
Fast Machine Learning Inference

Elham E Khoda

FCC Workshop 2024
June 13, 2024

University of California, San Diego

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Thanks!

2

Many thanks to

Javier Duarte (UCSD)
for helping me prepare the slides

Lindsey Gray, Jennet Dickinson, Nhan Tran (Fermilab), Shih-Chieh Hsu (UW),
Dylan Rankin (Penn)

for helping with inputs for the presentation

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Introduction

3

Snowmass CompF03 Report, arXiv:2209.07559

https://arxiv.org/abs/2209.07559

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Introduction

3

• Machine learning has already changed
the way we do particle physics from
trigger/data acquisition to event
reconstruction, simulation, data analysis,
and interpretation

Machine learning
in

particle physics

Represen-
tations/

Architectures

Jet imagesEvent
images

Sequences

Trees

Graphs

Sets (point
clouds) Equivariant

models

Physics-
inspired

Classification

Param-
etrized

classifiers

TargetsJet tagging

BSM
physics

Particle
identification

Cosmology,
astro-, and
cosmic-ray

physics

Neutrino
detectors

Direct dark
matter

detectors

Learning
strategies

Un-
supervised

Weak/semi-
supervised

Hyper-
parameter

opti-
mization

Reinforce-
ment

learning Quantum
machine
learning

Feature
ranking

Attention

Regular-
ization

Optimal
transport

Fast
inference

Hardware-
aware

learning

Deployment

Firmware/
software

Knowledge
distillation

Regression

Pileup

Calibration

Recasting

Matrix
elements

Parton
distribution
functions

Lattice
guage
theory

Function
approx-
imation

Symbolic
regression

Decorrelation
methods

Adversarial
training

Quantile
regression

Generative
modeling
/ density

estimation
Diffusion
models

Mixture
models

Phase
space

generation

Gaussian
processesGenerative

adversarial
networks

Anomaly
detection

Normalizing
flows

Auto-
encoders

Simulation-
based

inference

Parameter
estimation

Unfolding

Domain
adaptation

BSM
physics

Diff-
erentiable
simulation

Uncertainty
quantification

Inter-
pretability

Estimation

Mitigation

Uncertainty-
aware

learning

Snowmass CompF03 Report, arXiv:2209.07559

https://arxiv.org/abs/2209.07559

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Introduction

3

• Machine learning has already changed
the way we do particle physics from
trigger/data acquisition to event
reconstruction, simulation, data analysis,
and interpretation
• It is an essential and versatile tool

that we use to improve existing
approaches

Machine learning
in

particle physics

Represen-
tations/

Architectures

Jet imagesEvent
images

Sequences

Trees

Graphs

Sets (point
clouds) Equivariant

models

Physics-
inspired

Classification

Param-
etrized

classifiers

TargetsJet tagging

BSM
physics

Particle
identification

Cosmology,
astro-, and
cosmic-ray

physics

Neutrino
detectors

Direct dark
matter

detectors

Learning
strategies

Un-
supervised

Weak/semi-
supervised

Hyper-
parameter

opti-
mization

Reinforce-
ment

learning Quantum
machine
learning

Feature
ranking

Attention

Regular-
ization

Optimal
transport

Fast
inference

Hardware-
aware

learning

Deployment

Firmware/
software

Knowledge
distillation

Regression

Pileup

Calibration

Recasting

Matrix
elements

Parton
distribution
functions

Lattice
guage
theory

Function
approx-
imation

Symbolic
regression

Decorrelation
methods

Adversarial
training

Quantile
regression

Generative
modeling
/ density

estimation
Diffusion
models

Mixture
models

Phase
space

generation

Gaussian
processesGenerative

adversarial
networks

Anomaly
detection

Normalizing
flows

Auto-
encoders

Simulation-
based

inference

Parameter
estimation

Unfolding

Domain
adaptation

BSM
physics

Diff-
erentiable
simulation

Uncertainty
quantification

Inter-
pretability

Estimation

Mitigation

Uncertainty-
aware

learning

Snowmass CompF03 Report, arXiv:2209.07559

https://arxiv.org/abs/2209.07559

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Introduction

3

• Machine learning has already changed
the way we do particle physics from
trigger/data acquisition to event
reconstruction, simulation, data analysis,
and interpretation
• It is an essential and versatile tool

that we use to improve existing
approaches

• It enables fundamentally new
approaches

Machine learning
in

particle physics

Represen-
tations/

Architectures

Jet imagesEvent
images

Sequences

Trees

Graphs

Sets (point
clouds) Equivariant

models

Physics-
inspired

Classification

Param-
etrized

classifiers

TargetsJet tagging

BSM
physics

Particle
identification

Cosmology,
astro-, and
cosmic-ray

physics

Neutrino
detectors

Direct dark
matter

detectors

Learning
strategies

Un-
supervised

Weak/semi-
supervised

Hyper-
parameter

opti-
mization

Reinforce-
ment

learning Quantum
machine
learning

Feature
ranking

Attention

Regular-
ization

Optimal
transport

Fast
inference

Hardware-
aware

learning

Deployment

Firmware/
software

Knowledge
distillation

Regression

Pileup

Calibration

Recasting

Matrix
elements

Parton
distribution
functions

Lattice
guage
theory

Function
approx-
imation

Symbolic
regression

Decorrelation
methods

Adversarial
training

Quantile
regression

Generative
modeling
/ density

estimation
Diffusion
models

Mixture
models

Phase
space

generation

Gaussian
processesGenerative

adversarial
networks

Anomaly
detection

Normalizing
flows

Auto-
encoders

Simulation-
based

inference

Parameter
estimation

Unfolding

Domain
adaptation

BSM
physics

Diff-
erentiable
simulation

Uncertainty
quantification

Inter-
pretability

Estimation

Mitigation

Uncertainty-
aware

learning

Snowmass CompF03 Report, arXiv:2209.07559

https://arxiv.org/abs/2209.07559

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Introduction

3

• Machine learning has already changed
the way we do particle physics from
trigger/data acquisition to event
reconstruction, simulation, data analysis,
and interpretation
• It is an essential and versatile tool

that we use to improve existing
approaches

• It enables fundamentally new
approaches

Machine learning
in

particle physics

Represen-
tations/

Architectures

Jet imagesEvent
images

Sequences

Trees

Graphs

Sets (point
clouds) Equivariant

models

Physics-
inspired

Classification

Param-
etrized

classifiers

TargetsJet tagging

BSM
physics

Particle
identification

Cosmology,
astro-, and
cosmic-ray

physics

Neutrino
detectors

Direct dark
matter

detectors

Learning
strategies

Un-
supervised

Weak/semi-
supervised

Hyper-
parameter

opti-
mization

Reinforce-
ment

learning Quantum
machine
learning

Feature
ranking

Attention

Regular-
ization

Optimal
transport

Fast
inference

Hardware-
aware

learning

Deployment

Firmware/
software

Knowledge
distillation

Regression

Pileup

Calibration

Recasting

Matrix
elements

Parton
distribution
functions

Lattice
guage
theory

Function
approx-
imation

Symbolic
regression

Decorrelation
methods

Adversarial
training

Quantile
regression

Generative
modeling
/ density

estimation
Diffusion
models

Mixture
models

Phase
space

generation

Gaussian
processesGenerative

adversarial
networks

Anomaly
detection

Normalizing
flows

Auto-
encoders

Simulation-
based

inference

Parameter
estimation

Unfolding

Domain
adaptation

BSM
physics

Diff-
erentiable
simulation

Uncertainty
quantification

Inter-
pretability

Estimation

Mitigation

Uncertainty-
aware

learning

Snowmass CompF03 Report, arXiv:2209.07559

https://arxiv.org/abs/2209.07559

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Introduction

3

• Machine learning has already changed
the way we do particle physics from
trigger/data acquisition to event
reconstruction, simulation, data analysis,
and interpretation
• It is an essential and versatile tool

that we use to improve existing
approaches

• It enables fundamentally new
approaches

• In this talk, I’ll focus on fast inference
of ML and how they can shift the
paradigm

Machine learning
in

particle physics

Represen-
tations/

Architectures

Jet imagesEvent
images

Sequences

Trees

Graphs

Sets (point
clouds) Equivariant

models

Physics-
inspired

Classification

Param-
etrized

classifiers

TargetsJet tagging

BSM
physics

Particle
identification

Cosmology,
astro-, and
cosmic-ray

physics

Neutrino
detectors

Direct dark
matter

detectors

Learning
strategies

Un-
supervised

Weak/semi-
supervised

Hyper-
parameter

opti-
mization

Reinforce-
ment

learning Quantum
machine
learning

Feature
ranking

Attention

Regular-
ization

Optimal
transport

Fast
inference

Hardware-
aware

learning

Deployment

Firmware/
software

Knowledge
distillation

Regression

Pileup

Calibration

Recasting

Matrix
elements

Parton
distribution
functions

Lattice
guage
theory

Function
approx-
imation

Symbolic
regression

Decorrelation
methods

Adversarial
training

Quantile
regression

Generative
modeling
/ density

estimation
Diffusion
models

Mixture
models

Phase
space

generation

Gaussian
processesGenerative

adversarial
networks

Anomaly
detection

Normalizing
flows

Auto-
encoders

Simulation-
based

inference

Parameter
estimation

Unfolding

Domain
adaptation

BSM
physics

Diff-
erentiable
simulation

Uncertainty
quantification

Inter-
pretability

Estimation

Mitigation

Uncertainty-
aware

learning

Snowmass CompF03 Report, arXiv:2209.07559

https://arxiv.org/abs/2209.07559

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Computing Hardware

4

Image: Microsoft

https://microsoft.github.io/ai-at-edge/docs/hw_acceleration/

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Computing Hardware

4

FPGAs

EFFICIENCY

Control
Unit
(CU)

Registers

Arithmetic
Logic Unit

(ALU) + + + +

+ +
+

Silicon alternatives

FLEXIBILITY

CPUs GPUs
ASICs

Image: Microsoft

https://microsoft.github.io/ai-at-edge/docs/hw_acceleration/

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Computing Hardware

4

FPGAs

EFFICIENCY

Control
Unit
(CU)

Registers

Arithmetic
Logic Unit

(ALU) + + + +

+ +
+

Silicon alternatives

FLEXIBILITY

CPUs GPUs
ASICs

Image: Microsoft

https://microsoft.github.io/ai-at-edge/docs/hw_acceleration/

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Computing Hardware

4

FPGAs

EFFICIENCY

Control
Unit
(CU)

Registers

Arithmetic
Logic Unit

(ALU) + + + +

+ +
+

Silicon alternatives

FLEXIBILITY

CPUs GPUs
ASICs

Image: Microsoft

https://microsoft.github.io/ai-at-edge/docs/hw_acceleration/

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Computing Hardware

4

FPGAs

EFFICIENCY

Control
Unit
(CU)

Registers

Arithmetic
Logic Unit

(ALU) + + + +

+ +
+

Silicon alternatives

FLEXIBILITY

CPUs GPUs
ASICs

Image: Microsoft

https://microsoft.github.io/ai-at-edge/docs/hw_acceleration/

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Computing Hardware

4

FPGAs

EFFICIENCY

Control
Unit
(CU)

Registers

Arithmetic
Logic Unit

(ALU) + + + +

+ +
+

Silicon alternatives

FLEXIBILITY

CPUs GPUs
ASICs

Image: Microsoft

FPGAs

EFFICIENCY

Control
Unit
(CU)

Registers

Arithmetic
Logic Unit

(ALU) + + + +

+ +
+

Silicon alternatives

FLEXIBILITY

CPUs GPUs
ASICs

https://microsoft.github.io/ai-at-edge/docs/hw_acceleration/

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Computing Hardware

4

FPGAs

EFFICIENCY

Control
Unit
(CU)

Registers

Arithmetic
Logic Unit

(ALU) + + + +

+ +
+

Silicon alternatives

FLEXIBILITY

CPUs GPUs
ASICs

Image: Microsoft

FPGAs

EFFICIENCY

Control
Unit
(CU)

Registers

Arithmetic
Logic Unit

(ALU) + + + +

+ +
+

Silicon alternatives

FLEXIBILITY

CPUs GPUs
ASICs

First stage of
LHC trigger

https://microsoft.github.io/ai-at-edge/docs/hw_acceleration/

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Computing Hardware

4

FPGAs

EFFICIENCY

Control
Unit
(CU)

Registers

Arithmetic
Logic Unit

(ALU) + + + +

+ +
+

Silicon alternatives

FLEXIBILITY

CPUs GPUs
ASICs

Image: Microsoft

FPGAs

EFFICIENCY

Control
Unit
(CU)

Registers

Arithmetic
Logic Unit

(ALU) + + + +

+ +
+

Silicon alternatives

FLEXIBILITY

CPUs GPUs
ASICs

Second stage
of LHC trigger

First stage of
LHC trigger

https://microsoft.github.io/ai-at-edge/docs/hw_acceleration/

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

HL-LHC Data Processing

5

1 ns 1 μs 1 s1 ms

Compute
Latency

40 MHz

Challenges:
Each collision produces O(103) particles
The detectors have O(108) sensors
Extreme data rates of O(100 TB/s)

ASICs

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

HL-LHC Data Processing

5

1 ns 1 μs 1 s1 ms

Compute
Latency

FPGAs

40 MHz
L1 Trigger

750 kHz

Challenges:
Each collision produces O(103) particles
The detectors have O(108) sensors
Extreme data rates of O(100 TB/s)

ASICs

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

HL-LHC Data Processing

5

1 ns 1 μs 1 s1 ms

Compute
Latency

FPGAs CPUs

High-Level
Trigger

7.5 kHz
1 MB/evt

40 MHz
L1 Trigger

750 kHz

Challenges:
Each collision produces O(103) particles
The detectors have O(108) sensors
Extreme data rates of O(100 TB/s)

ASICs

GPUs

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

HL-LHC Data Processing

5

1 ns 1 μs 1 s1 ms

Compute
Latency

FPGAs CPUs CPUs

High-Level
Trigger

7.5 kHz
1 MB/evt

40 MHz
L1 Trigger

750 kHz

Offline

Challenges:
Each collision produces O(103) particles
The detectors have O(108) sensors
Extreme data rates of O(100 TB/s)

ASICs
Exabyte-scale

datasets
GPUsGPUs

FPGAs

Other processors:
IPU, TPU ..

FPGAs
Other processors:

IPU, TPU ..

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Simplified HL-LHC Trigger

6

CMS-TDR-021

https://cds.cern.ch/record/2714892

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Simplified HL-LHC Trigger

6

Trigger Threshold [GeV]

CMS-TDR-021

Thresholds set by
backgrounds, limited
resolution @ L1, and

rate budget

https://cds.cern.ch/record/2714892

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Simplified HL-LHC Trigger

6

• Single/double/triple muons/electrons

Trigger Threshold [GeV]

CMS-TDR-021

Thresholds set by
backgrounds, limited
resolution @ L1, and

rate budget

https://cds.cern.ch/record/2714892

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Simplified HL-LHC Trigger

6

• Single/double/triple muons/electrons

Trigger Threshold [GeV]
1 μ 22
2 μ 15, 7
3 μ 5, 3, 3
1 e 36
2 e 25, 12

CMS-TDR-021

Thresholds set by
backgrounds, limited
resolution @ L1, and

rate budget

https://cds.cern.ch/record/2714892

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Simplified HL-LHC Trigger

6

• Single/double/triple muons/electrons
• Photons

Trigger Threshold [GeV]
1 μ 22
2 μ 15, 7
3 μ 5, 3, 3
1 e 36
2 e 25, 12
1 ɣ 36
2 ɣ 22, 12

CMS-TDR-021

Thresholds set by
backgrounds, limited
resolution @ L1, and

rate budget

https://cds.cern.ch/record/2714892

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Simplified HL-LHC Trigger

6

• Single/double/triple muons/electrons
• Photons
• Taus

Trigger Threshold [GeV]
1 μ 22
2 μ 15, 7
3 μ 5, 3, 3
1 e 36
2 e 25, 12
1 ɣ 36
2 ɣ 22, 12
1 τ 150
2 τ 90, 90

CMS-TDR-021

Thresholds set by
backgrounds, limited
resolution @ L1, and

rate budget

https://cds.cern.ch/record/2714892

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Simplified HL-LHC Trigger

6

• Single/double/triple muons/electrons
• Photons
• Taus
• Hadronic

Trigger Threshold [GeV]
1 μ 22
2 μ 15, 7
3 μ 5, 3, 3
1 e 36
2 e 25, 12
1 ɣ 36
2 ɣ 22, 12
1 τ 150
2 τ 90, 90

1 jet 180
2 jet 112, 112
HT 450

4 jet + HT 75, 55, 40, 40, 400

4-jet event

CMS-TDR-021

Thresholds set by
backgrounds, limited
resolution @ L1, and

rate budget

https://cds.cern.ch/record/2714892

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Simplified HL-LHC Trigger

6

• Single/double/triple muons/electrons
• Photons
• Taus
• Hadronic
• Missing transverse energy

Trigger Threshold [GeV]
1 μ 22
2 μ 15, 7
3 μ 5, 3, 3
1 e 36
2 e 25, 12
1 ɣ 36
2 ɣ 22, 12
1 τ 150
2 τ 90, 90

1 jet 180
2 jet 112, 112
HT 450

4 jet + HT 75, 55, 40, 40, 400
pTmiss 200

4-jet event

CMS-TDR-021

Thresholds set by
backgrounds, limited
resolution @ L1, and

rate budget

https://cds.cern.ch/record/2714892

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Simplified HL-LHC Trigger

6

• Single/double/triple muons/electrons
• Photons
• Taus
• Hadronic
• Missing transverse energy
• “Cross” triggers (not shown)

Trigger Threshold [GeV]
1 μ 22
2 μ 15, 7
3 μ 5, 3, 3
1 e 36
2 e 25, 12
1 ɣ 36
2 ɣ 22, 12
1 τ 150
2 τ 90, 90

1 jet 180
2 jet 112, 112
HT 450

4 jet + HT 75, 55, 40, 40, 400
pTmiss 200

4-jet event

CMS-TDR-021

Thresholds set by
backgrounds, limited
resolution @ L1, and

rate budget

https://cds.cern.ch/record/2714892

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

What could be missing?

7

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

What could be missing?

7

• How can we trigger on more complex low-energy
hadronic signatures? Long-lived/displaced particles?

Soft Bombs

We’ll focus on a particularly egregious scenario: Quasi-conformal,
strongly-coupled HV from Q to ⇤
[Strassler: 0801.0629; Hatta, Matsuo: 0804.4733; Hofman, Maldacena: 0803.1467]

• Large ‘t-Hooft coupling ⁄ ≥ g
2
N ∫ 1: large angle emission

• Quasi-conformal dynamics: maximally e�cient showering down to ⇤

• Leads to ≥ spherically symmetric event, with multiplicity scaling linearly

Èn(Q)Í ≥

3
Q

⇤

41+1/
Ô

⁄

High multiplicity of soft particles
Event resembles pile-up
Passes minimum bias triggers with
very low e�ciency

Dean Robinson dean.robinson@uc.edu Soft Bombs 6/20
6/20

SUEP

https://profmattstrassler.com/2024/03/15/searching-for-suep-at-the-lhc/

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

What could be missing?

7

• How can we trigger on more complex low-energy
hadronic signatures? Long-lived/displaced particles?

• What if we don’t know exactly what to look for?

Soft Bombs

We’ll focus on a particularly egregious scenario: Quasi-conformal,
strongly-coupled HV from Q to ⇤
[Strassler: 0801.0629; Hatta, Matsuo: 0804.4733; Hofman, Maldacena: 0803.1467]

• Large ‘t-Hooft coupling ⁄ ≥ g
2
N ∫ 1: large angle emission

• Quasi-conformal dynamics: maximally e�cient showering down to ⇤

• Leads to ≥ spherically symmetric event, with multiplicity scaling linearly

Èn(Q)Í ≥

3
Q

⇤

41+1/
Ô

⁄

High multiplicity of soft particles
Event resembles pile-up
Passes minimum bias triggers with
very low e�ciency

Dean Robinson dean.robinson@uc.edu Soft Bombs 6/20
6/20

SUEP

?

?

g

g

https://profmattstrassler.com/2024/03/15/searching-for-suep-at-the-lhc/

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

What could be missing?

7

• How can we trigger on more complex low-energy
hadronic signatures? Long-lived/displaced particles?

• What if we don’t know exactly what to look for?
• What if our signatures require complex multivariate

algorithms (e.g. b tagging)?

HH → 4b

Soft Bombs

We’ll focus on a particularly egregious scenario: Quasi-conformal,
strongly-coupled HV from Q to ⇤
[Strassler: 0801.0629; Hatta, Matsuo: 0804.4733; Hofman, Maldacena: 0803.1467]

• Large ‘t-Hooft coupling ⁄ ≥ g
2
N ∫ 1: large angle emission

• Quasi-conformal dynamics: maximally e�cient showering down to ⇤

• Leads to ≥ spherically symmetric event, with multiplicity scaling linearly

Èn(Q)Í ≥

3
Q

⇤

41+1/
Ô

⁄

High multiplicity of soft particles
Event resembles pile-up
Passes minimum bias triggers with
very low e�ciency

Dean Robinson dean.robinson@uc.edu Soft Bombs 6/20
6/20

SUEP

?

?

g

g

https://profmattstrassler.com/2024/03/15/searching-for-suep-at-the-lhc/

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

What could be missing?

7

• How can we trigger on more complex low-energy
hadronic signatures? Long-lived/displaced particles?

• What if we don’t know exactly what to look for?
• What if our signatures require complex multivariate

algorithms (e.g. b tagging)?
• How can we improve on our traditional (often slow)

reconstruction algorithms?

HH → 4b

Soft Bombs

We’ll focus on a particularly egregious scenario: Quasi-conformal,
strongly-coupled HV from Q to ⇤
[Strassler: 0801.0629; Hatta, Matsuo: 0804.4733; Hofman, Maldacena: 0803.1467]

• Large ‘t-Hooft coupling ⁄ ≥ g
2
N ∫ 1: large angle emission

• Quasi-conformal dynamics: maximally e�cient showering down to ⇤

• Leads to ≥ spherically symmetric event, with multiplicity scaling linearly

Èn(Q)Í ≥

3
Q

⇤

41+1/
Ô

⁄

High multiplicity of soft particles
Event resembles pile-up
Passes minimum bias triggers with
very low e�ciency

Dean Robinson dean.robinson@uc.edu Soft Bombs 6/20
6/20

SUEP

?

?

g

g

7

A Kalman Filter for BMTF

Initialize

Propagate
Update

Propagate

Update

Propagate

Update

Propagate

Update

Vertex Unconstrained
Measurement

Vertex Constrained
Measurement

● Sequential algorithm: (mathematically equivalent to a χ2 fit)
● Propagate track inwards from station to station and match with a stub
● Update track parameters and continue

● After reaching station 1 save measurement without vertex constraint�

● Propagate to vertex and update vertex constrained measurement�

● Challenge for an FPGA implementation �Matrix algebra

https://profmattstrassler.com/2024/03/15/searching-for-suep-at-the-lhc/

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

ML in Trigger

8

8

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

ML in Trigger

8

• (Variational) autoencoders for anomaly detection

4

In
pu

t ∈
 ℝ

57

BN Dense ∈ ℝ32 Dense ∈ ℝ16 Latent space ∈ ℝ3 Dense ∈ ℝ16 Dense ∈ ℝ32 Dense ∈ ℝ57

ENCODER DECODER

Output:
Conv2d 4 (1,(3,3))

Block 3:
Dense (8)
Dense 1 (64)
ReLU
Reshape (2,1,32)

Block 1:
Conv2d (16,(3,3))  
ReLU
AvPooling (3,1)  

ReLU

Block 2:
Conv2d 1 (32,(3,1))  
ReLU
AvPooling (3,1)
Flatten (64)

Block 4:
Conv2d 2 (32,(3,1))  
ReLU
UpSampling (3,1)
ZeroPad (0,0),(1,1)

Block 5:
Conv2d 3 (16,(3,1))  
ReLU
UpSampling (3,1)
ZeroPad (1,0),(0,0)

Block 0:
Input 19x3x1
ZeroPadding (1,0)
BatchNorm

ReLU ReLU ReLU ReLU

FIG. I. Network architecture for the DNN AE (top) and CNN AE (bottom) models. The corresponding VAE models are derived
introducing the Gaussian sampling in the latent space, for the same encoder and decoder architectures (see text).

of the number of parallel processors. Since 19 is a prime
number, we choose to extend the input size to 20 before
passing it through the Conv2D layer. After padding, the
input is scaled by a batch normalization layer and then
processed by a stack of two CNN blocks, each including a
2D convolutional layer followed by a ReLU [55] activation
function. The first layer has 16 3 ⇥ 3 kernels, without
padding to ensure that pT, ⌘ and � inputs do not share
weights. The second layer has 32 3 ⇥ 1 kernels. Both
layers have no bias parameters and a stride set to one.
The output of the second CNN block is flattened and
passed to a DNN layer, with 8 neurons and no activation,
which represents the latent space. The decoder takes
this as input to a dense layer with 64 nodes and ReLU
activation, and reshapes it into a 2⇥ 1⇥ 32 table. The
following architecture mirrors the encoder architecture
with 2 CNN blocks with the same number of filters as in
the encoder and with ReLU activation. Both are followed
by an upsampling layer, in order to mimic the result of a
transposed convolutional layer.

Finally, one convolutional layer with a single filter and

no activation function is added. Its output is interpreted
as the AE reconstructed input. The CNN VAE is derived
from the AE, including the ~µ and ~� Gaussian sampling
in the latent space.
All models are implemented in TensorFlow, and

trained on the background dataset by minimizing a
customized mean squared error (MSE) loss with the
Adam [56] optimizer. In order to aid the network learn-
ing process, we use a dataset with standardized pT as a
target, so that all the quantities are O(1). To account
for physical boundaries of ⌘ and �, for those features a
re-scaled tanh activation is used in the loss computation.
In addition, the sum in the MSE loss is modified in order
to ignore the zero-padding entries of the input dataset
and the corresponding outputs. When training the VAE,
the loss is changed to:

L = (1� �)MSE(Output, Input) + �DKL(~µ,~�) , (1)

where MSE labels the reconstruction loss (also used in the
AE training), DKL is the Kullback-Leibler regularization

Nat. Mach. Intell. 4, 154 (2022)
8

https://doi.org/10.1038/s42256-022-00441-3

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

ML in Trigger

8

• (Variational) autoencoders for anomaly detection
• 1D convolutional neural networks for b-tagging

3

The inputs to the network are the top ten
PUPPI candidates ranked by pT within each jet.
The information for each particle candidate is:
particle type (one-hot encoded; 8 indices),
kinematic information (pT, η, φ scaled relative
to jet; 3 indices), and vertex information (z-
position and transverse impact parameter with
respect to the primary vertex; 2 indices).

The neural network architecture is based
around two 1D convolutional layers which act
as featurizers for inputs from each jet. The
resulting features are flattened and passed
through 3 dense layers to produce a single
value between 0 and 1. Scores close to 1
indicate jets that are likely to have originated
from bottom quarks, while scores close to 0
indicate jets that are likely to have originated
from light quarks or gluons.

pa
rti

cle
 0

pa
rti

cle
 1

pa
rti

cle
 2

pa
rti

cle
 9

. . .

(6 features/particle)

(20 features/particle)

(5 features/particle)
(50 features)

(20 features)

(10 features)

(1 feature)

b-tag score

Pointwise convolution

(per particle dense layer)

Dense layer

4

In
pu

t ∈
 ℝ

57

BN Dense ∈ ℝ32 Dense ∈ ℝ16 Latent space ∈ ℝ3 Dense ∈ ℝ16 Dense ∈ ℝ32 Dense ∈ ℝ57

ENCODER DECODER

Output:
Conv2d 4 (1,(3,3))

Block 3:
Dense (8)
Dense 1 (64)
ReLU
Reshape (2,1,32)

Block 1:
Conv2d (16,(3,3))  
ReLU
AvPooling (3,1)  

ReLU

Block 2:
Conv2d 1 (32,(3,1))  
ReLU
AvPooling (3,1)
Flatten (64)

Block 4:
Conv2d 2 (32,(3,1))  
ReLU
UpSampling (3,1)
ZeroPad (0,0),(1,1)

Block 5:
Conv2d 3 (16,(3,1))  
ReLU
UpSampling (3,1)
ZeroPad (1,0),(0,0)

Block 0:
Input 19x3x1
ZeroPadding (1,0)
BatchNorm

ReLU ReLU ReLU ReLU

FIG. I. Network architecture for the DNN AE (top) and CNN AE (bottom) models. The corresponding VAE models are derived
introducing the Gaussian sampling in the latent space, for the same encoder and decoder architectures (see text).

of the number of parallel processors. Since 19 is a prime
number, we choose to extend the input size to 20 before
passing it through the Conv2D layer. After padding, the
input is scaled by a batch normalization layer and then
processed by a stack of two CNN blocks, each including a
2D convolutional layer followed by a ReLU [55] activation
function. The first layer has 16 3 ⇥ 3 kernels, without
padding to ensure that pT, ⌘ and � inputs do not share
weights. The second layer has 32 3 ⇥ 1 kernels. Both
layers have no bias parameters and a stride set to one.
The output of the second CNN block is flattened and
passed to a DNN layer, with 8 neurons and no activation,
which represents the latent space. The decoder takes
this as input to a dense layer with 64 nodes and ReLU
activation, and reshapes it into a 2⇥ 1⇥ 32 table. The
following architecture mirrors the encoder architecture
with 2 CNN blocks with the same number of filters as in
the encoder and with ReLU activation. Both are followed
by an upsampling layer, in order to mimic the result of a
transposed convolutional layer.

Finally, one convolutional layer with a single filter and

no activation function is added. Its output is interpreted
as the AE reconstructed input. The CNN VAE is derived
from the AE, including the ~µ and ~� Gaussian sampling
in the latent space.
All models are implemented in TensorFlow, and

trained on the background dataset by minimizing a
customized mean squared error (MSE) loss with the
Adam [56] optimizer. In order to aid the network learn-
ing process, we use a dataset with standardized pT as a
target, so that all the quantities are O(1). To account
for physical boundaries of ⌘ and �, for those features a
re-scaled tanh activation is used in the loss computation.
In addition, the sum in the MSE loss is modified in order
to ignore the zero-padding entries of the input dataset
and the corresponding outputs. When training the VAE,
the loss is changed to:

L = (1� �)MSE(Output, Input) + �DKL(~µ,~�) , (1)

where MSE labels the reconstruction loss (also used in the
AE training), DKL is the Kullback-Leibler regularization

CMS-DP-2022-021

Nat. Mach. Intell. 4, 154 (2022)
8

https://cds.cern.ch/record/2814728
https://doi.org/10.1038/s42256-022-00441-3

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

ML in Trigger

8

• (Variational) autoencoders for anomaly detection
• 1D convolutional neural networks for b-tagging
• Graph neural networks for tracking

3

The inputs to the network are the top ten
PUPPI candidates ranked by pT within each jet.
The information for each particle candidate is:
particle type (one-hot encoded; 8 indices),
kinematic information (pT, η, φ scaled relative
to jet; 3 indices), and vertex information (z-
position and transverse impact parameter with
respect to the primary vertex; 2 indices).

The neural network architecture is based
around two 1D convolutional layers which act
as featurizers for inputs from each jet. The
resulting features are flattened and passed
through 3 dense layers to produce a single
value between 0 and 1. Scores close to 1
indicate jets that are likely to have originated
from bottom quarks, while scores close to 0
indicate jets that are likely to have originated
from light quarks or gluons.

pa
rti

cle
 0

pa
rti

cle
 1

pa
rti

cle
 2

pa
rti

cle
 9

. . .

(6 features/particle)

(20 features/particle)

(5 features/particle)
(50 features)

(20 features)

(10 features)

(1 feature)

b-tag score

Pointwise convolution

(per particle dense layer)

Dense layer

4

In
pu

t ∈
 ℝ

57

BN Dense ∈ ℝ32 Dense ∈ ℝ16 Latent space ∈ ℝ3 Dense ∈ ℝ16 Dense ∈ ℝ32 Dense ∈ ℝ57

ENCODER DECODER

Output:
Conv2d 4 (1,(3,3))

Block 3:
Dense (8)
Dense 1 (64)
ReLU
Reshape (2,1,32)

Block 1:
Conv2d (16,(3,3))  
ReLU
AvPooling (3,1)  

ReLU

Block 2:
Conv2d 1 (32,(3,1))  
ReLU
AvPooling (3,1)
Flatten (64)

Block 4:
Conv2d 2 (32,(3,1))  
ReLU
UpSampling (3,1)
ZeroPad (0,0),(1,1)

Block 5:
Conv2d 3 (16,(3,1))  
ReLU
UpSampling (3,1)
ZeroPad (1,0),(0,0)

Block 0:
Input 19x3x1
ZeroPadding (1,0)
BatchNorm

ReLU ReLU ReLU ReLU

FIG. I. Network architecture for the DNN AE (top) and CNN AE (bottom) models. The corresponding VAE models are derived
introducing the Gaussian sampling in the latent space, for the same encoder and decoder architectures (see text).

of the number of parallel processors. Since 19 is a prime
number, we choose to extend the input size to 20 before
passing it through the Conv2D layer. After padding, the
input is scaled by a batch normalization layer and then
processed by a stack of two CNN blocks, each including a
2D convolutional layer followed by a ReLU [55] activation
function. The first layer has 16 3 ⇥ 3 kernels, without
padding to ensure that pT, ⌘ and � inputs do not share
weights. The second layer has 32 3 ⇥ 1 kernels. Both
layers have no bias parameters and a stride set to one.
The output of the second CNN block is flattened and
passed to a DNN layer, with 8 neurons and no activation,
which represents the latent space. The decoder takes
this as input to a dense layer with 64 nodes and ReLU
activation, and reshapes it into a 2⇥ 1⇥ 32 table. The
following architecture mirrors the encoder architecture
with 2 CNN blocks with the same number of filters as in
the encoder and with ReLU activation. Both are followed
by an upsampling layer, in order to mimic the result of a
transposed convolutional layer.

Finally, one convolutional layer with a single filter and

no activation function is added. Its output is interpreted
as the AE reconstructed input. The CNN VAE is derived
from the AE, including the ~µ and ~� Gaussian sampling
in the latent space.
All models are implemented in TensorFlow, and

trained on the background dataset by minimizing a
customized mean squared error (MSE) loss with the
Adam [56] optimizer. In order to aid the network learn-
ing process, we use a dataset with standardized pT as a
target, so that all the quantities are O(1). To account
for physical boundaries of ⌘ and �, for those features a
re-scaled tanh activation is used in the loss computation.
In addition, the sum in the MSE loss is modified in order
to ignore the zero-padding entries of the input dataset
and the corresponding outputs. When training the VAE,
the loss is changed to:

L = (1� �)MSE(Output, Input) + �DKL(~µ,~�) , (1)

where MSE labels the reconstruction loss (also used in the
AE training), DKL is the Kullback-Leibler regularization

CMS-DP-2022-021

Nat. Mach. Intell. 4, 154 (2022)

Front. Big Data 5, 828666 (2022)

8

https://cds.cern.ch/record/2814728
https://doi.org/10.1038/s42256-022-00441-3
http://doi.org/10.3389/fdata.2022.828666

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

What makes this Hard?

9

Event 1 L1 TRIGGER ALGORITHMS PASS

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

What makes this Hard?

9

• Reconstruct all events and reject 98% of them in ~10 μs

Event 1 L1 TRIGGER ALGORITHMS PASS

L1 TRIGGER ALGORITHMS

L1 TRIGGER ALGORITHMS

Event 2

Event 3

…

FAIL

FAIL

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

What makes this Hard?

9

• Reconstruct all events and reject 98% of them in ~10 μs

• Algorithms have to be <1 μs and process new events every (25 ns) ⨉ Ntmux

Event 1 L1 TRIGGER ALGORITHMS

Latency ~ 10 μs

PASS

L1 TRIGGER ALGORITHMS

L1 TRIGGER ALGORITHMS

Event 2

Event 3

…

FAIL

FAIL

Initiation interval = 25 ns

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

What makes this Hard?

9

• Reconstruct all events and reject 98% of them in ~10 μs

• Algorithms have to be <1 μs and process new events every (25 ns) ⨉ Ntmux

• Latency necessitates all FPGA design

Event 1 L1 TRIGGER ALGORITHMS

Latency ~ 10 μs

Programmable
interconnects

PASS

L1 TRIGGER ALGORITHMS

L1 TRIGGER ALGORITHMS

Event 2

Event 3

…

FAIL

FAIL

Initiation interval = 25 ns

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

What makes this Hard?

9

• Reconstruct all events and reject 98% of them in ~10 μs

• Algorithms have to be <1 μs and process new events every (25 ns) ⨉ Ntmux

• Latency necessitates all FPGA design

• Algorithms have to fit on <1 FPGA

Event 1 L1 TRIGGER ALGORITHMS

Latency ~ 10 μs

Programmable
interconnects

PASS

L1 TRIGGER ALGORITHMS

L1 TRIGGER ALGORITHMS

Event 2

Event 3

…

FAIL

FAIL

Initiation interval = 25 ns

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

What makes this Hard?

9

• Reconstruct all events and reject 98% of them in ~10 μs

• Algorithms have to be <1 μs and process new events every (25 ns) ⨉ Ntmux

• Latency necessitates all FPGA design

• Algorithms have to fit on <1 FPGA

• How can we satisfy these constraints?

Event 1 L1 TRIGGER ALGORITHMS

Latency ~ 10 μs

Programmable
interconnects

PASS

L1 TRIGGER ALGORITHMS

L1 TRIGGER ALGORITHMS

Event 2

Event 3

…

FAIL

FAIL

Initiation interval = 25 ns

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Codesign

10

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Codesign

10

• Codesign: intrinsic development loop
between ML design, training, and
implementation

• Pruning

• Maintain high performance while
removing redundant operations

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Codesign

10

• Codesign: intrinsic development loop
between ML design, training, and
implementation

• Pruning

• Maintain high performance while
removing redundant operations

• Quantization

• Reduce precision from 32-bit
floating point to 16-bit, 8-bit, …

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Codesign

10

• Codesign: intrinsic development loop
between ML design, training, and
implementation

• Pruning

• Maintain high performance while
removing redundant operations

• Quantization

• Reduce precision from 32-bit
floating point to 16-bit, 8-bit, …

• Parallelization

• Balance parallelization (how fast)
with resources needed (how costly)

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

NSF A3D3 Institute

11

Accelerated Artificial Intelligence Algorithms for Data-Driven Discovery

Our Mission is to enable real-time AI techniques for scientific and engineering discovery by
uniting three core components: Scientific Applications, Artificial Intelligence Algorithms, and
Computing Hardware.

Collaborators welcome! Check the a3d3.ai for events
OAC-2117997

https://a3d3.ai/
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2117997

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Modern FPGAs

12

Pros:

• Reprogrammable interconnects
between embedded components that
perform multiplication (DSPs),
apply logical functions (LUTs),
or store memory (BRAM)

• High throughput I/O: O(100)
optical transceivers running at
O(15) Gbps

• Massively parallel

• Low power

Cons:

• Requires domain knowledge to program (using VHDL/Verilog)

ALL FPGA ARCHITECTURE 16

FPGA
“programmable hardware”

DSPs (multiply-accumulate, etc.)
Flip Flops (registers/distributed memory)

LUTs (logic)
Block RAMs (memories)

Typical modern FPGA:

(Kintex ultrascale+)

1.3M FFs

700k LUTs

5500 DSPs

2200 BRAMs

O(50-100) optical
transceivers

running at  

~O(15) Gbs

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Design Exploration with hls4ml

13

• hls4ml for scientists or ML experts to translate ML algorithms into RTL firmware

Compressed
model

Keras
TensorFlow

PyTorch
…

Tune configuration
latency, throughput,

power, resource usage

HLS
project

HLS
conversion

FPGA flow

ASIC flow

Model

Machine learning model
optimization, compression

hls 4 ml

hls4ml

HLS 4 ML

JINST 13, P07027 (2018)

https://fastmachinelearning.org/hls4ml/
https://arxiv.org/abs/1804.06913

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Design Exploration with hls4ml

13

• hls4ml for scientists or ML experts to translate ML algorithms into RTL firmware

Compressed
model

Keras
TensorFlow

PyTorch
…

Tune configuration
latency, throughput,

power, resource usage

HLS
project

HLS
conversion

FPGA flow

ASIC flow

Model

Machine learning model
optimization, compression

hls 4 ml

hls4ml

HLS 4 ML

JINST 13, P07027 (2018)

Compressed
model

Keras
TensorFlow

PyTorch
…

Tune configuration
latency, throughput,

power, resource usage

HLS
project

HLS
conversion

FPGA flow

ASIC flow

Model

Machine learning model
optimization, compression

hls 4 ml

hls4ml

HLS 4 ML

https://fastmachinelearning.org/hls4ml/
https://arxiv.org/abs/1804.06913

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Design Exploration with hls4ml

13

• hls4ml for scientists or ML experts to translate ML algorithms into RTL firmware

Compressed
model

Keras
TensorFlow

PyTorch
…

Tune configuration
latency, throughput,

power, resource usage

HLS
project

HLS
conversion

FPGA flow

ASIC flow

Model

Machine learning model
optimization, compression

hls 4 ml

hls4ml

HLS 4 ML
Compressed

model

Keras
TensorFlow

PyTorch
…

Tune configuration
latency, throughput,

power, resource usage

HLS
project

HLS
conversion

FPGA flow

ASIC flow

Model

Machine learning model
optimization, compression

hls 4 ml

hls4ml

HLS 4 ML

JINST 13, P07027 (2018)

Compressed
model

Keras
TensorFlow

PyTorch
…

Tune configuration
latency, throughput,

power, resource usage

HLS
project

HLS
conversion

FPGA flow

ASIC flow

Model

Machine learning model
optimization, compression

hls 4 ml

hls4ml

HLS 4 ML

https://fastmachinelearning.org/hls4ml/
https://arxiv.org/abs/1804.06913

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Many tools with different strengths

14

• FINN (NNs): https://finn.readthedocs.io/en/latest/

• Confier (BDTs): https://github.com/thesps/conifer

• fwXMachina (BDTs): http://fwx.pitt.edu/

• FlowGNN: https://github.com/sharc-lab/flowgnnNode
Embedding

Buffer

Size: N

Node Transformation (NT)
• Multi‐layer Perceptron
• Activation
• Self‐attention

Node 𝒏𝟓’s
received
message

Message
Buffer 2
Size: N

Node Queue

CSR
Table

𝒏𝟒

𝒏𝟏’s out‐neighbor
list 𝓟 ൌ ሺ𝒏𝟐,𝒏𝟑,𝒏𝟒ሻ

𝒏𝟏

(a) Baseline Dataflow Architecture with One Node Transformation, One Message Passing, and Sequential Edge Embedding

GCN, GIN, PNA, DGN, GAT, …

𝒏𝟐𝒏𝟑

𝒏𝟓

Node Transform. (NT)

NT Unit 2

Load Shared Weights Re‐batch
&

multicast
to

responsible
MP units

NE‐to‐MP
Adapter

Edge Embedding (EE) + Message Passing (MP)

Edge Attribute Table

+
Node 𝒏𝟏’s
embedding +

+

Edge ሺ𝒏𝟏,𝒏𝟐ሻ’s embedding

Edge ሺ𝒏𝟏,𝒏𝟑ሻ’s embedding

Edge ሺ𝒏𝟏,𝒏𝟒ሻ’s embedding

𝒏𝟐’s partial
message

𝒏𝟑’s partial
message

𝒏𝟒’s partial
message

Message
Buffer 1
Size: N

Node 𝒏𝟓’s
embedding

*Fixed *Keep aggregatingMessage buffer 1 and 2 switch between layers

Message
Buffer 2

Bank 1
Size: N/4

Node
Embedding

Buffer

Bank 1
Size: N/2

Bank 2
Size: N/2

Node
Embedding
Queues

Q

Q

Q

Q

Q

Q

Edge embedding
+

Scatter

Edge Embedding (EE) + Message Passing (MP)

Multicast to responsible
MP units based on
destination nodes

Nodes received
messagesMessage

Buffer 1
Size: N

MP Unit 1

(b) FlowGNN Architecture with Multiple Node Transformation, Multiple Message Passing, and parallelized Edge Embedding

In Sequential

NT Unit 1

Bank 2
Size: N/4

Bank 3
Size: N/4

Bank 4
Size: N/4

Gather
(source node) (to dest. node)

Edge embedding
+

Scatter
MP Unit 1

Gather
(source node) (to dest. node)

Edge embedding
+

Scatter
MP Unit 1

Gather
(source node) (to dest. node)

Edge embedding
+

Scatter
MP Unit 1

Gather
(source node) (to dest. node)

Fig. 3. Our proposed baseline dataflow architecture and the improved FlowGNN architecture. (a) The baseline dataflow architecture can effectively pipeline
the Node Transformation (NT) and Message Passing (MP), but processes only one node and one edge at a time. (b) The improved FlowGNN architecture
can process multiple nodes and multiple edges simultaneously, enabled by an NT-to-MP adapter via on-the-fly multicasting.

More specifically, the GNN computation flow has the fol-
lowing stages, as demonstrated in Fig. 2:
Message Passing (Gather). In the gather phase, a.k.a. aggre-
gation, of a certain node n1, the messages from its neighbors
obtained in the previous layer are retrieved from a message
buffer. The messages are then aggregated in a permutation-
invariant manner, denoted by A(·) (e.g., sum, max, mean, std.
dev.). In advanced GNNs such as PNA, multiple aggregators
are used with learnable weights and scaled based on the degree
of the target node. The aggregated message is denoted by m

l
1.

Node Transformation. After aggregation, m
l
1 is processed

together with node n1’s current node embedding, denoted by
x
l
1, via a node transformation function �(·). This function,

with inputs m
l
1 and x

l
1, might be an identity, fully-connected

layer, weighted sum, or an MLP. �(·) produces a new node
embedding of n1, denoted by x

l+1
1 , and applies the update.

Message Passing (Scatter). After node transformation is the
scatter phase of message passing. The new node embedding
x
l+1
1 will be transformed by a message transformation function

�(·), usually together with an edge embedding e
l+1
src,dest, to

generate the node’s outgoing messages. Messages will be
dispatched to all neighbors, which will eventually be collected
by the gather stage of the next layer.

Idle time:
Imbalanced
NT and MP

Node queue

NT
MP

NT

MP

NT

MP

Idle time: NT and MP are not
pipelined within one node

NT

MP

1

1

2

2

3

3

4

4

1 2 3 4

1 2 3 4

1
2

3
4

Unit 1
Unit 2

NT and MP
pipelined
within one
node

U2’s dest. nodes

Unit 1
Unit 2

U1’s dest. nodes

(a) Non‐pipeline (b) Fixed pipeline

(c) Baseline dataflow pipeline (d) FlowGNN pipeline with multiple NT/MP

Fig. 4. Different strategies of pipelining of node transformation (NT) and
message passing (MP). The proposed FlowGNN pipeline in (d) explores
node/edge level parallelism and can pipeline NT and MP within one node.

A complete GNN model may consist of multiple layers,
each with message passing and node transformation steps. For
graph-level tasks, a global pooling layer is needed, possibly
followed by MLP layers for final prediction.

C. Baseline Dataflow Architecture

To explicitly support the message passing mechanism, we
first propose the baseline dataflow architecture, shown in
Fig. 3(a). It has two major processing components: one Node
Transformation (NT) unit (yellow block), and one Message

5

https://finn.readthedocs.io/en/latest/
https://github.com/thesps/conifer
http://fwx.pitt.edu/
https://github.com/sharc-lab/flowgnn

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Application: Measure Muon pT at 40 MHz

15

CMS-TDR-021

Dec 8, 2019 10

Can be done on the FPGA!

At each node, compute

ML framework:

Loss function: Huber loss [Wikipedia]

Activation function: ReLU

Batch normalization: applied right after the

 input layer and in each hidden layer

Training dataset: 2M muons

Testing dataset: 1M muons

pT assignment with NN

https://cds.cern.ch/record/2714892

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Application: Measure Muon pT at 40 MHz

15

• NN measures muon momentum

CMS-TDR-021

Dec 8, 2019 10

Can be done on the FPGA!

At each node, compute

ML framework:

Loss function: Huber loss [Wikipedia]

Activation function: ReLU

Batch normalization: applied right after the

 input layer and in each hidden layer

Training dataset: 2M muons

Testing dataset: 1M muons

pT assignment with NN

https://cds.cern.ch/record/2714892

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Application: Measure Muon pT at 40 MHz

15

• NN measures muon momentum

• 3× reduction in the trigger rate for NN!

98 Chapter 3. Trigger algorithms

0 10 20 30 40 50 60
 threshold [GeV]

T
p

1

10

210

310

410

R
at

e
[k

H
z]

EMTF
EMTF++

CMS Phase-2 Simulation 14 TeV, 200 PU

0 50 100 150 200 250 300 350
PU

0

50

100

R
at

e
[k

H
z]

EMTF
EMTF++

 > 20 GeV
T

L1 Muon p

CMS Phase-2 Simulation 14 TeV

Figure 3.33: Left: endcap trigger rate comparison of the Phase-1 EMTF and the Phase-2
EMTF++ algorithms as a function of pT threshold for events with 200 average pileup. Right:
Trigger rate comparison as a function of PU for a pT > 20 GeV threshold.

The same 6 h zones are retained for a total of 54 patterns per 0.5-degree in f, as for the prompt
muon patterns. Figure 3.31 (right) shows these patterns.

The TP information in the stations from stubs that satisfy a displaced pattern are input to a NN
that in this case has been trained to perform a regression that returns simultaneously values for
1/pT and d0 of displaced muons. The NN configuration used is the same as that for prompt
muons, using 3 hidden layers with 30/25/20 nodes each. Batch normalization is inserted after
each layer, including the input layer. A total of 23 inputs are used in the NN, these are:

• 6 Df quantities between stations: S1-S2, S1-S3, S1-S4, S2-S3, S2-S4, S3-S4
• 6 Dq quantities between stations: S1-S2, S1-S3, S1-S4, S2-S3, S2-S4, S3-S4
• 4 bend angles: set to zero if no CSC stub is found and only RPC stub is used
• For ME1 only: 1 bit for front or back chambers and 1 bit for inner or outer h ring
• 1 track q taken from stub coordinate in ME2, ME3, ME4 (in this priority)
• 4 RPC bits indicating if ME or RE stub was used in each station (S1, S2, S3, S4)

At the time of this writing, information from the new Phase-2 detectors (GE1/1, GE2/1, ME0,
iRPC) has not been incorporated into the study, and neither has the more precise CSC bend
information described above. As such, this study is geared towards possible implementation of
this algorithm during Run-3. An update to incorporate new Phase-2 detector information is in
progress. The already positive conclusions on triggering on standalone displaced muons in the
endcap with only the Phase-1 detectors, as shown below, is expected to improve significantly
when all Phase-2 information is included.

Figure 3.34 shows, for events with single muons and no pileup, the q/pT and the d0 resolutions
as determined by the NN estimate of these quantities. The pT resolution is about 60%, which
is large compared to the 20% resolution obtained from EMTF++ for prompt muons. A bias
towards underestimating the pT can be observed. However, the d0 resolution is very good,
⇠ 5 cm. Figure 3.35 shows the trigger rates of the displaced muon algorithm for PU 200 events.
In order to keep the rates at approximately the same 10 kHz level as those from prompt muons,
reasonable L1 thresholds of, for example, pT > 20 GeV and |d0| > 20 cm can be applied.

CMS-TDR-021

Dec 8, 2019 10

Can be done on the FPGA!

At each node, compute

ML framework:

Loss function: Huber loss [Wikipedia]

Activation function: ReLU

Batch normalization: applied right after the

 input layer and in each hidden layer

Training dataset: 2M muons

Testing dataset: 1M muons

pT assignment with NN

https://cds.cern.ch/record/2714892

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Application: Measure Muon pT at 40 MHz

15

• NN measures muon momentum

• 3× reduction in the trigger rate for NN!

• Fits within L1 trigger latency (240 ns!) and FPGA
resource requirements (less then 30%)

98 Chapter 3. Trigger algorithms

0 10 20 30 40 50 60
 threshold [GeV]

T
p

1

10

210

310

410

R
at

e
[k

H
z]

EMTF
EMTF++

CMS Phase-2 Simulation 14 TeV, 200 PU

0 50 100 150 200 250 300 350
PU

0

50

100

R
at

e
[k

H
z]

EMTF
EMTF++

 > 20 GeV
T

L1 Muon p

CMS Phase-2 Simulation 14 TeV

Figure 3.33: Left: endcap trigger rate comparison of the Phase-1 EMTF and the Phase-2
EMTF++ algorithms as a function of pT threshold for events with 200 average pileup. Right:
Trigger rate comparison as a function of PU for a pT > 20 GeV threshold.

The same 6 h zones are retained for a total of 54 patterns per 0.5-degree in f, as for the prompt
muon patterns. Figure 3.31 (right) shows these patterns.

The TP information in the stations from stubs that satisfy a displaced pattern are input to a NN
that in this case has been trained to perform a regression that returns simultaneously values for
1/pT and d0 of displaced muons. The NN configuration used is the same as that for prompt
muons, using 3 hidden layers with 30/25/20 nodes each. Batch normalization is inserted after
each layer, including the input layer. A total of 23 inputs are used in the NN, these are:

• 6 Df quantities between stations: S1-S2, S1-S3, S1-S4, S2-S3, S2-S4, S3-S4
• 6 Dq quantities between stations: S1-S2, S1-S3, S1-S4, S2-S3, S2-S4, S3-S4
• 4 bend angles: set to zero if no CSC stub is found and only RPC stub is used
• For ME1 only: 1 bit for front or back chambers and 1 bit for inner or outer h ring
• 1 track q taken from stub coordinate in ME2, ME3, ME4 (in this priority)
• 4 RPC bits indicating if ME or RE stub was used in each station (S1, S2, S3, S4)

At the time of this writing, information from the new Phase-2 detectors (GE1/1, GE2/1, ME0,
iRPC) has not been incorporated into the study, and neither has the more precise CSC bend
information described above. As such, this study is geared towards possible implementation of
this algorithm during Run-3. An update to incorporate new Phase-2 detector information is in
progress. The already positive conclusions on triggering on standalone displaced muons in the
endcap with only the Phase-1 detectors, as shown below, is expected to improve significantly
when all Phase-2 information is included.

Figure 3.34 shows, for events with single muons and no pileup, the q/pT and the d0 resolutions
as determined by the NN estimate of these quantities. The pT resolution is about 60%, which
is large compared to the 20% resolution obtained from EMTF++ for prompt muons. A bias
towards underestimating the pT can be observed. However, the d0 resolution is very good,
⇠ 5 cm. Figure 3.35 shows the trigger rates of the displaced muon algorithm for PU 200 events.
In order to keep the rates at approximately the same 10 kHz level as those from prompt muons,
reasonable L1 thresholds of, for example, pT > 20 GeV and |d0| > 20 cm can be applied.

CMS-TDR-021

Dec 8, 2019 10

Can be done on the FPGA!

At each node, compute

ML framework:

Loss function: Huber loss [Wikipedia]

Activation function: ReLU

Batch normalization: applied right after the

 input layer and in each hidden layer

Training dataset: 2M muons

Testing dataset: 1M muons

pT assignment with NN

�1

Dense Network
23 ➜ 30 ➜ 25 ➜ 20

➜ momentum & classifier

Inference time: 280 ns
Throughput: 104 Gb/s

AI circuit for ultrafast inference on FPGA

240

https://cds.cern.ch/record/2714892

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Application: ATLAS LAr Calorimeter

16

Convolutional and Recurrent Neural
Networks
for real-time energy reconstruction of
ATLAS LAr Calorimeter for Phase 2

• Up to around 600 calorimeter channels
processed by on device

• 200 ns latency of predictions

• Implemented on Intel FPGAs (previous
examples are all AMD)

- Team contributed majorly to RNN and
Intel implementations of hls4ml

10.1007/s41781-021-00066-y

https://link.springer.com/article/10.1007/s41781-021-00066-y

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Application: Anomaly Detection

17

Nat. Mach. Intell. 4, 154 (2022)
Data challenge: mpp-hep.github.io/ADC2021

https://doi.org/10.1038/s42256-022-00441-3
https://mpp-hep.github.io/ADC2021

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Application: Anomaly Detection

17

• Challenge: if new physics has an unexpected signature that doesn’t align with existing triggers,
precious BSM events may be discarded at trigger level

Nat. Mach. Intell. 4, 154 (2022)
Data challenge: mpp-hep.github.io/ADC2021

https://doi.org/10.1038/s42256-022-00441-3
https://mpp-hep.github.io/ADC2021

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Application: Anomaly Detection

17

• Challenge: if new physics has an unexpected signature that doesn’t align with existing triggers,
precious BSM events may be discarded at trigger level

• Can we use unsupervised algorithms to detect non-SM-like anomalies?

Nat. Mach. Intell. 4, 154 (2022)
Data challenge: mpp-hep.github.io/ADC2021

https://doi.org/10.1038/s42256-022-00441-3
https://mpp-hep.github.io/ADC2021

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Application: Anomaly Detection

17

• Challenge: if new physics has an unexpected signature that doesn’t align with existing triggers,
precious BSM events may be discarded at trigger level

• Can we use unsupervised algorithms to detect non-SM-like anomalies?

• Autoencoders (AEs): compress input to a smaller dimensional latent space then decompress and
calculate difference

6

AUTOENCODERS FOR ANOMALY DETECT ION

Using Autoencoders for anomaly detection
Encode input in smaller dimensional space
Train on typical LHC background
Anomalous data will have higher loss
Calculating the loss requires to store the input until the
output is computed

3.2 Baseline performance

The models described in the previous section are trained with floating point precision on an NVIDIA RTX2080 GPU.
We refer to these models as baseline (B). Figures 4 and 5 shows the distribution of the anomaly-detection scores
considered in this paper (IO AD for the AE models, Rz and DKL(ADs for the VAE models). For completeness, results
obtained from the IO AD score of the VAE models are also shown.

Figure 4: Distribution of four anomaly detection scores (IO AD for AE and VAE models, Rzand DKLADs for the VAE
models) for the DNN model, for the SM cocktail and the four new physics benchmark models.

The model performance is assessed using the four new physics benchmark models. The receiver operating characteristic
(ROC) curves in Fig. 6 show the dependence of the true positive rate (TPR) as a function of the false positive rate (FPR),
computing by changing the lower threshold applied on the different anomaly scores. We further quantify the anomaly
detection performance quoting the area under the ROC curve (AUC) and the TPR corresponding to to a working point
of SM false positive rate "SM = 10

�5 (see Table 1), which corresponds to the average of ⇡ 1000 SM events accepted
every month [1].

7

Encoder De
co

de
r

Latent
space

Nat. Mach. Intell. 4, 154 (2022)
Data challenge: mpp-hep.github.io/ADC2021

https://doi.org/10.1038/s42256-022-00441-3
https://mpp-hep.github.io/ADC2021

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Application: Anomaly Detection

17

• Challenge: if new physics has an unexpected signature that doesn’t align with existing triggers,
precious BSM events may be discarded at trigger level

• Can we use unsupervised algorithms to detect non-SM-like anomalies?

• Autoencoders (AEs): compress input to a smaller dimensional latent space then decompress and
calculate difference

• Variational autoencoders (VAEs): model the latent space as a probability distribution; possible to
detect anomalies purely with latent space variables

6

AUTOENCODERS FOR ANOMALY DETECT ION

Using Autoencoders for anomaly detection
Encode input in smaller dimensional space
Train on typical LHC background
Anomalous data will have higher loss
Calculating the loss requires to store the input until the
output is computed

3.2 Baseline performance

The models described in the previous section are trained with floating point precision on an NVIDIA RTX2080 GPU.
We refer to these models as baseline (B). Figures 4 and 5 shows the distribution of the anomaly-detection scores
considered in this paper (IO AD for the AE models, Rz and DKL(ADs for the VAE models). For completeness, results
obtained from the IO AD score of the VAE models are also shown.

Figure 4: Distribution of four anomaly detection scores (IO AD for AE and VAE models, Rzand DKLADs for the VAE
models) for the DNN model, for the SM cocktail and the four new physics benchmark models.

The model performance is assessed using the four new physics benchmark models. The receiver operating characteristic
(ROC) curves in Fig. 6 show the dependence of the true positive rate (TPR) as a function of the false positive rate (FPR),
computing by changing the lower threshold applied on the different anomaly scores. We further quantify the anomaly
detection performance quoting the area under the ROC curve (AUC) and the TPR corresponding to to a working point
of SM false positive rate "SM = 10

�5 (see Table 1), which corresponds to the average of ⇡ 1000 SM events accepted
every month [1].

7

Encoder De
co

de
r

Latent
space

7

VARIAT IONAL AUTOENCODERS FOR ANOMALY DETECT ION

Sample

Encoder De
co

de
rμ

σ

z

Using Variational Autoencoders for anomaly detection
The latent space is sampled from Encoder output
Can be used to generate new samples
Inference can be done only on the latent space
No need to store input and deployment of Encoder is enough
(e.g. saves resources and latency in comparison to AE)

Nat. Mach. Intell. 4, 154 (2022)
Data challenge: mpp-hep.github.io/ADC2021

https://doi.org/10.1038/s42256-022-00441-3
https://mpp-hep.github.io/ADC2021

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Application: Anomaly Detection

17

• Challenge: if new physics has an unexpected signature that doesn’t align with existing triggers,
precious BSM events may be discarded at trigger level

• Can we use unsupervised algorithms to detect non-SM-like anomalies?

• Autoencoders (AEs): compress input to a smaller dimensional latent space then decompress and
calculate difference

• Variational autoencoders (VAEs): model the latent space as a probability distribution; possible to
detect anomalies purely with latent space variables

6

AUTOENCODERS FOR ANOMALY DETECT ION

Using Autoencoders for anomaly detection
Encode input in smaller dimensional space
Train on typical LHC background
Anomalous data will have higher loss
Calculating the loss requires to store the input until the
output is computed

3.2 Baseline performance

The models described in the previous section are trained with floating point precision on an NVIDIA RTX2080 GPU.
We refer to these models as baseline (B). Figures 4 and 5 shows the distribution of the anomaly-detection scores
considered in this paper (IO AD for the AE models, Rz and DKL(ADs for the VAE models). For completeness, results
obtained from the IO AD score of the VAE models are also shown.

Figure 4: Distribution of four anomaly detection scores (IO AD for AE and VAE models, Rzand DKLADs for the VAE
models) for the DNN model, for the SM cocktail and the four new physics benchmark models.

The model performance is assessed using the four new physics benchmark models. The receiver operating characteristic
(ROC) curves in Fig. 6 show the dependence of the true positive rate (TPR) as a function of the false positive rate (FPR),
computing by changing the lower threshold applied on the different anomaly scores. We further quantify the anomaly
detection performance quoting the area under the ROC curve (AUC) and the TPR corresponding to to a working point
of SM false positive rate "SM = 10

�5 (see Table 1), which corresponds to the average of ⇡ 1000 SM events accepted
every month [1].

7

Encoder De
co

de
r

Latent
space

7

VARIAT IONAL AUTOENCODERS FOR ANOMALY DETECT ION

Sample

Encoder De
co

de
rμ

σ

z

Using Variational Autoencoders for anomaly detection
The latent space is sampled from Encoder output
Can be used to generate new samples
Inference can be done only on the latent space
No need to store input and deployment of Encoder is enough
(e.g. saves resources and latency in comparison to AE)

Nat. Mach. Intell. 4, 154 (2022)
Data challenge: mpp-hep.github.io/ADC2021

5

term [57] usually adopted for VAEs

DKL(~µ,~�) = �
1

2

X

i

�
log(�2

i)� �2
i � µ2

i + 1
�
, (2)

and � is a hyperparameter defined in the range [0, 1] [58].

Both models are trained for 100 epochs with a batch size
of 1024, using early stopping if there is no improvement in
the loss observed after ten epochs. All models are trained
with floating point precision on an NVIDIA RTX2080
GPU. We refer to these as the baseline floating-point
(BF) models.

IV. ANOMALY DETECTION SCORES

An autoencoder is optimized to retain the minimal set
of information needed to reconstruct a accurate estimate
of the input. During inference, an autoencoder might have
problems generalizing to features it was not exposed to
during training. Selecting events where the autoencoder
output is far from the given input is often seen as an
e↵ective AD algorithm. For this purpose, one could use
a metric that measures the distance between the input
and the output. The simplest solution is to use the same
metric that defines the training loss function. In our case,
we use the MSE between the input and the output. We
refer to this strategy as input-output (IO) AD.

In the case of a VAE deployed in the L1T, one cannot
simply exploit an IO AD strategy since this would require
sampling random numbers on the FPGA. The trigger
decision would not be deterministic, something usually
tolerated only for service triggers, and not for triggers
serving physics studies. Moreover, one would have to store
random numbers on the FPGA, which would consume
resources and increase the latency. To deal with this
problem, we consider an alternative strategy by defining
an AD score based on the ~µ and ~� values returned by
the encoder (see Eq. (1)). In particular, we consider two
options: the KL divergence term entering the VAE loss
(see Eq. (2)) and the z-score of the origin ~0 in the latent
space with respect to a Gaussian distribution centered at
~µ with standard deviation ~� [10]:

Rz =
X

i

µ2
i

�2
i

. (3)

These two AD scores have several benefits we take advan-
tage of: Gaussian sampling is avoided; we save significant
resources and latency by not evaluating the decoder; and
we do not need to bu↵er the input data for computation
of the MSE. During the model optimization, we tune
� so that we obtain (on the benchmark signal models)
comparable performance for the DKL AD score and the
IO AD score of the VAE.

V. PERFORMANCE AT FLOATING-POINT
PRECISION

The model performance is assessed using the four new
physics benchmark models. The anomaly-detection scores
considered in this paper are IO AD for the AE models,
Rz and DKL ADs for the VAE models. For completeness,
results obtained from the IO AD score of the VAE models
are also shown. The receiver operating characteristic
(ROC) curves in Figures II and III show the true positive
rate (TPR) as a function of the false positive rate (FPR),
computed by changing the lower threshold applied on the
di↵erent anomaly scores. We further quantify the AD
performance quoting the area under the ROC curve (AUC)
and the TPR corresponding to a FPR working point of
10�5 (see Table I), which on this dataset corresponds to
the reduction of the background rate to approximately
1000 events per month.

From the ROC curves, we conclude that DKL can be
used as an anomaly metric for both the DNN and CNN
VAE. This has the potential to significantly reduce the
inference latency and on-chip resource consumption as
only half of the network (the encoder) needs to be evalu-
ated and that there no longer is a need to bu↵er the input
in order to compute an MSE loss. The Rz metric per-
forms worse and is therefore not included in the following
studies.

VI. MODEL COMPRESSION

We adopt di↵erent strategies for model compression.
First of all, we compress the BF model by pruning the
dense and convolutional layers by 50% of their connec-
tions, following the same procedure as Ref. [19]. Pruning
is enforced using the polynomial decay implemented in
TensorFlow pruning API, a Keras-based [59] inter-
face consisting of a simple drop-in replacement of Keras
layers. A sparsity of 50% is targeted, meaning only 50%
of the weights are retained in the pruned layers and the
remaining ones are set to zero. The pruning is set to start
from the fifth epoch of the training to ensure the model
is closer to a stable minimum before removing weights
deemed unimportant. By pruning the BF model layers
to a target sparsity of 50%, the number of floating-point
operations required when evaluating the model, can be
significantly reduced. We refer to the resulting model
as the baseline pruned (BP) model. For the VAE, only
the encoder is pruned, since only that will be deployed
on FPGA. The BP models are taken as a reference to
evaluate the resource saving of the following compression
strategies, including QAT and PTQ.
Furthermore, we perform a QAT of each model de-

scribed in Section III, implementing them in the QKeras
library [23]. The bit precision is scanned between 2 and
16 with a 2-bit step. When quantizing a model, we also
impose a pruning of the dense (convolutional) layers by
50%, as done for the DNN (CNN) BP models. The results

Key observation: Can build an anomaly score
from the latent space of VAE directly! No need
to run decoder!

https://doi.org/10.1038/s42256-022-00441-3
https://mpp-hep.github.io/ADC2021

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Application: CMS Anomaly Trigger

18

CMS has implemented a similar idea: AXOL1TL

• L1 Hardware implemented VAE-based AD trigger
(based on https://arxiv.org/abs/2108.03986)

• Trained on 2018 zerobias data, ran in 2023 Global
Trigger Test Crate

• CMS is also developing CICADA, a calorimeter only
AD trigger

Event display of the
highest anomaly score

CMS-DP-2023-079

Similar effort is ongoing in ATLAS

https://cds.cern.ch/record/2876546

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Low-latency Transformers

19

Transformer Block

Inputs

Flatten

Feed Forward (3 Dense)
Units = [32, 16, 8]

Output Layer
Softmax

Output
class probability: b / c / light

x 3

 Observed Inference Latency ~ 2-6 s μ

arXiv:2402.01047

https://arxiv.org/abs/2402.01047

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

HL-LHC Data Processing

20

1 ns 1 μs 1 s1 ms

Compute
Latency

High-Level
Trigger

7.5 kHz
1 MB/evt

40 MHz
L1 Trigger

750 kHz

Offline

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

HL-LHC Data Processing

20

1 ns 1 μs 1 s1 ms

Compute
Latency

High-Level
Trigger

7.5 kHz
1 MB/evt

40 MHz
L1 Trigger

750 kHz

Offline

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Smart Pixel

21

Data reduction and reconstruction on
sensor for silicon pixel detectors

We can reduce the data rate read out by a
futuristic pixel detector using AI on-chip

• Factor of ~20 from pT filter
• Additional savings from compression

Dataset available on zenodo

State-of-the-art dataset for developing
algorithms for implementation on-ASIC
• Simulated MIP interactions in a futuristic
pixel detector

arXiv:2310.02474
arXiv:2312.11676

https://zenodo.org/records/7331128
https://arxiv.org/abs/2310.02474
https://arxiv.org/abs/2312.11676

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

HL-LHC Data Processing

22

1 ns 1 μs 1 s1 ms

Compute
Latency

High-Level
Trigger

7.5 kHz
1 MB/evt

40 MHz
L1 Trigger

750 kHz

Offline

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

HL-LHC Data Processing

22

1 ns 1 μs 1 s1 ms

Compute
Latency

High-Level
Trigger

7.5 kHz
1 MB/evt

40 MHz
L1 Trigger

750 kHz

Offline

Second stage of
LHC trigger

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Computing Hardware

23

FPGAs

EFFICIENCY

Control
Unit
(CU)

Registers

Arithmetic
Logic Unit

(ALU) + + + +

+ +
+

Silicon alternatives

FLEXIBILITY

CPUs GPUs
ASICs

Image: Microsoft

FPGAs

EFFICIENCY

Control
Unit
(CU)

Registers

Arithmetic
Logic Unit

(ALU) + + + +

+ +
+

Silicon alternatives

FLEXIBILITY

CPUs GPUs
ASICs

Second stage of LHC
trigger

https://microsoft.github.io/ai-at-edge/docs/hw_acceleration/

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Exponential trend in computational need of AI

24

A. Gholami

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

AI Chips in 2023

25

Who to include these different processors into our computing system?

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Heterogeneous computing platform

26

Coprocessors: specialized processors like GPU, FPGA, TPU,
GraphCore, other AI chips, etc

Increased usage of specialized processors in the future

FPGAs

EFFICIENCY

Control
Unit
(CU)

Registers

Arithmetic
Logic Unit

(ALU) + + + +

+ +
+

Silicon alternatives

FLEXIBILITY

CPUs GPUs
ASICs

Coprocessor
GPU, FPGA,

TPU ..

Direct Connection: Different heterogeneous systems
are directly connected to each other

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Heterogeneous computing platform

26

Coprocessors: specialized processors like GPU, FPGA, TPU,
GraphCore, other AI chips, etc

Increased usage of specialized processors in the future

FPGAs

EFFICIENCY

Control
Unit
(CU)

Registers

Arithmetic
Logic Unit

(ALU) + + + +

+ +
+

Silicon alternatives

FLEXIBILITY

CPUs GPUs
ASICs

Coprocessor
GPU, FPGA,

TPU ..

Direct Connection: Different heterogeneous systems
are directly connected to each other

Advantage: fast and stable
Disadvantage: not flexible and not fully utilized due to inferences’ complexity varies.

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Inference as-a-Service

27

Client - Server connections are made
through network

• Server running on single / multiple GPUs

• Single server can process multiple client
requests

Advantage: flexible and CPU-coprocessor ratio can be optimized
Disadvantage: network topology and stability affect the inference
throughput and latency

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Inference as-a-Service

28

Demonstration on how it would work in the ‘CMS
offline computing’ reality, and how much do we gain

• Roughly 13% gain in throughput
• The distance between the client and server does

not impact the latency

ATLAS is currently working on making GNN-based
tracking as-a-service

ACAT 2024 talk

CMS-PAS-MLG-23-001

https://indico.cern.ch/event/1330797/contributions/5796611/attachments/2820244/4924638/ACTS_as_a_service_ACAT2024.pdf

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

HL-LHC Data Processing

29

1 ns 1 μs 1 s1 ms

Compute
Latency

High-Level
Trigger

7.5 kHz
1 MB/evt

40 MHz
L1 Trigger

750 kHz

Offline

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

HL-LHC Data Processing

29

1 ns 1 μs 1 s1 ms

Compute
Latency

High-Level
Trigger

7.5 kHz
1 MB/evt

40 MHz
L1 Trigger

750 kHz

Offline

Second stage of
LHC trigger

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

ML-based Particle Flow

30

• Gen. particles, reco. tracks and calorimeter
hits, reco. Pandora PF particles in
EDM4HEP format

• CLIC detector (CLIC_o3_v14) simulation with
Geant4, reco. with Marlin interfaced via
Key4HEP including Pandora PF reco.

• Processes generated with Pythia8 at

• , , , ,

• Single-particle: , , , , , between

• 2.5 TB, 6 million events in total

s = 380 GeV
e+e− → tt qq ZH(ττ) WW tt + PU10

e± μ± K0
L n π± γ

[1,100] GeV

https://www.coe-raise.eu/od-pfr

doi:10.5281/zenodo.8260741

https://arxiv.org/abs/1812.07337
https://www.coe-raise.eu/od-pfr
https://doi.org/10.5281/zenodo.8260741

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

ML-based Particle Flow

30

• Gen. particles, reco. tracks and calorimeter
hits, reco. Pandora PF particles in
EDM4HEP format

• CLIC detector (CLIC_o3_v14) simulation with
Geant4, reco. with Marlin interfaced via
Key4HEP including Pandora PF reco.

• Processes generated with Pythia8 at

• , , , ,

• Single-particle: , , , , , between

• 2.5 TB, 6 million events in total

s = 380 GeV
e+e− → tt qq ZH(ττ) WW tt + PU10

e± μ± K0
L n π± γ

[1,100] GeV

https://www.coe-raise.eu/od-pfr

doi:10.5281/zenodo.8260741

https://arxiv.org/abs/1812.07337
https://www.coe-raise.eu/od-pfr
https://doi.org/10.5281/zenodo.8260741

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

MLPF Performance

31

MLPF

baseline

arXiv:2309.06782

https://arxiv.org/abs/2309.06782

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

MLPF Performance

31

• Generalizes to samples (e.g.,) never used in traininge+e− → WW → hadrons

MLPF

baseline

arXiv:2309.06782

https://arxiv.org/abs/2309.06782

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

MLPF Performance

31

• Generalizes to samples (e.g.,) never used in traininge+e− → WW → hadrons
• ~50% improvement in jet response width over the baseline*

MLPF

baseline MLPF

baseline

*Defined with gen. particle status = 1

arXiv:2309.06782

https://arxiv.org/abs/2309.06782

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Summary and Outlook

32

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Summary and Outlook

32

• ML allows us to better reconstruct our data and
save potentially overlooked data

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Summary and Outlook

32

• ML allows us to better reconstruct our data and
save potentially overlooked data

• Codesign principles can enable ML on hardware
with stringent constraints

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Summary and Outlook

32

• ML allows us to better reconstruct our data and
save potentially overlooked data

• Codesign principles can enable ML on hardware
with stringent constraints

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Summary and Outlook

32

• ML allows us to better reconstruct our data and
save potentially overlooked data

• Codesign principles can enable ML on hardware
with stringent constraints

• Alternative computing solutions like as a service
approach will help us adopt to the growing discovery of
computing hardware

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Summary and Outlook

33

• Community (fastmachinelearning.org, e-group
hls-fml@cern.ch) and Institute (a3d3.ai) developing
open-source tools and techniques to enable this

• hls4ml: expanding open-source
toolkit for translating ML into hardware aimed
at trigger applications and more…

• Applications range from momentum regression,
to b-tagging, tracking, and more!

• Enhance future particle physics program

https://fastmachinelearning.org/
https://e-groups.cern.ch/e-groups/EgroupsSubscription.do?egroupName=hls-fml
http://a3d3.ai
http://fastmachinelearning.org/hls4ml

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Summary and Outlook

33

• Community (fastmachinelearning.org, e-group
hls-fml@cern.ch) and Institute (a3d3.ai) developing
open-source tools and techniques to enable this

• hls4ml: expanding open-source
toolkit for translating ML into hardware aimed
at trigger applications and more…

• Applications range from momentum regression,
to b-tagging, tracking, and more!

• Enhance future particle physics program

https://fastmachinelearning.org/
https://e-groups.cern.ch/e-groups/EgroupsSubscription.do?egroupName=hls-fml
http://a3d3.ai
http://fastmachinelearning.org/hls4ml

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference

Towards Future Collider

34

As the computing developments are very dynamic it is very
difficult to guess the future solutions

• Larger ML models are becoming common
• Faster hardware are emerging

HL-LHC is a good checkpoint for upgrading our software /
hardware infrastructure for Fast Inference (with
heterogeneous computing)
• Integrate more AI/ML into wide range of activities

As a community we need to continue pushing the frontier
and stay at the front of this rapid development

AMD MI300A APU

https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/data-sheets/amd-instinct-mi300a-data-sheet.pdf

Thank You

BACKUP

Elham E Khoda (UCSD, A3D3) — Fast Machine Learning Inference 37

16 inputs

64 nodes

32 nodes

32 nodes

5 outputs

Small NN benchmark correctly identifies particle “jets” 70-80% of the time

