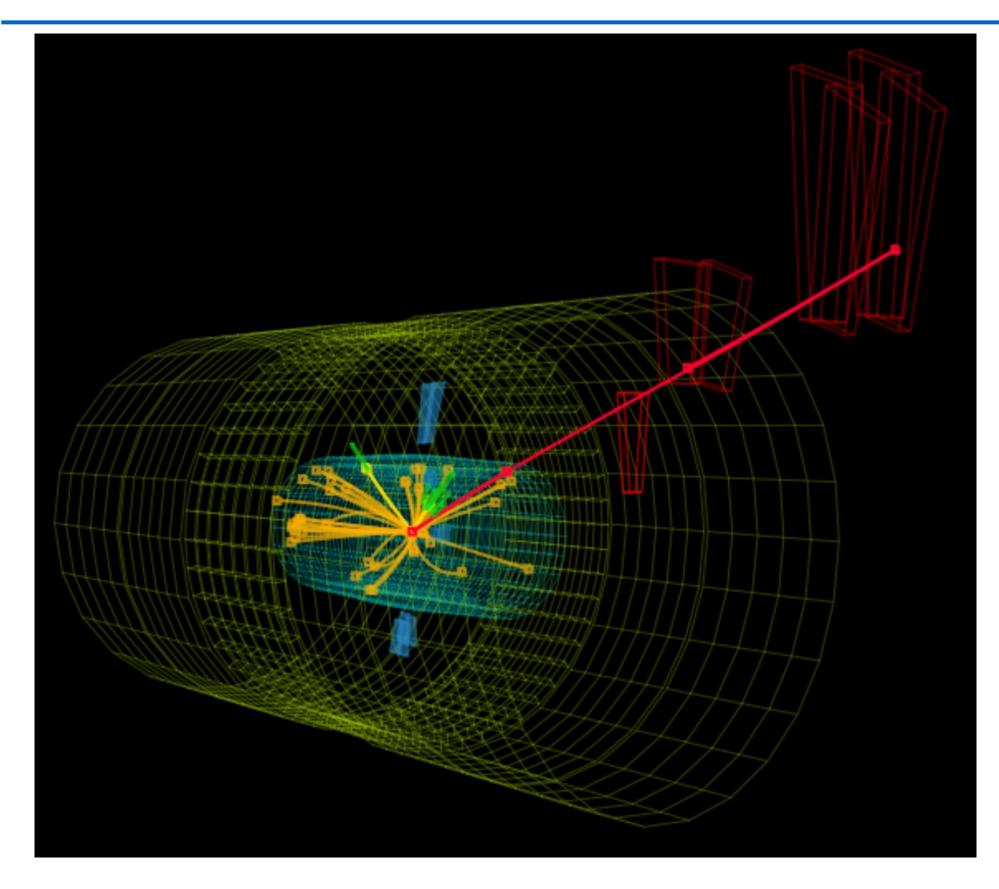
ASIC flow

Many tools with different strengths

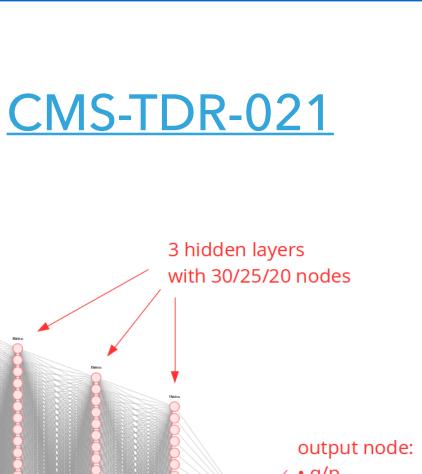
- FINN (NNs): <u>https://finn.readthedocs.io/en/latest/</u>
- Confier (BDTs): <u>https://github.com/thesps/conifer</u>
- fwXMachina (BDTs): <u>http://fwx.pitt.edu/</u>
- FlowGNN: <u>https://github.com/sharc-lab/flowgnn</u>

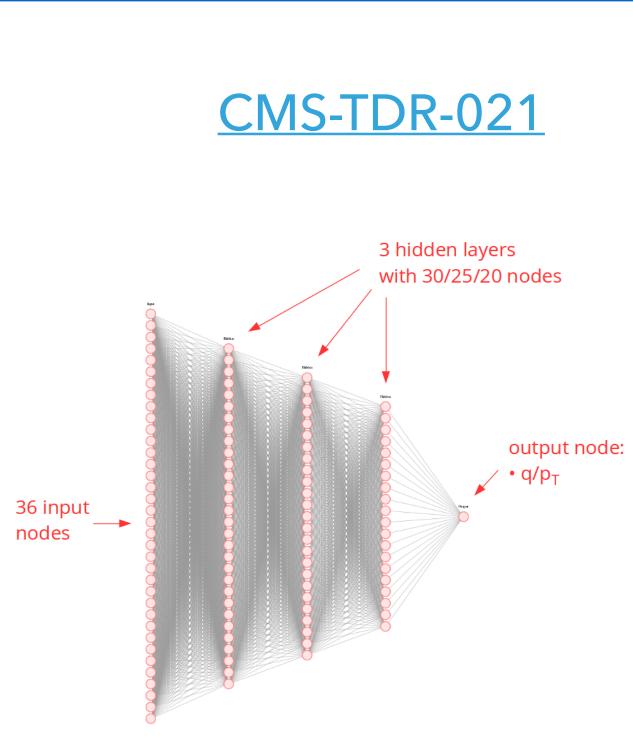


Application: Measure Muon p_T at 40 MHz

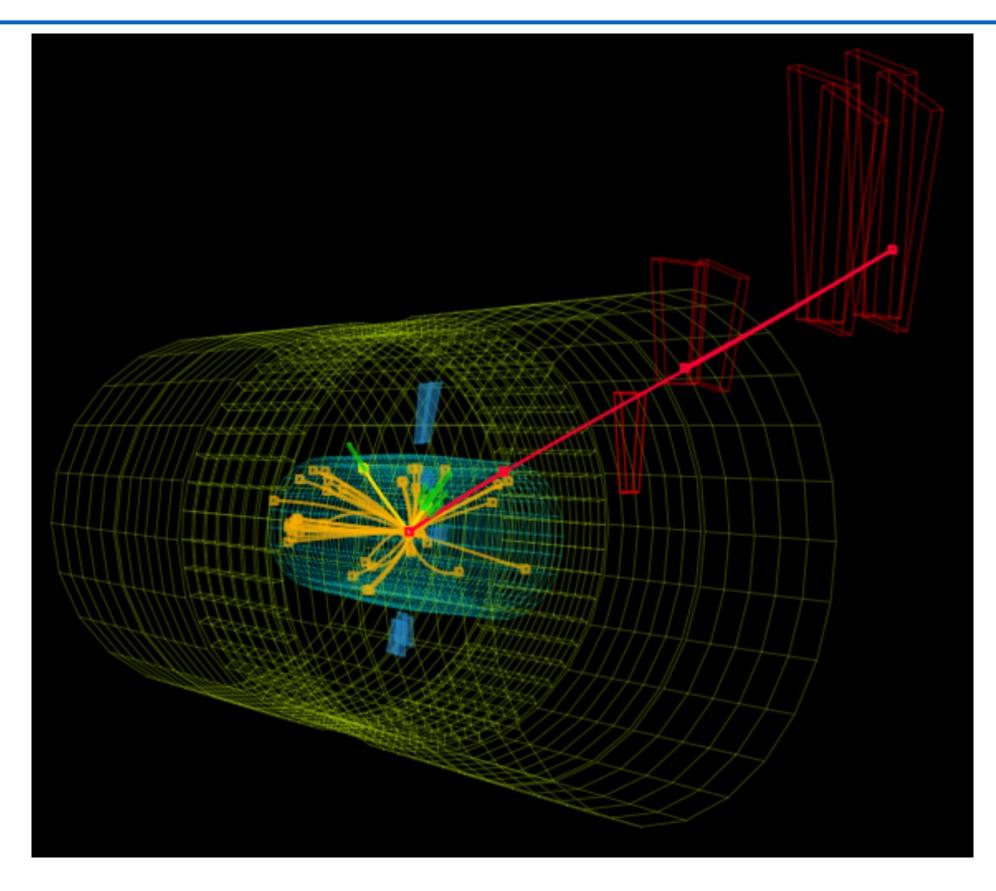


Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference



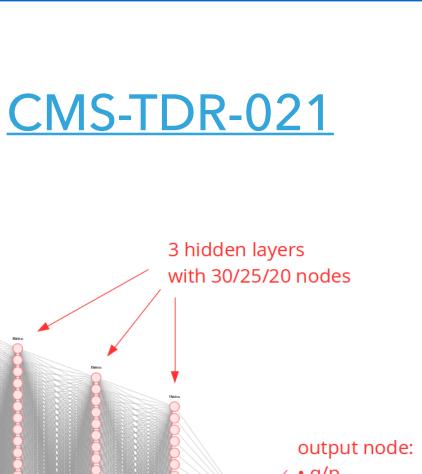


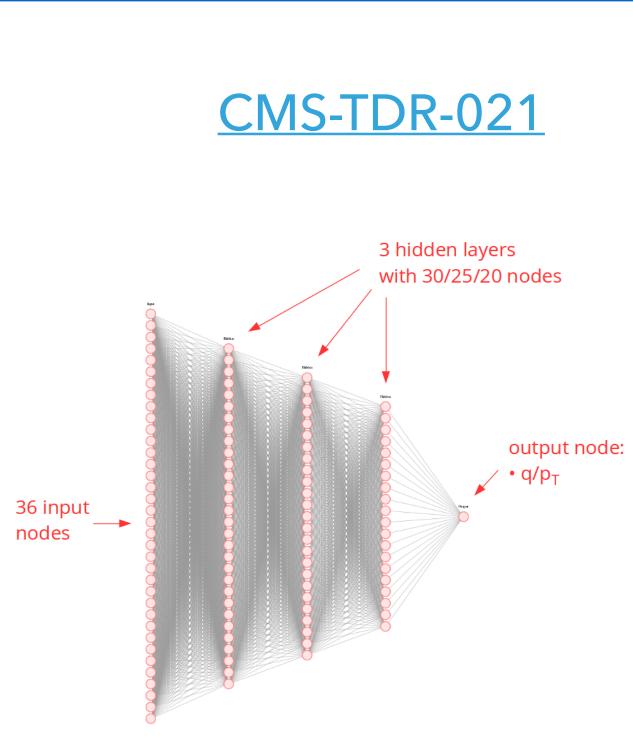
Application: Measure Muon p_T at 40 MHz



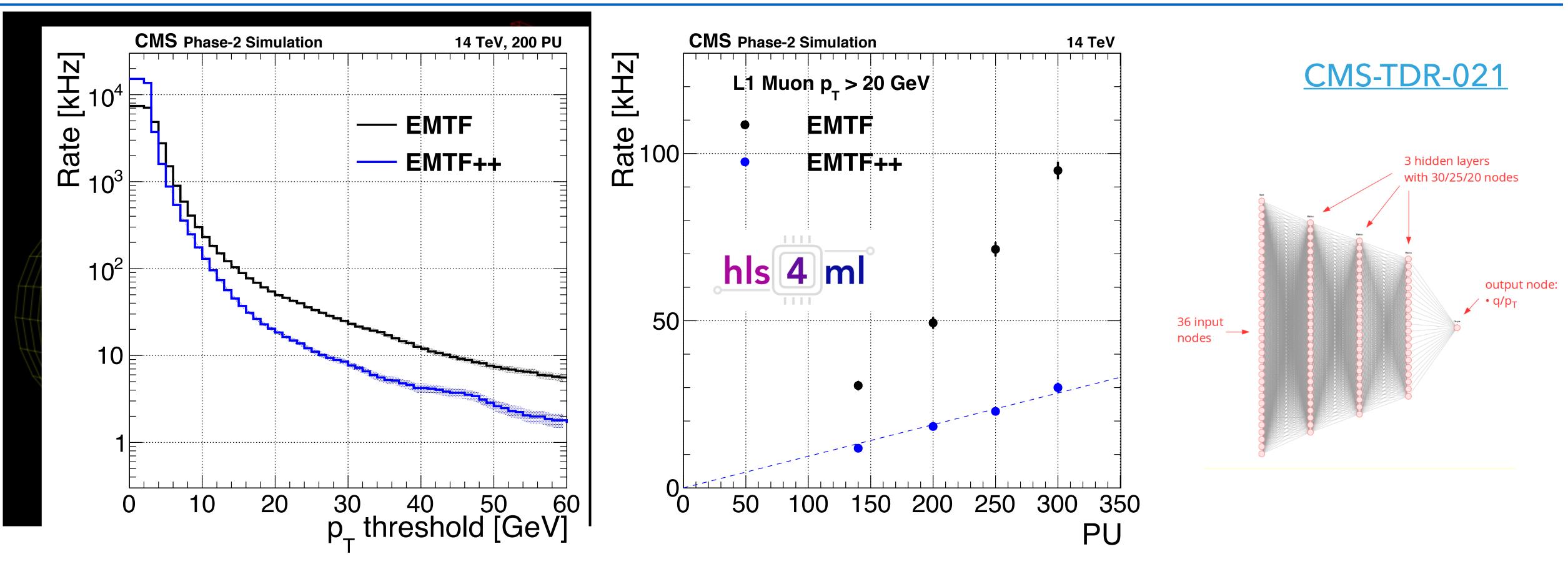
NN measures muon momentum

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference





Application: Measure Muon p_T at 40 MHz

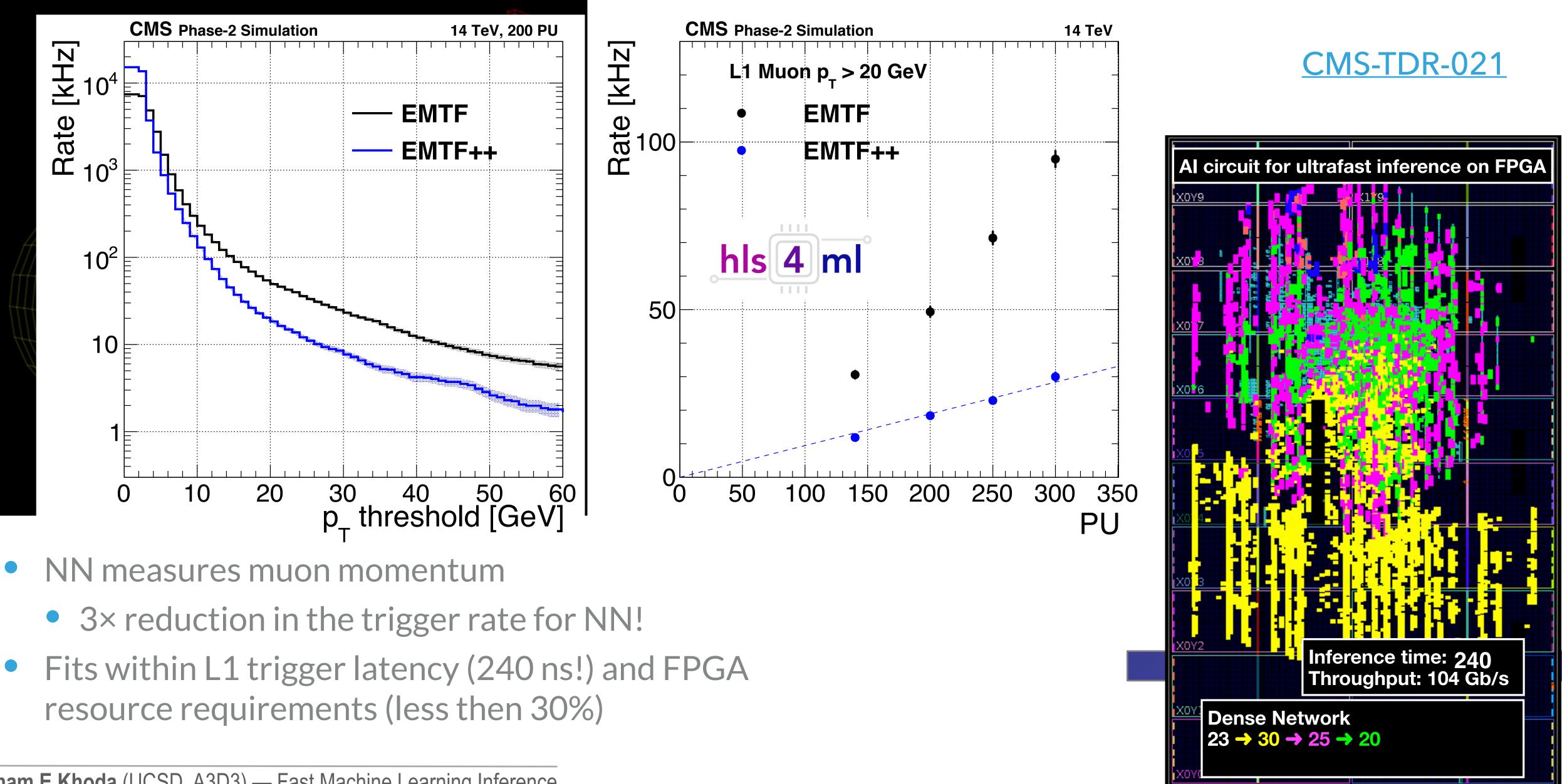


• NN measures muon momentum

• 3× reduction in the trigger rate for NN!

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Application: Measure Muon p_T at 40 MHz

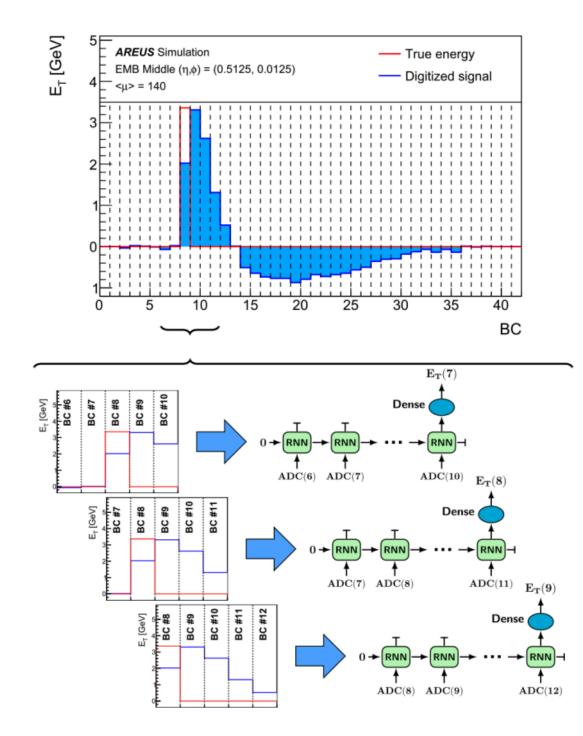


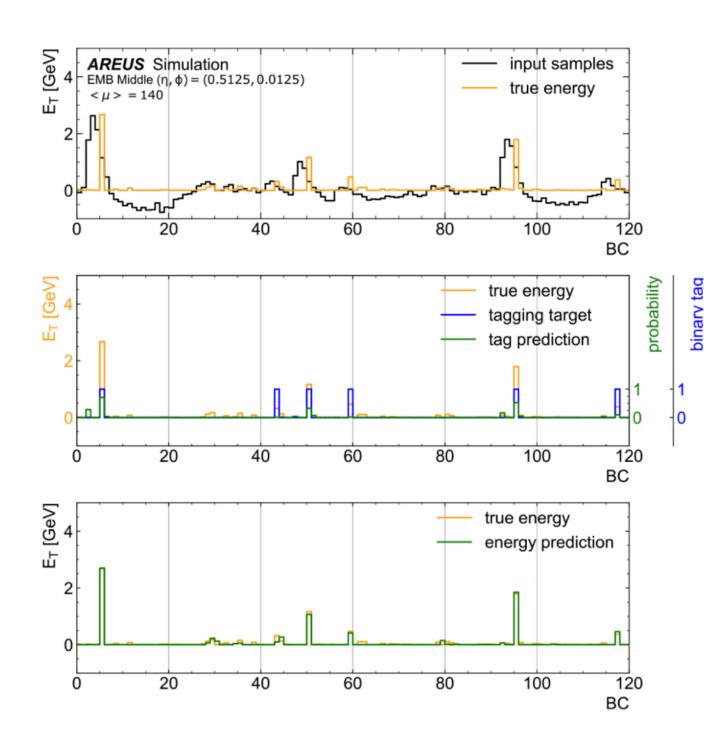
Application: ATLAS LAr Calorimeter

Convolutional and **Recurrent Neural** Networks for real-time energy reconstruction of **ATLAS LAr Calorimeter for Phase 2**

- Up to around 600 calorimeter channels processed by on device
- 200 ns latency of predictions
- Implemented on Intel FPGAs (previous) examples are all AMD)

- Team contributed majorly to RNN and Intel implementations of hls4ml





<u>10.1007/s41781-021-00066-y</u>

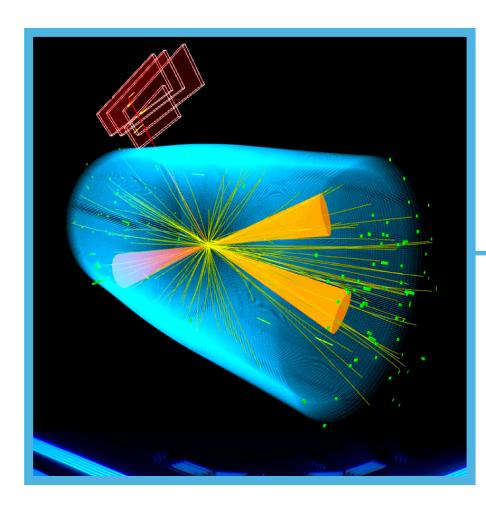
Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

precious BSM events may be discarded at trigger level

Challenge: if new physics has an unexpected signature that doesn't align with existing triggers,

- **Challenge:** if new physics has an unexpected signature that doesn't align with existing triggers, precious BSM events may be discarded at trigger level
- Can we use unsupervised algorithms to detect non-SM-like anomalies?

- **Challenge:** if new physics has an unexpected signature that doesn't align with existing triggers, precious BSM events may be discarded at trigger level
- Can we use unsupervised algorithms to detect non-SM-like anomalies?
 - Autoencoders (AEs): compress input to a smaller dimensional latent space then decompress and calculate difference



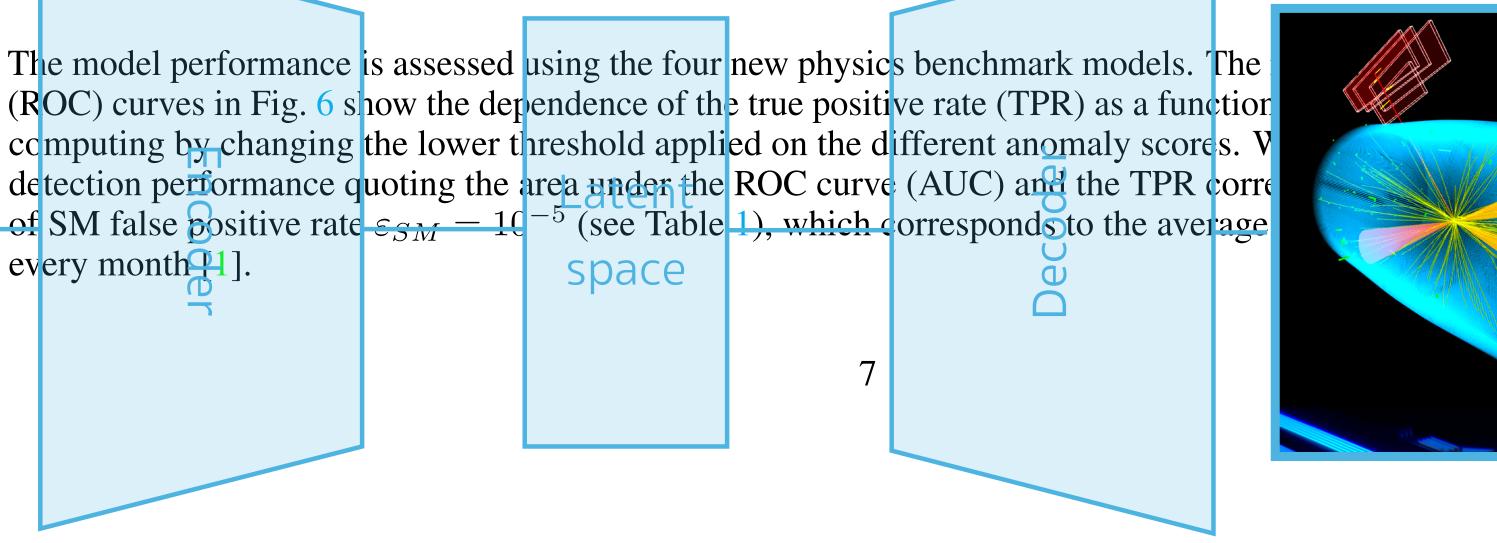
every month [1].

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

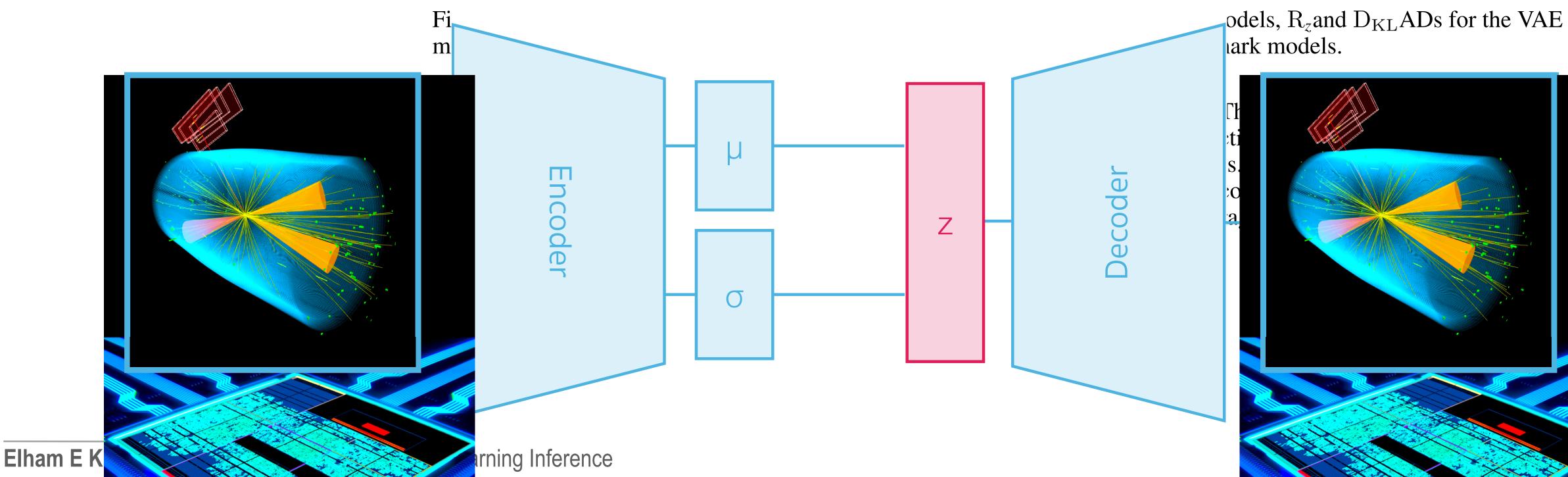
Nat. Mach. Intell. 4, 154 (2022)

Data challenge: mpp-hep.github.io/ADC2021

Figure 4: Distribution of four anomaly detection scores (IO AD for AE and VAE models, R_z and D_{KL}ADs for the VAE models) for the DNN model, for the SM cocktail and the four new physics benchmark models.



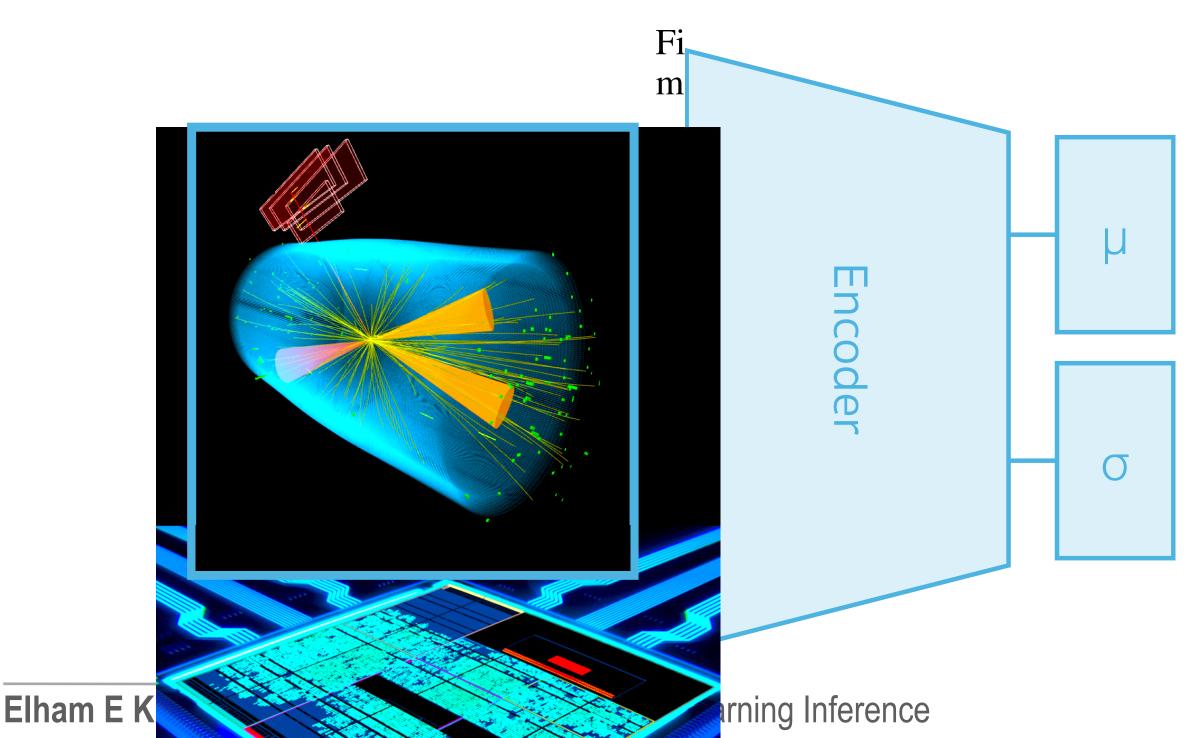
- **Challenge:** if new physics has an unexpected signature that doesn't align with existing triggers, precious BSM events may be discarded at trigger level
- Can we use unsupervised algorithms to detect non-SM-like anomalies?
 - Autoencoders (AEs): compress input to a smaller dimensional latent space then decompress and calculate difference
 - Variational autoencoders (VAEs): model the latent space as a probability distribution; possible to detect anomalies purely with latent space variables



Nat. Mach. Intell. 4, 154 (2022)

Data challenge: mpp-hep.github.io/ADC2021

- Challenge: if new physics has an unexpected signature that doesn't align with existing triggers, precious BSM events may be discarded at trigger level
- Can we use unsupervised algorithms to detect non-SM-like anomalies?
 - Autoencoders (AEs): compress input to a smaller dimensional latent space then decompress and calculate difference
 - Variational autoencoders (VAEs): model the latent space as a probability distribution; possible to detect anomalies purely with latent space variables

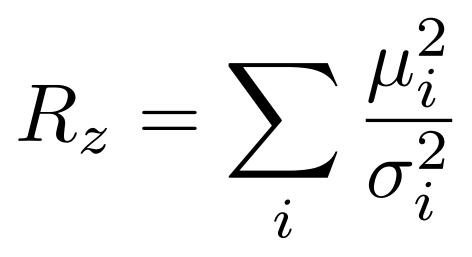


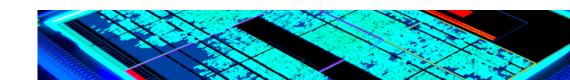
Nat. Mach. Intell. 4, 154 (2022)

Data challenge: mpp-hep.github.io/ADC2021

adale R and $D_{rrr} \wedge D_{e}$ for the $V \wedge F$

Key observation: Can build an anomaly score from the latent space of VAE directly! No need to run decoder!





Application: CMS Anomaly Trigger

CMS has implemented a similar idea: AXOL1TL

- L1 Hardware implemented VAE-based AD trigger (based on https://arxiv.org/abs/2108.03986)
- Trained on 2018 zerobias data, ran in 2023 Global **Trigger Test Crate**
- CMS is also developing CICADA, a calorimeter only AD trigger

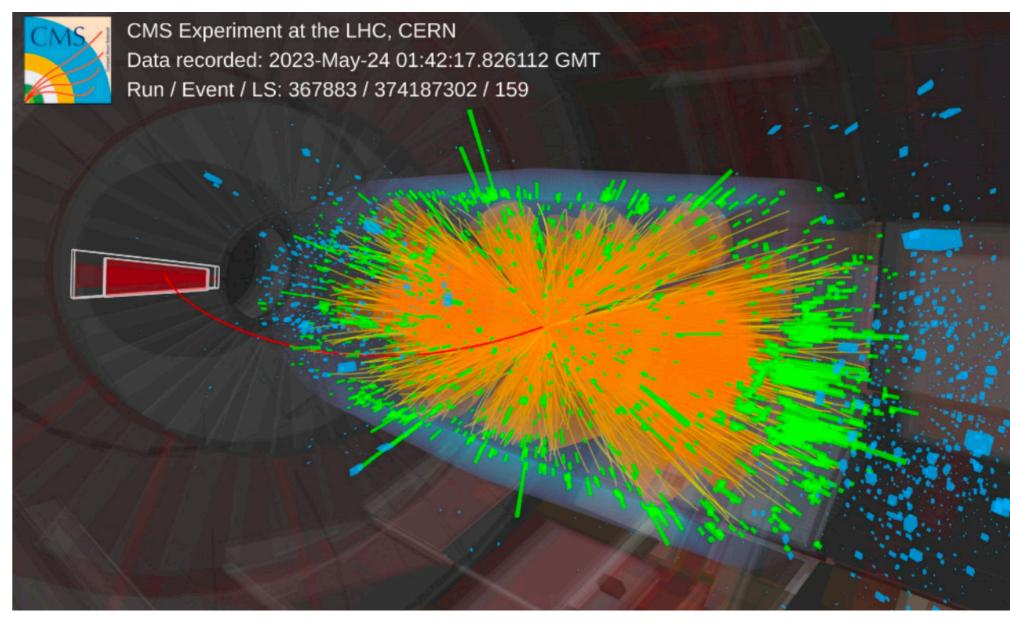
Similar effort is ongoing in ATLAS

CMS-DP-2023-079

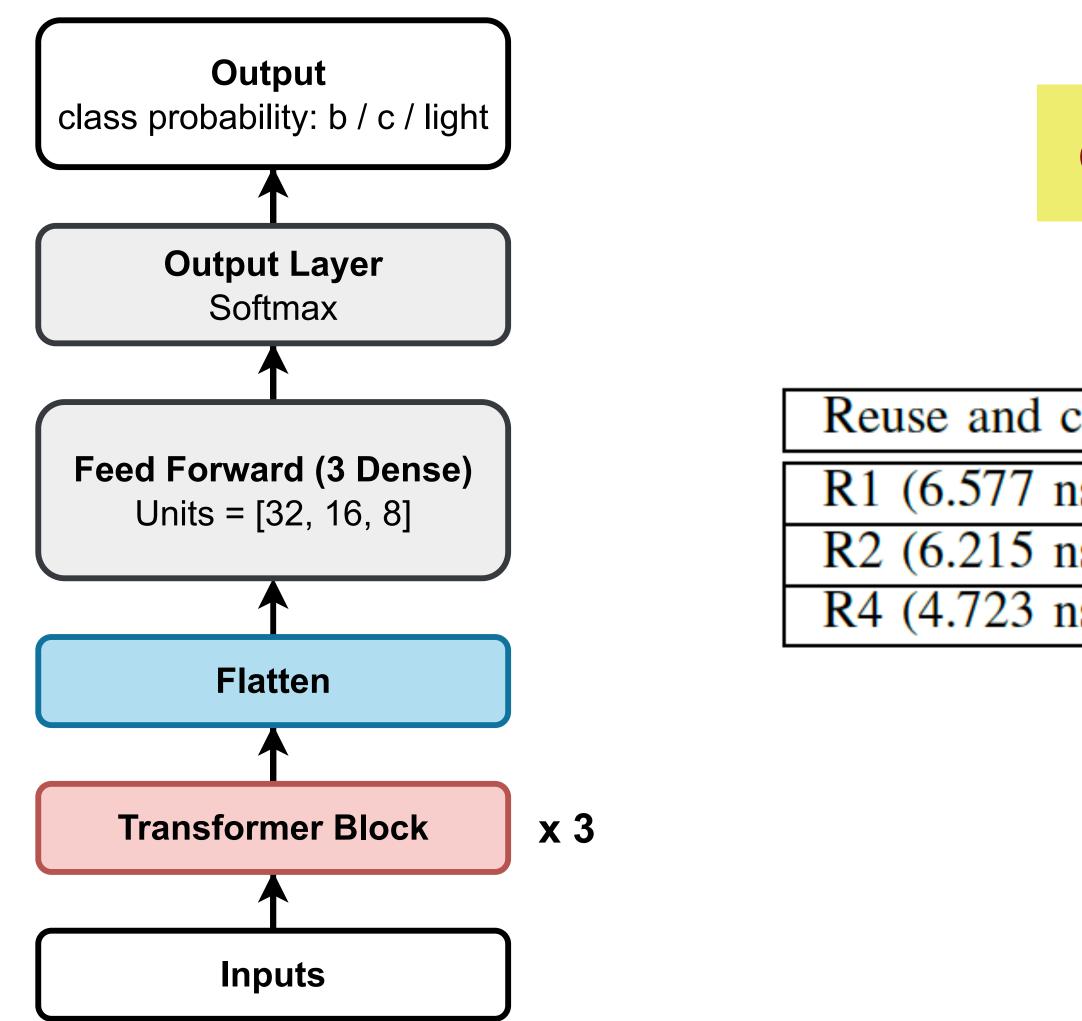
Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

AXOL TL

Event display of the highest anomaly score



Low-latency Transformers

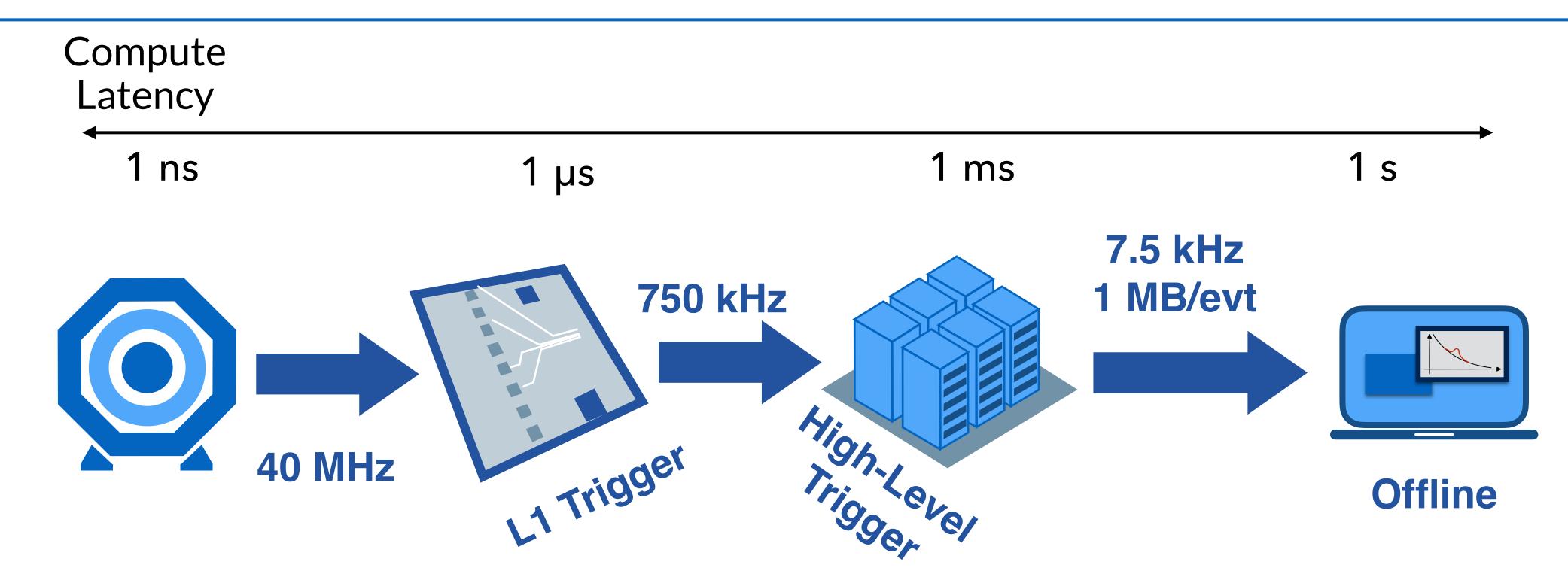


Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

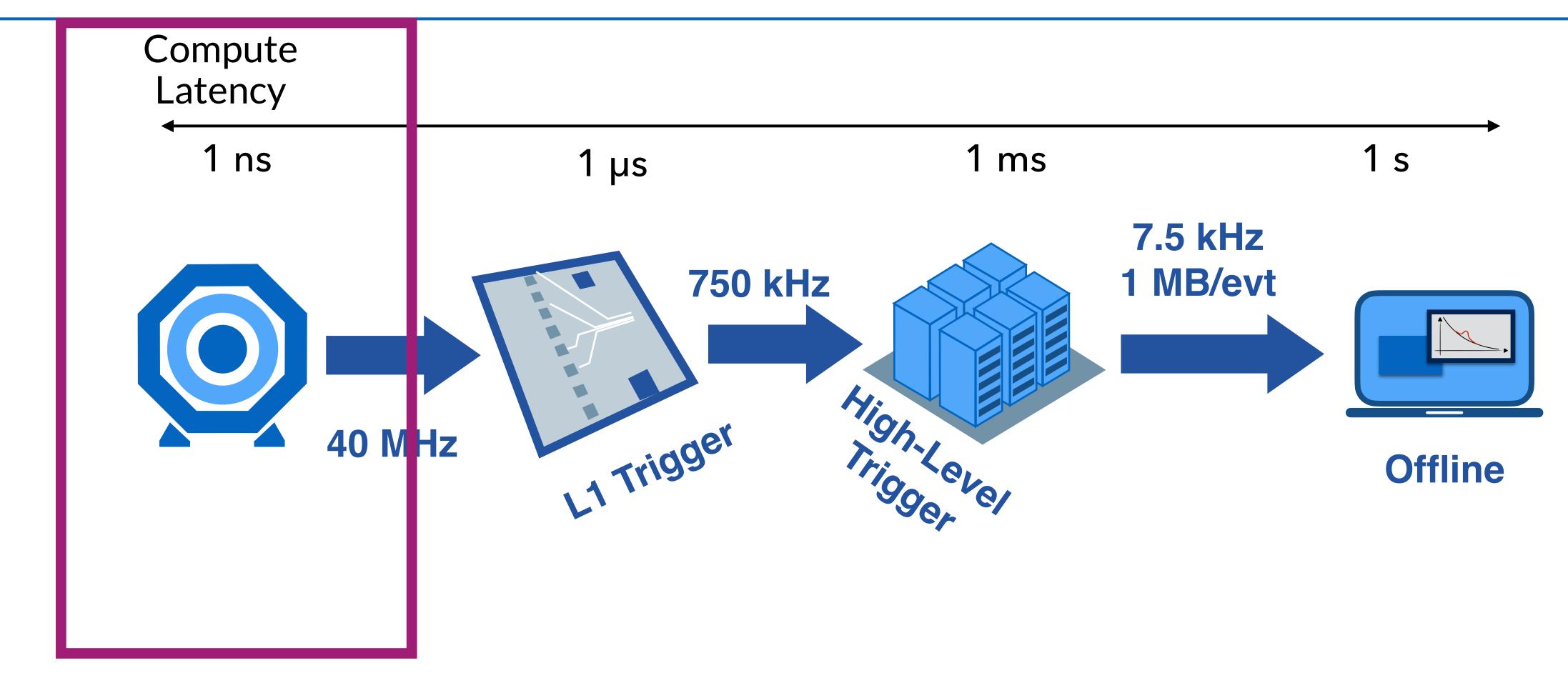
Observed Inference Latency ~ 2-6 µs

clk	Interval (cycle)	Latency (cycles)	Latency(time
ns)	49	269	2.077 us
ns)	65	449	3.467 us
ns)	100	768	5.853 us

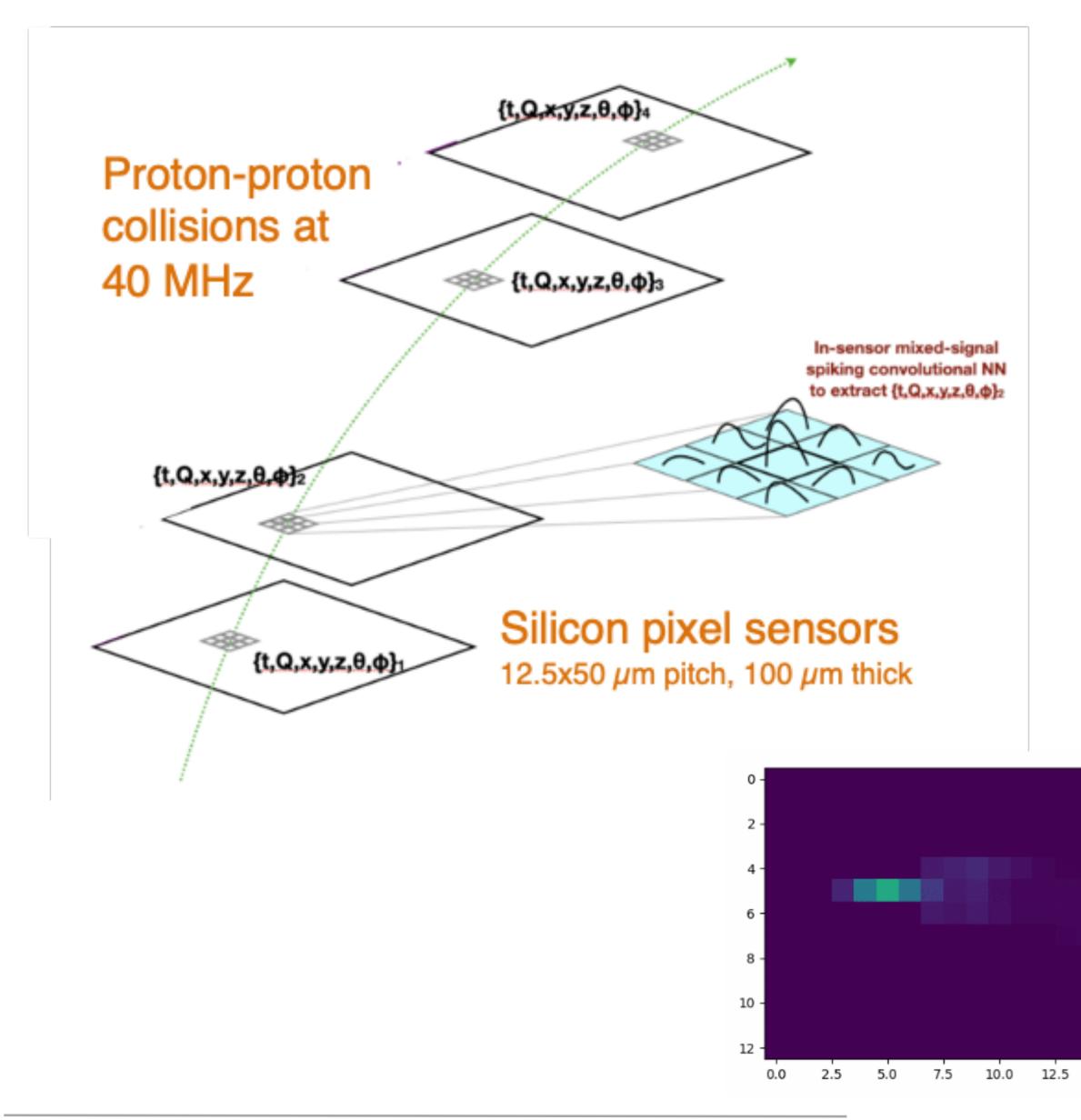
HL-LHC Data Processing



HL-LHC Data Processing



Smart Pixel



Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Data reduction and reconstruction on sensor for silicon pixel detectors

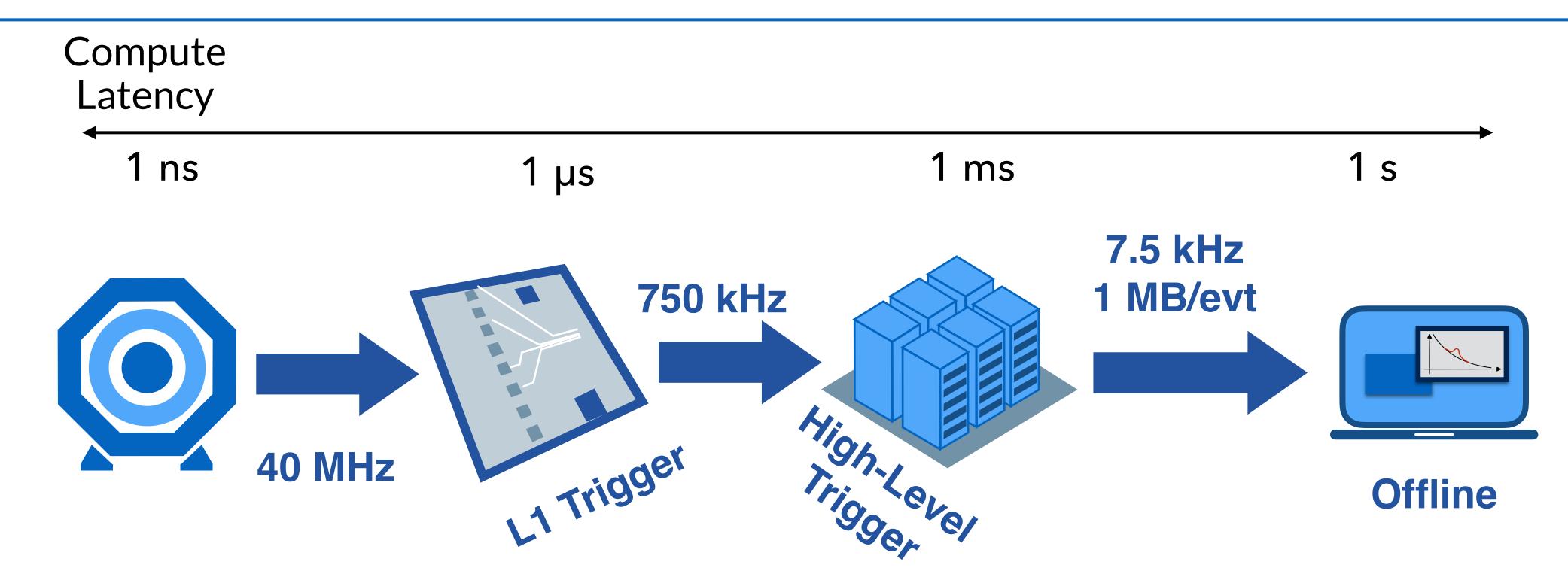
We can reduce the data rate read out by a futuristic pixel detector using Al on-chip

- Factor of ~20 from pT filter
- Additional savings from compression

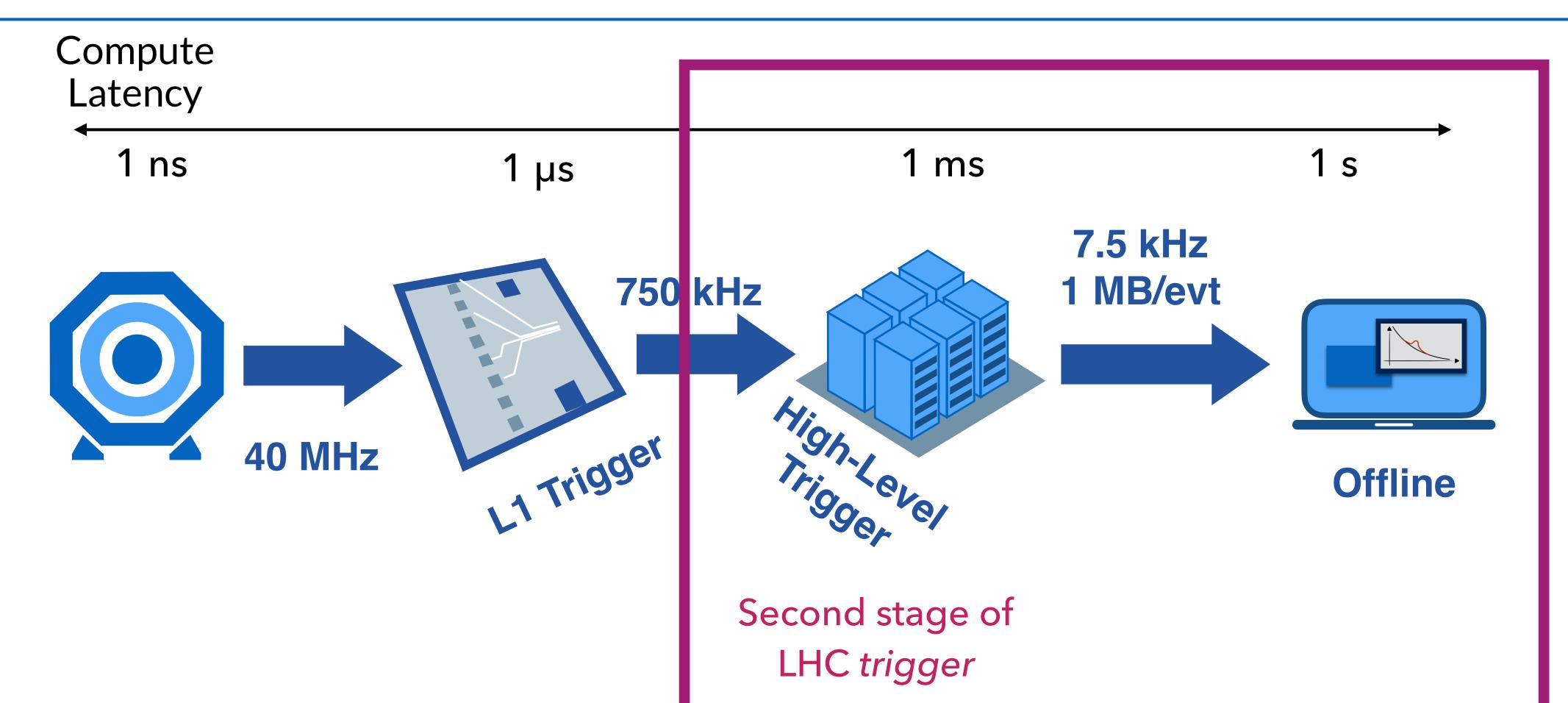
State-of-the-art dataset for developing algorithms for implementation on-ASIC
Simulated MIP interactions in a futuristic pixel detector

Dataset available on zenodo

HL-LHC Data Processing

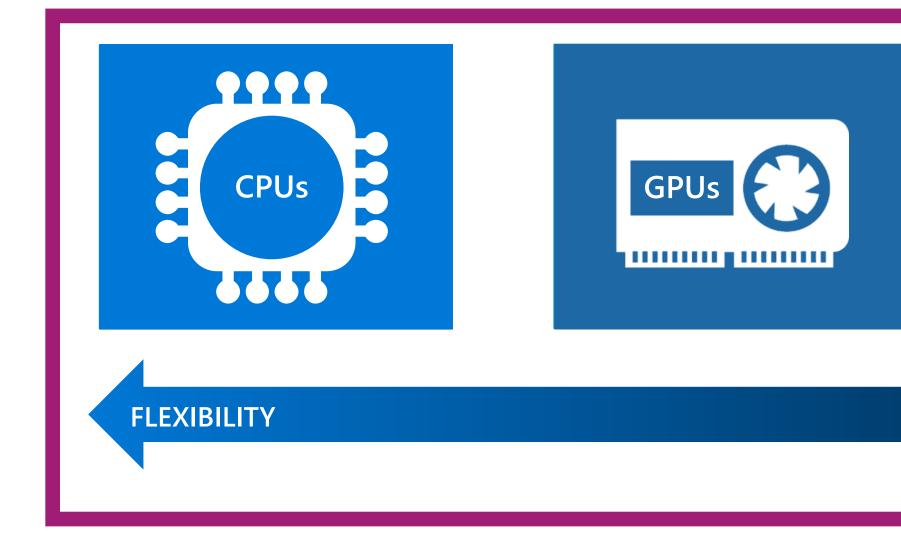


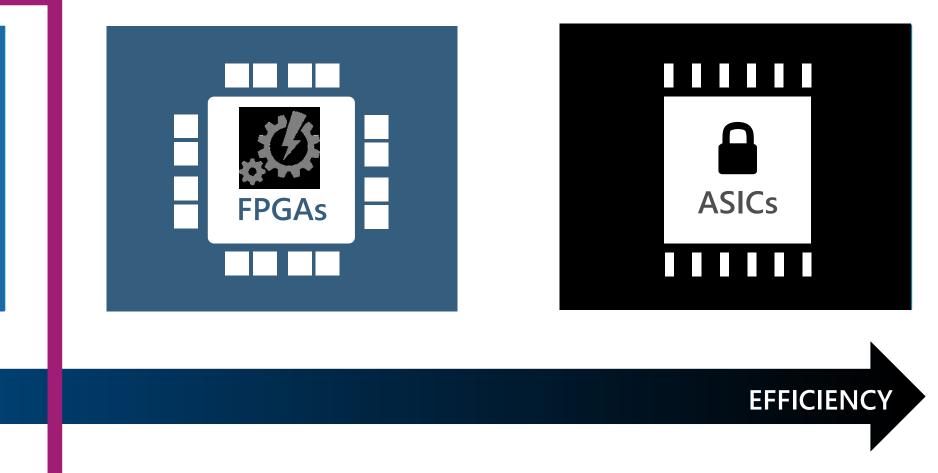
HL-LHC Data Processing



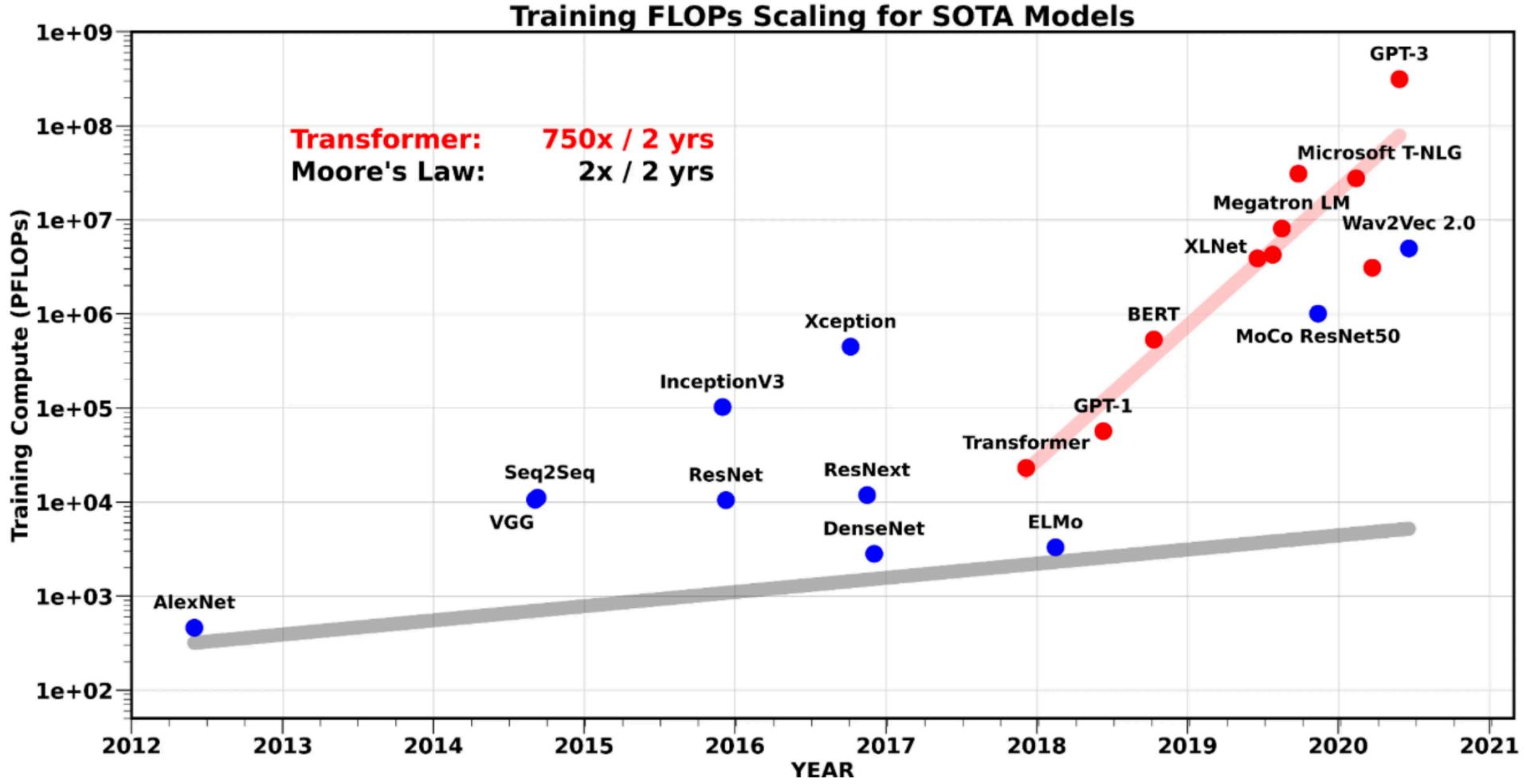
Computing Hardware

Second stage of LHC trigger



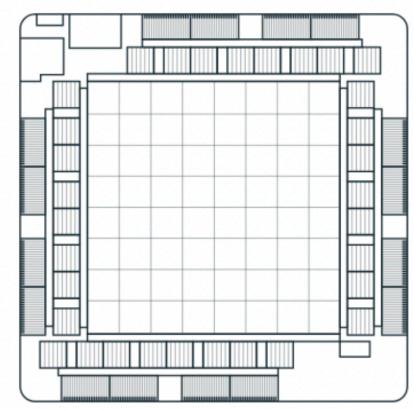


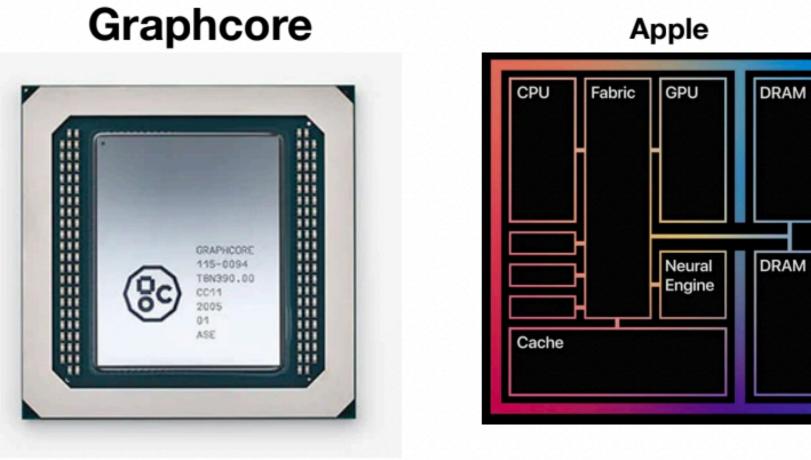
Exponential trend in computational need of AI



Al Chips in 2023

Meta

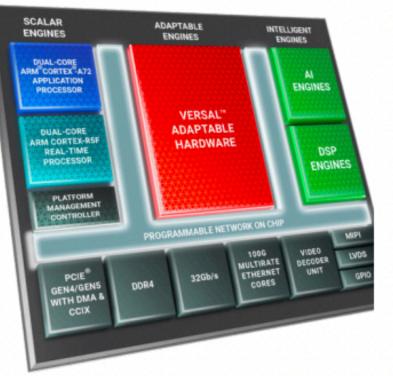




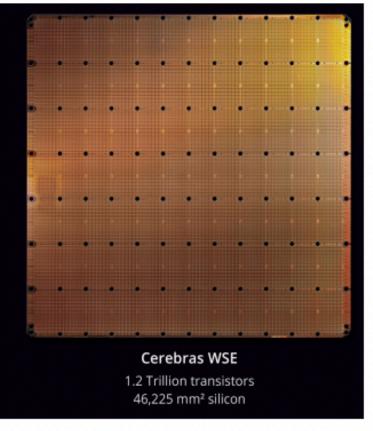
Who to include these different processors into our computing system?

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

AMD / Xilinx



Cerebras

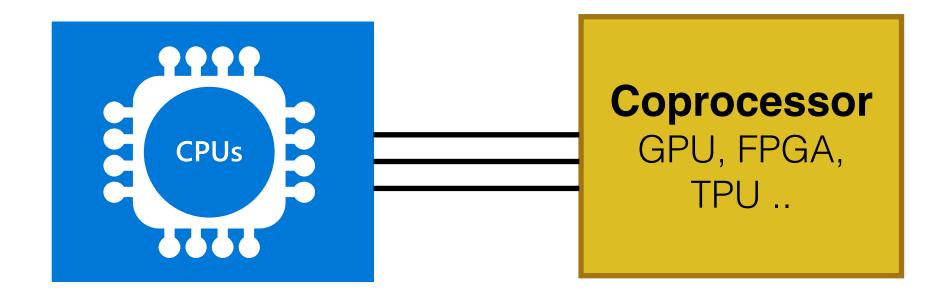


Heterogeneous computing platform

Coprocessors: specialized processors like GPU, FPGA, TPU, GraphCore, other AI chips, etc

Increased usage of specialized processors in the future

Direct Connection: Different heterogeneous systems are directly connected to each other



Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

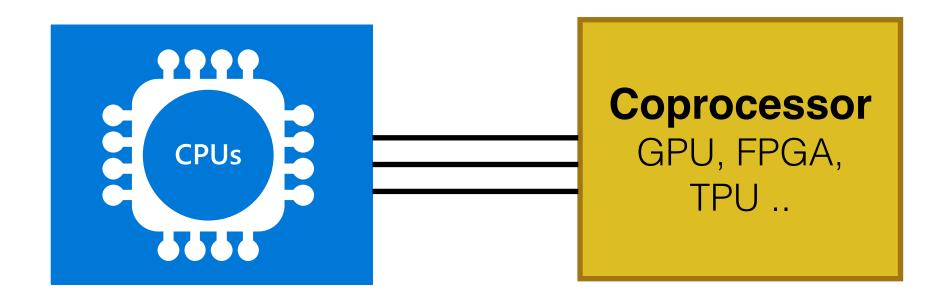
NODE **CPU** GPU NODE CPU **FPGA**

Heterogeneous computing platform

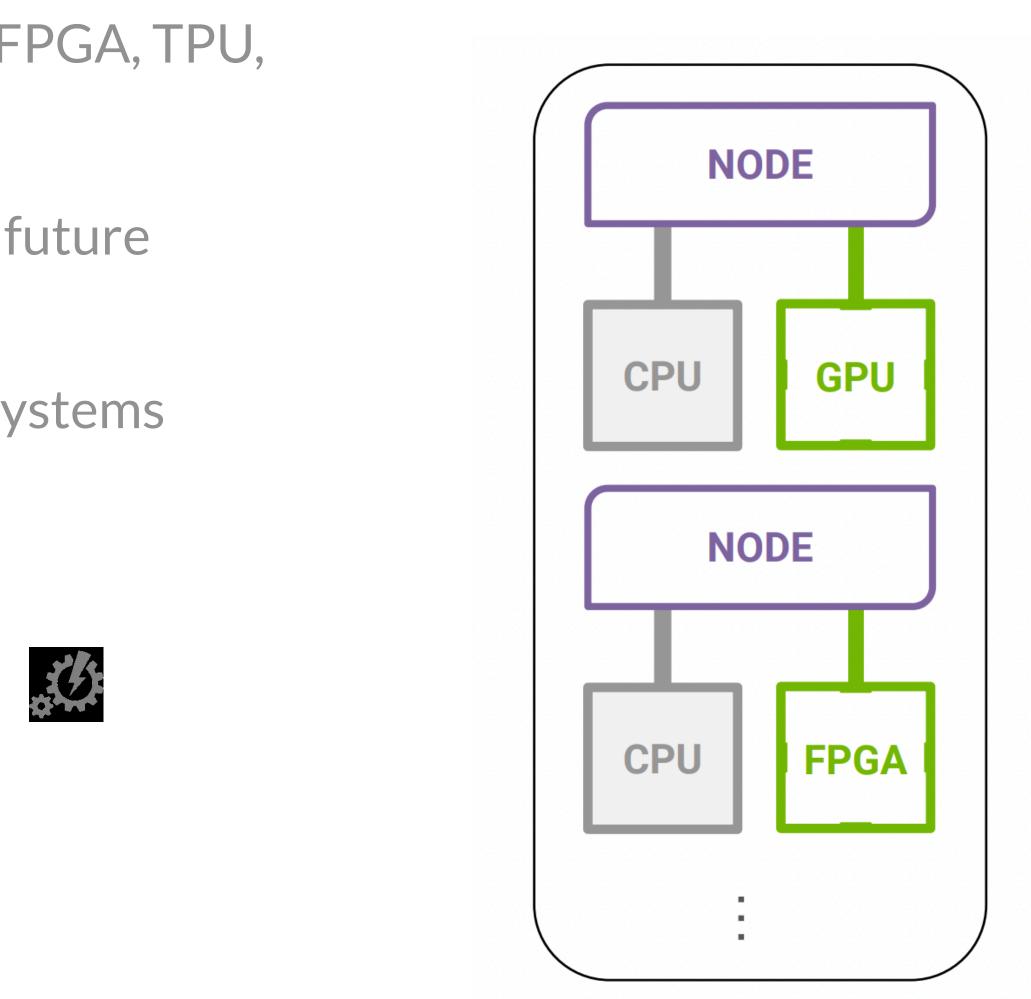
Coprocessors: specialized processors like GPU, FPGA, TPU, GraphCore, other Al chips, etc

Increased usage of specialized processors in the future

Direct Connection: Different heterogeneous systems are directly connected to each other



Advantage: fast and stable **Disadvantage:** not flexible and not fully utilized due to inferences' complexity varies.

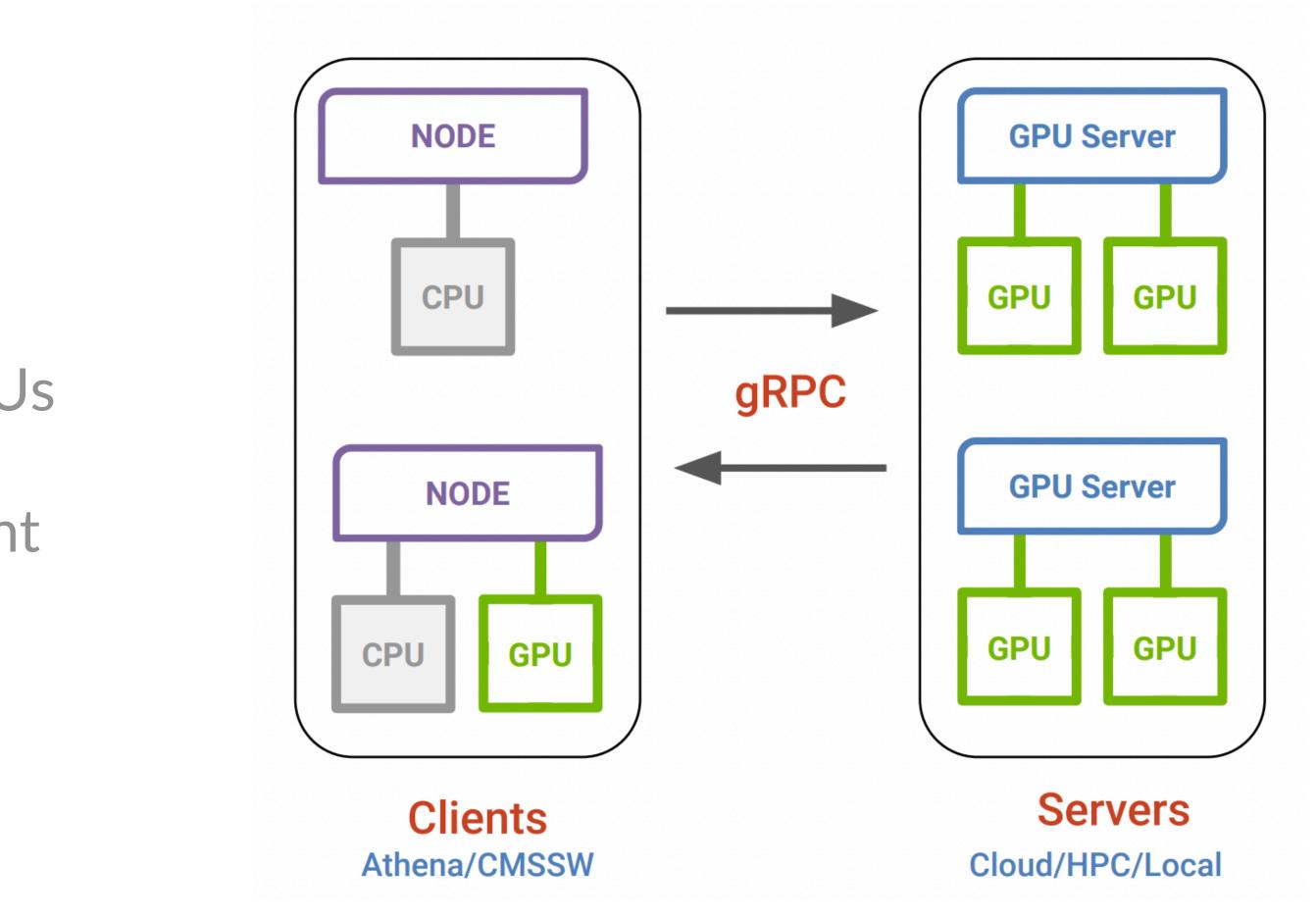


Inference as-a-Service

Client - Server connections are made through network

- Server running on single / multiple GPUs
- Single server can process multiple client requests

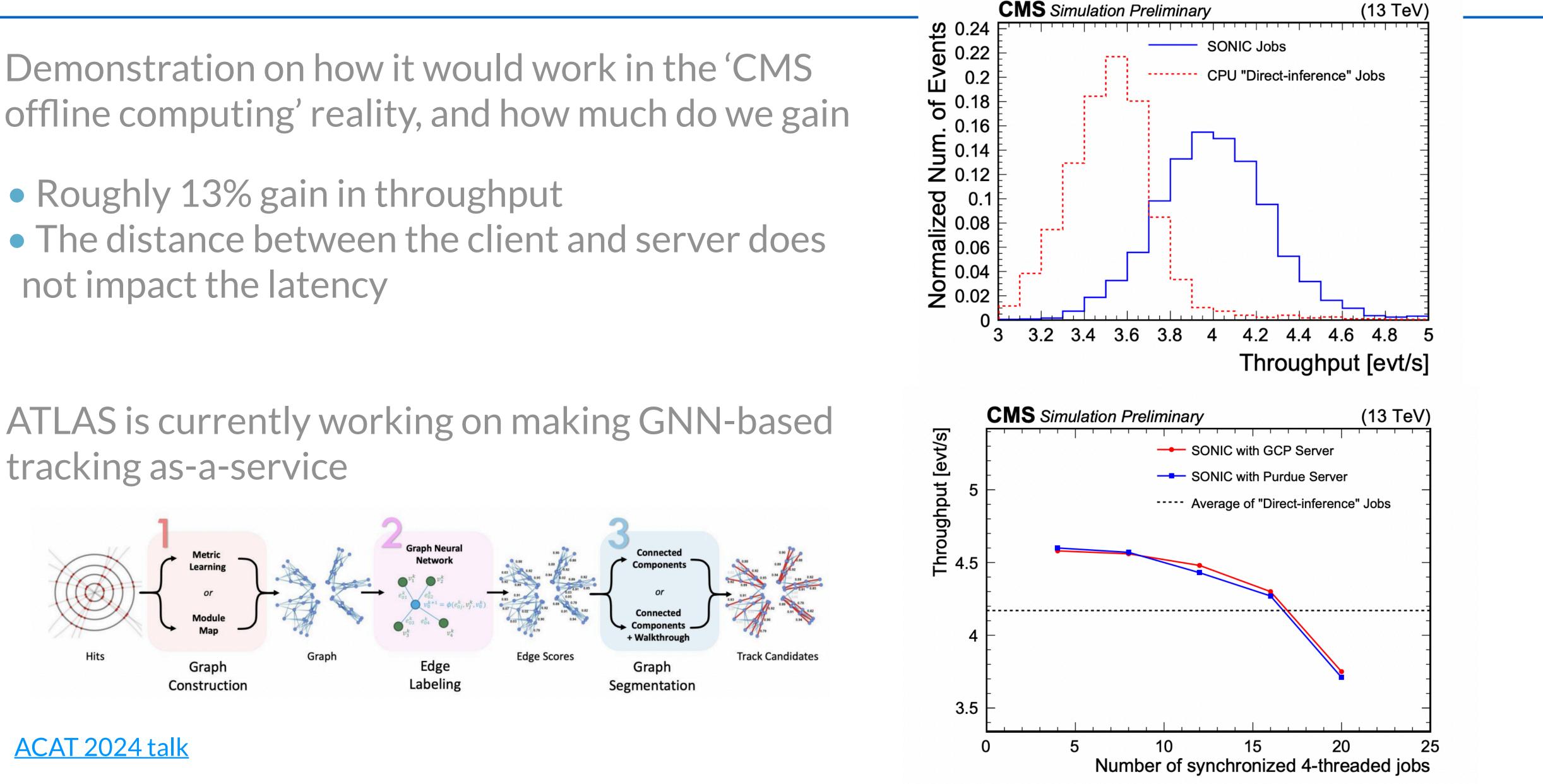
Advantage: flexible and CPU-coprocessor ratio can be optimized **Disadvantage:** network topology and stability affect the inference throughput and latency



Inference as-a-Service

- Roughly 13% gain in throughput
- not impact the latency

tracking as-a-service



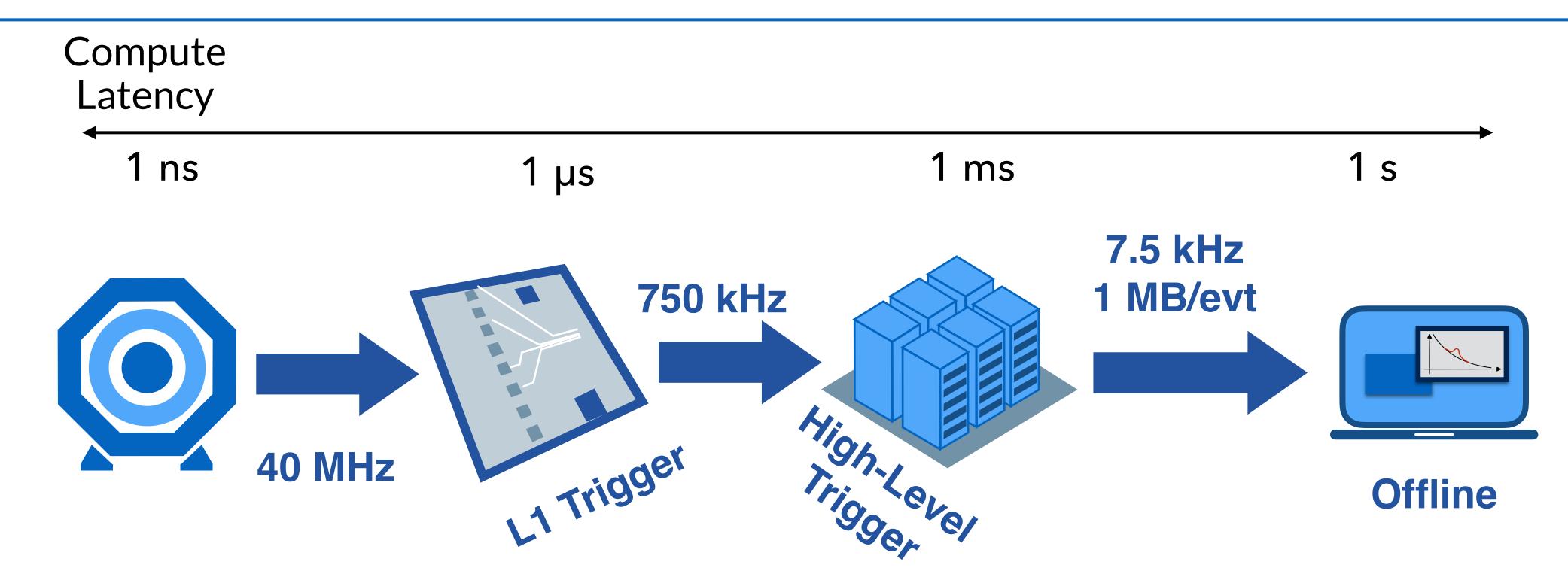
ACAT 2024 talk

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

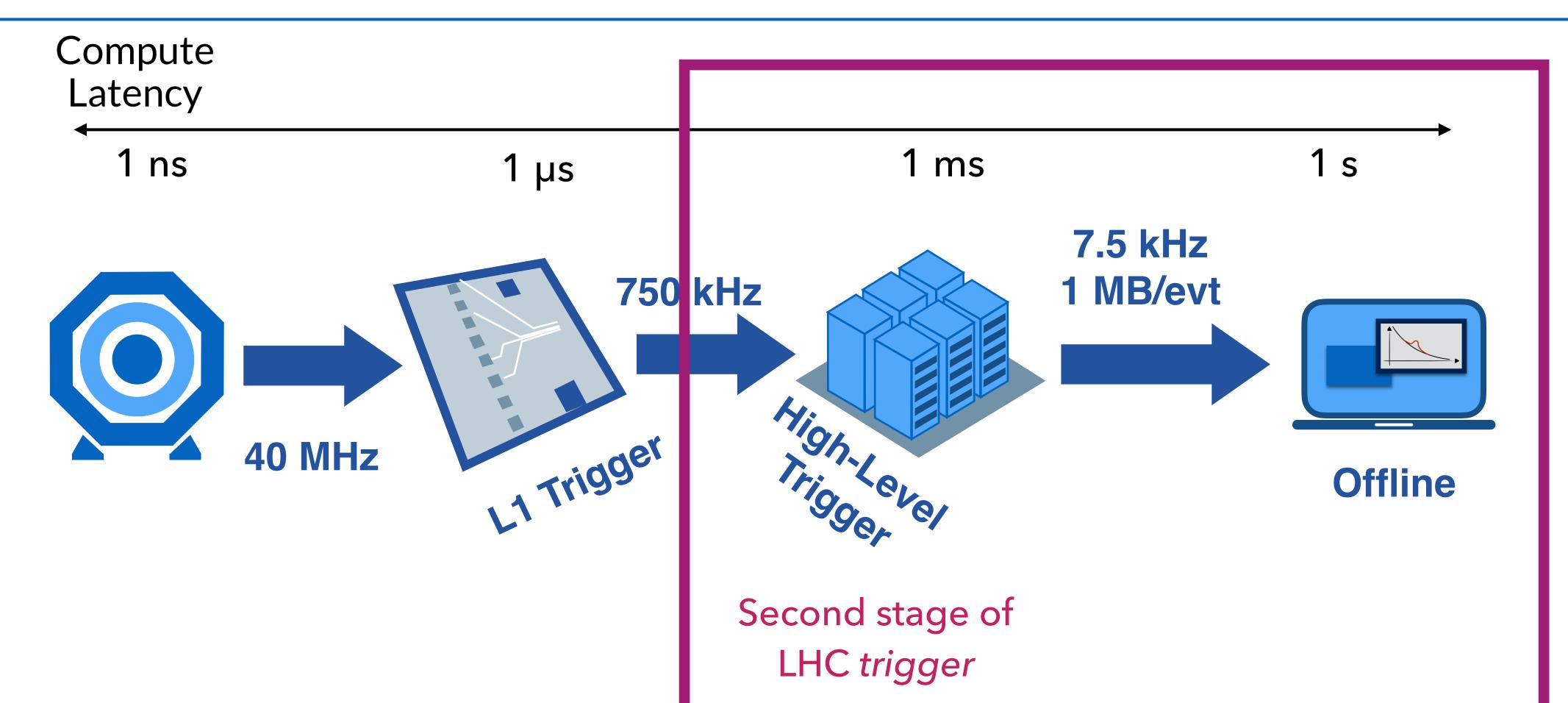
CMS-PAS-MLG-23-001

28

HL-LHC Data Processing



HL-LHC Data Processing



ML-based Particle Flow

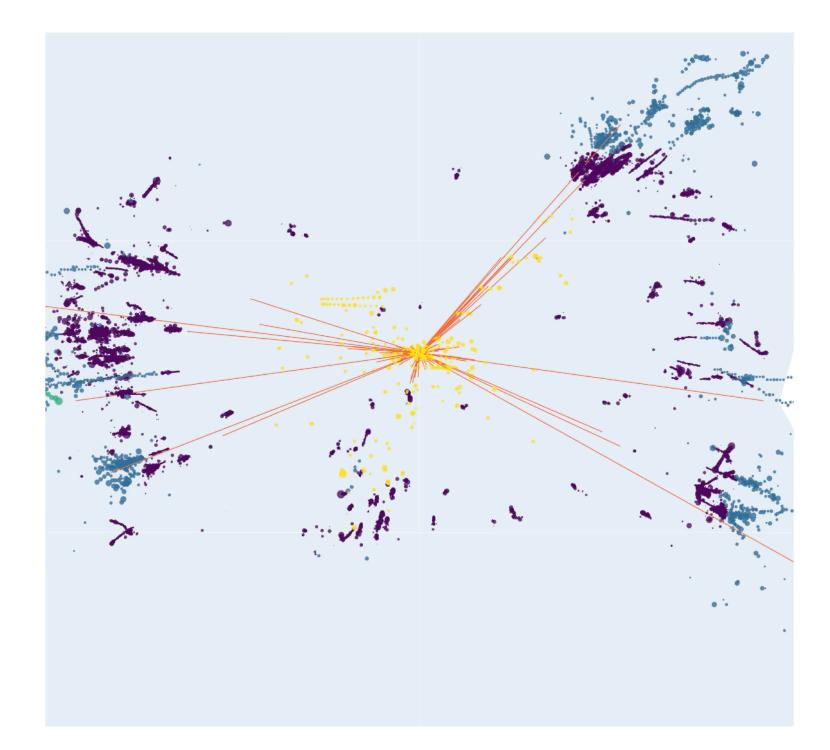
- Gen. particles, reco. tracks and calorimete hits, reco. Pandora PF particles in **EDM4HEP** format
- CLIC detector (<u>CLIC o3 v14</u>) simulation with Geant4, reco. with Marlin interfaced via Key4HEP including Pandora PF reco.
- Processes generated with Pythia8 at $\sqrt{s} = 380 \,\mathrm{GeV}$

• $e^+e^- \rightarrow t\bar{t}, q\bar{q}, ZH(\tau\tau), WW, t\bar{t} + PU10$

• Single-particle: e^{\pm} , μ^{\pm} , K_L^0 , n, π^{\pm} , γ between [1,100] GeV

2.5 TB, 6 million events in total

Particle Flow Reconstruction Scalable Neural Network Models and Terascale Datasets



https://www.coe-raise.eu/od-pfr

30

ML-based Particle Flow

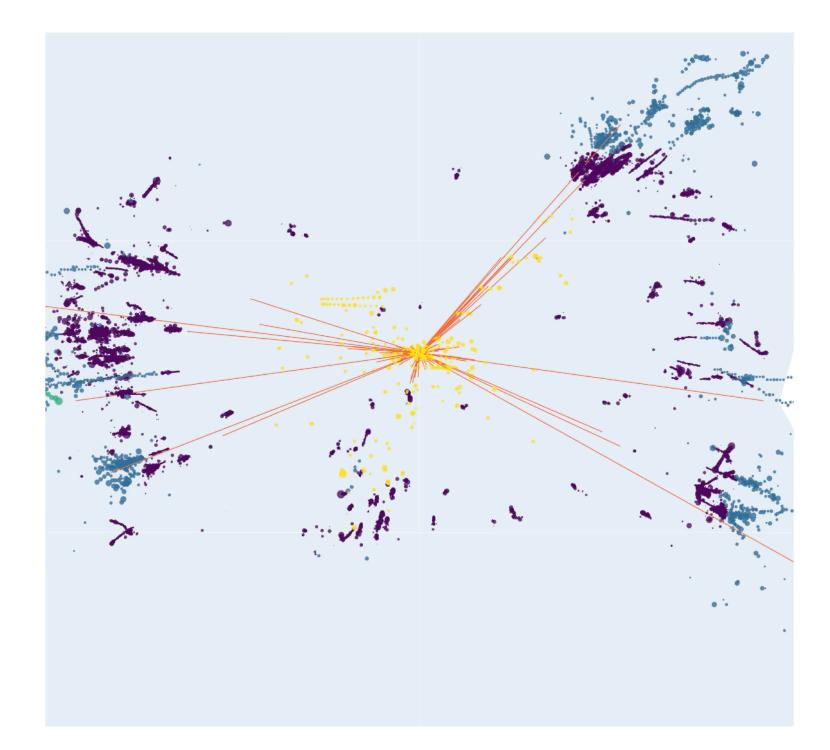
- Gen. particles, reco. tracks and calorimete hits, reco. Pandora PF particles in **EDM4HEP** format
- CLIC detector (<u>CLIC o3 v14</u>) simulation with Geant4, reco. with Marlin interfaced via Key4HEP including Pandora PF reco.
- Processes generated with Pythia8 at $\sqrt{s} = 380 \,\mathrm{GeV}$

• $e^+e^- \rightarrow t\bar{t}, q\bar{q}, ZH(\tau\tau), WW, t\bar{t} + PU10$

• Single-particle: e^{\pm} , μ^{\pm} , K_L^0 , n, π^{\pm} , γ between [1,100] GeV

2.5 TB, 6 million events in total

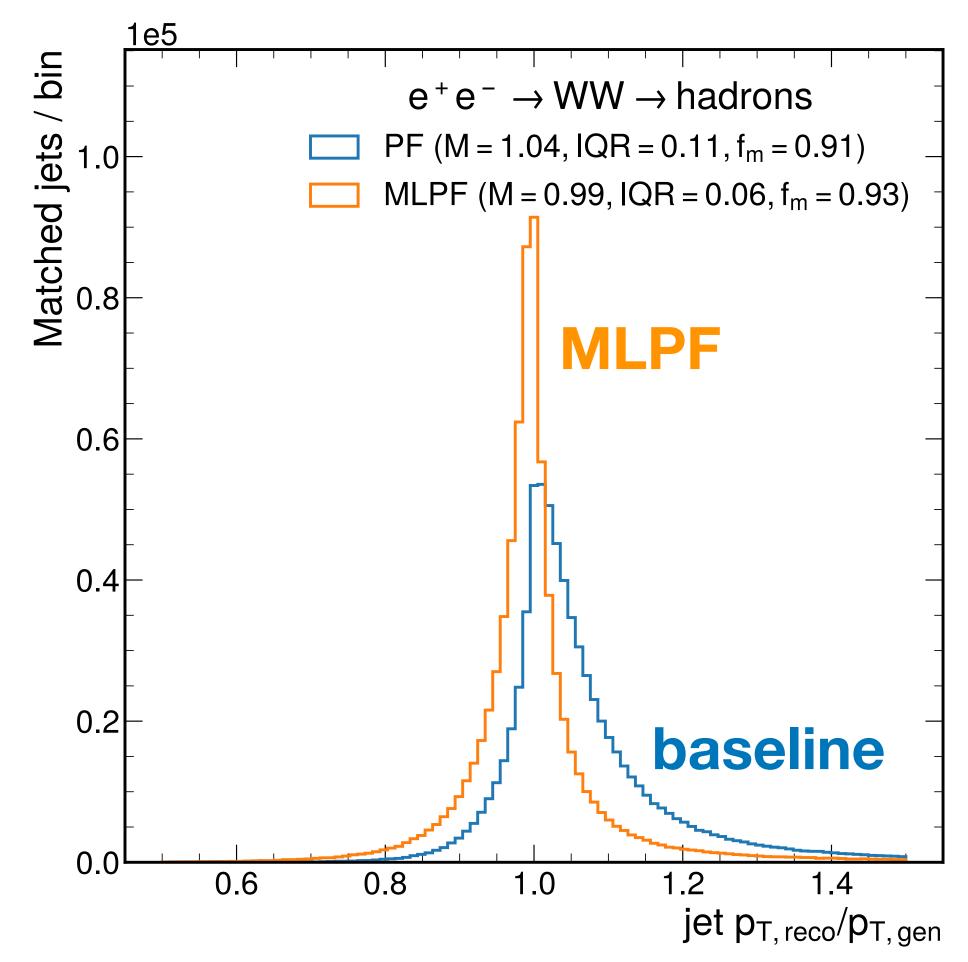
Particle Flow Reconstruction Scalable Neural Network Models and Terascale Datasets



https://www.coe-raise.eu/od-pfr

30

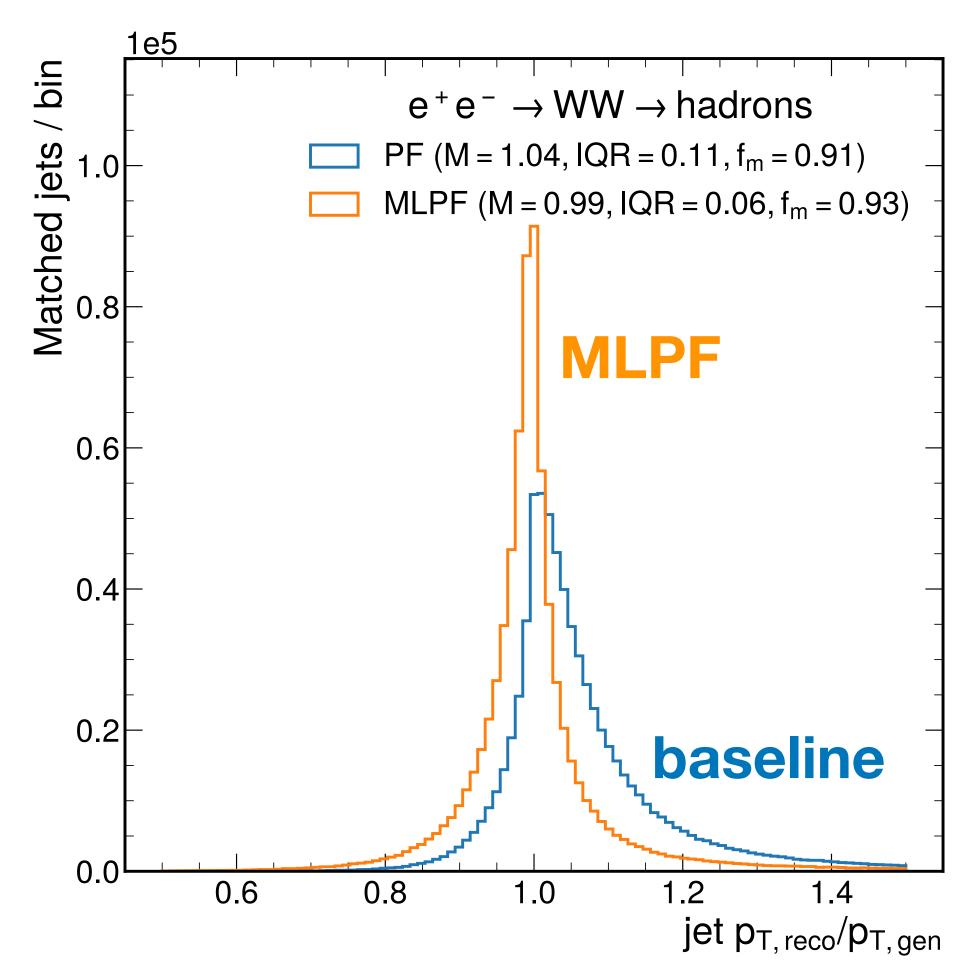
MLPF Performance



Elham E Kho

arXiv:2309.06782

MLPF Performance

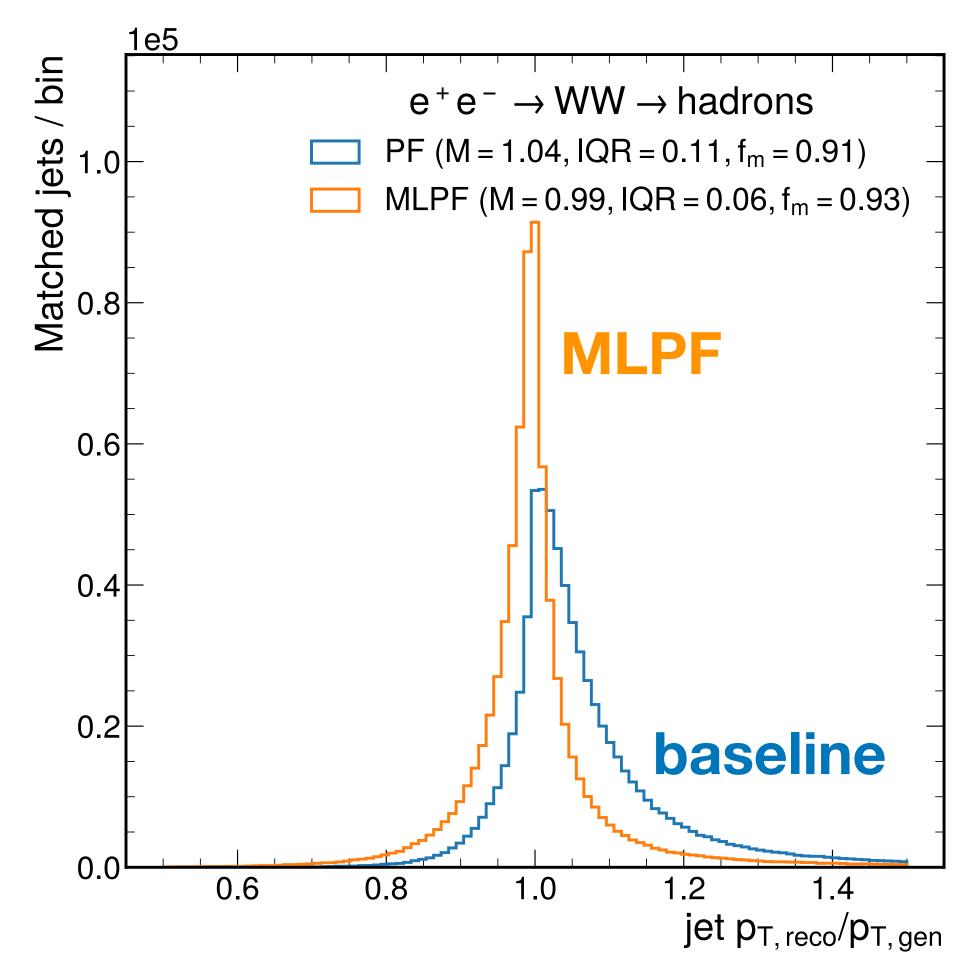


Elham E Kho

• Generalizes to samples (e.g., $e^+e^- \rightarrow WW \rightarrow hadrons$) never used in training

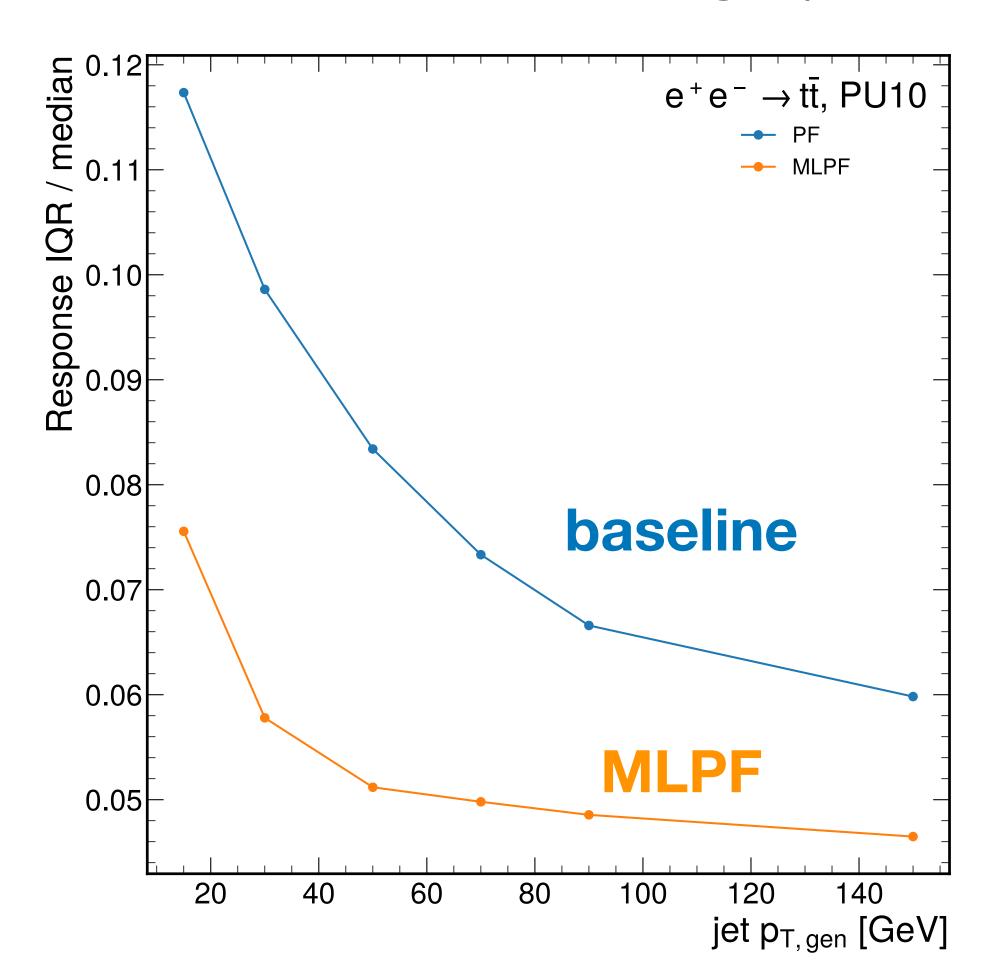
MLPF Performance

- Generalizes to samples (e.g., $e^+e^- \rightarrow WW \rightarrow hadrons$) never used in training
- ~50% improvement in jet response width over the baseline*



Elham E Kho

*Defined with gen. particle status = 1



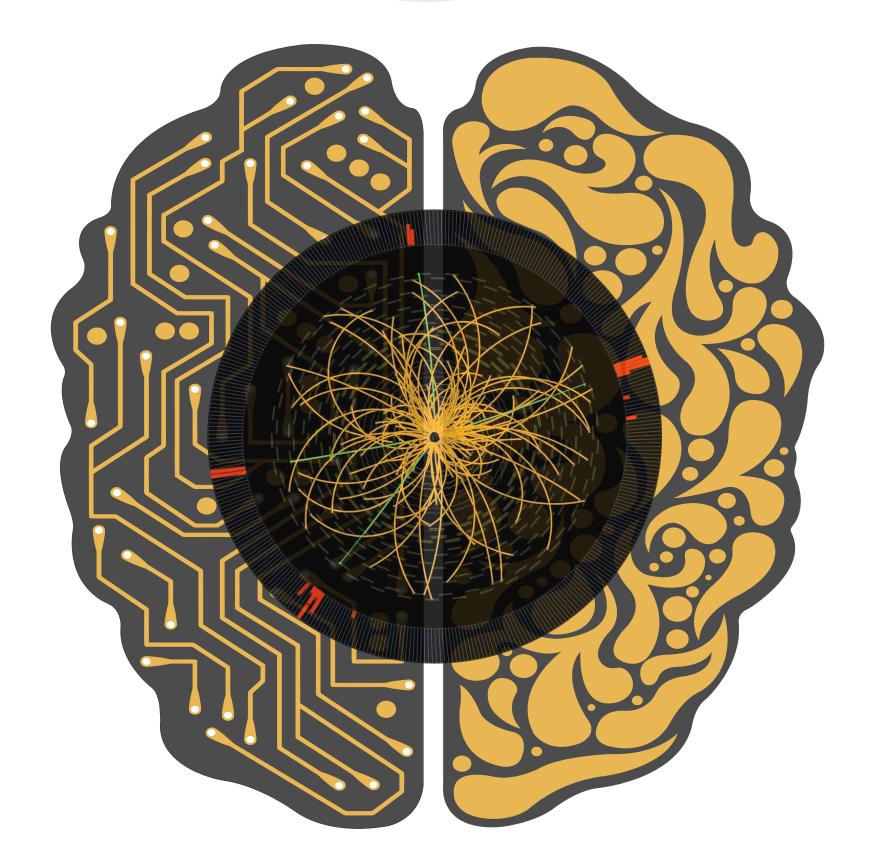
31

• ML allows us to better reconstruct our data and save potentially overlooked data

- ML allows us to better reconstruct our data and save potentially overlooked data
- Codesign principles can enable ML on hardware with stringent constraints

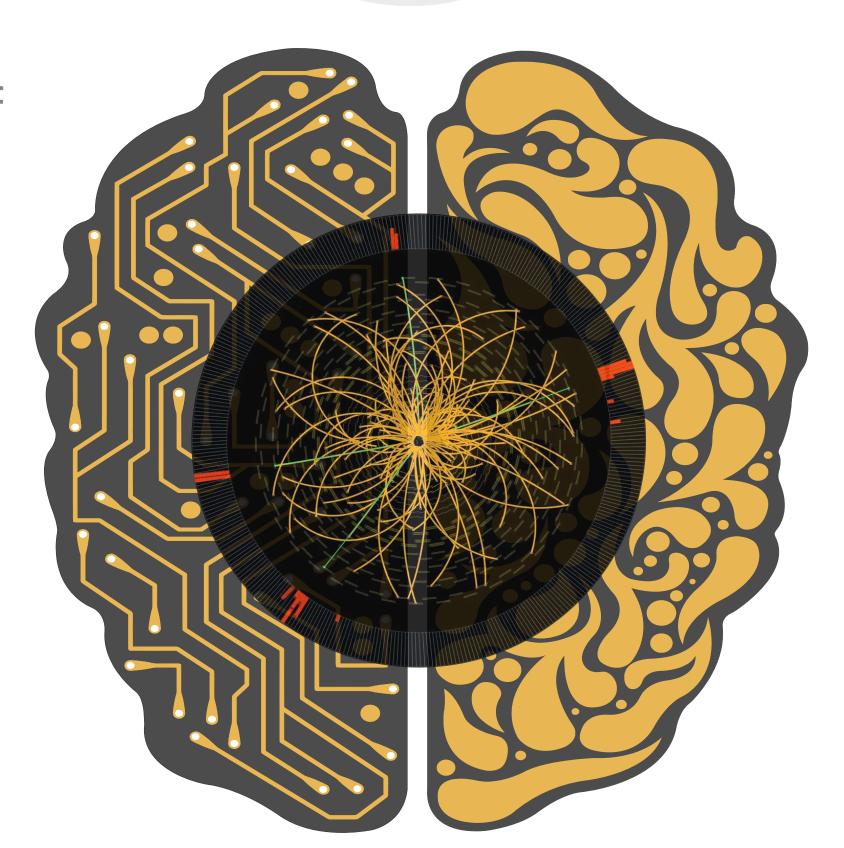
- ML allows us to better reconstruct our data and save potentially overlooked data
- Codesign principles can enable ML on hardware with stringent constraints

Accelerated Al Algorithms for Data-Driven Discovery



- ML allows us to better reconstruct our data and save potentially overlooked data
- Codesign principles can enable ML on hardware with stringent constraints
- Alternative computing solutions like *as a service* approach will help us adopt to the growing discovery of computing hardware

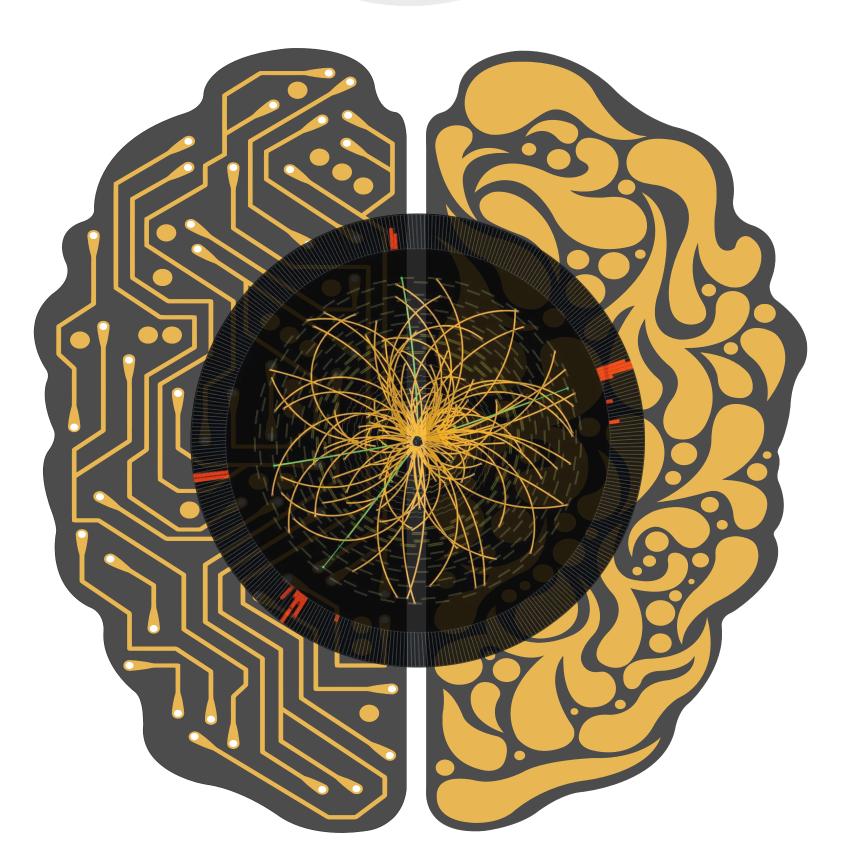
Accelerated Al Algorithms for Data-Driven Discovery



- Community (<u>fastmachinelearning.org</u>, e-group <u>hls-fml@cern.ch</u>) and Institute (<u>a3d3.ai</u>) developing open-source tools and techniques to enable this
 - <u>hls4ml</u>: expanding open-source toolkit for translating ML into hardware aimed at trigger applications and more...
- Applications range from momentum regression, to b-tagging, tracking, and more!
 - Enhance future particle physics program

- Community (<u>fastmachinelearning.org</u>, e-group <u>hls-fml@cern.ch</u>) and Institute (<u>a3d3.ai</u>) developing open-source tools and techniques to enable this
 - <u>hls4ml</u>: expanding open-source toolkit for translating ML into hardware aimed at trigger applications and more...
- Applications range from momentum regression, to b-tagging, tracking, and more!
 - Enhance future particle physics program

Alaorithms for Data-Driven Discoverv



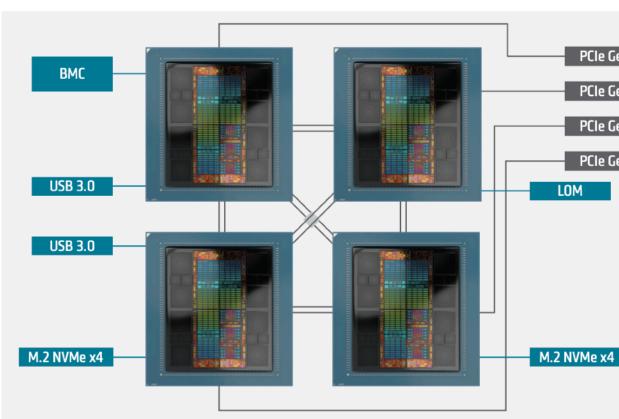
Towards Future Collider

As the computing developments are very dynamic it is very difficult to guess the future solutions

- Larger ML models are becoming common
- Faster hardware are emerging

HL-LHC is a good checkpoint for upgrading our software / hardware infrastructure for Fast Inference (with heterogeneous computing) Integrate more AI/ML into wide range of activities

As a community we need to continue pushing the frontier and stay at the front of this rapid development



Example server architecture with four interconnected APUs

AMD MI300A APU

Gen	5	x16	I/0	
Gen	5	x16	I/0	
Gen	5	x16	I/0	
Gen	5	x16	I/0	

Thank You

BACKUP

Small NN benchmark correctly identifies particle "jets" 70-80% of the time

