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Introduction - Experiment
4

Raw ECAL hit
Raw HCAL hit
Raw tracker hit
Raw Muon chamber hit
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1. Tracking

2. Particle Flow

3. Tagging

4. Calibration

[2]
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Experiment - 1. Tracking
5

Machine learning applied to tracking

charline.rougier@l2it.in2p3.fr | CTD 2022 | ATLAS ITk track reconstruction with a GNN-based Pipeline

• Track reconstruction = CPU-intensive stage
ML techniques ? Raw data from collisions are sparse data

3

• Graph Neural Networks (GNNs): proof of principle by Exa.TrkX project
Method applied to TrackML data by L2IT and Exa.TrkX project
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• Charged particles leave hist in tracker along their path (up to ~5000 per event) 
• Turn tracker hits into tracks with graph-based ML 
• Using ExaTrkX algorithm: 

1. Construct graph of hits 
2. Label graph edges 
3. Segment graph into tracks

[3]



FCC Week 24 | ML for HEP Data Analysis | Dennis Noll | 13.06.24

• Turn tracks and calorimenter clusters into particles 
• Use granular detector layout optimally 
• Different graph-based approaches ML approaches exist (MLPF, HGPflow, …)

Experiment - 2. Particle Flow
6

MLPF Method

7

almost 50% improvement in jet response width over the baseline

In samples never used in training…

MLPF

baseline

Up to 50% 
improvement

MLPF Result

[2,4]

https://www.nature.com/articles/s42005-024-01599-5
https://arxiv.org/pdf/2212.01328
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Experiment - 3. Tagging
• Quarks from the hard interaction initiate jets in the detector 
• Determine which type of quark initiated the jet (tagging)
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PERFORMANCE: TOP TAGGING
Top tagging: 

only four-momenta of the particles available in this dataset 

train/val/test 1.2M/400k/400k 

Metrics: 

accuracy 

area under the ROC curve (AUC) 

background rejection (1/εb) at signal efficiency of 30% and 
50% 

Results: 

substantial improvement over P-CNN/PFN 

>10% better in background rejection compared to 
ResNeXt-50

 18

better

6

TABLE II. Performance comparison on the top tagging benchmark dataset. The ParticleNet, P-CNN and ResNeXt-50 models
are trained on the top tagging dataset starting from randomly initialized weights. The model snapshot with the best accuracy
on the validation dataset is selected for evaluation. The performance of PFN on this dataset is reported in [60], and the
uncertainty corresponds to the spread in ten trainings.

Accuracy AUC 1/"b at "s = 50% 1/"b at "s = 30%
ResNeXt-50 0.936 0.9837 302 1147

P-CNN 0.930 0.9803 201 759
PFN - 0.9819± 0.0001 247± 3 888± 17

ParticleNet 0.938 0.9848 329 1294

tion can be quite helpful for jet tagging. Therefore, we
include this information in the ParticleNet model and
compare it with the baseline version using only the kine-
matic information. The PID information is included in
an experimentally realistic way by using only five particle
types (electron, muon, charged hadron, neutral hadron
and photon), as well as the electric charge, as inputs.
These 6 additional variables, together with the 7 kine-
matic variables, form the input feature vector of each
particle for models with PID information, as shown in
Table I.

Table II compares the performance of the ParticleNet
model with a number of alternative models introduced
in Section IVA. Model variants with and without PID
inputs are also compared. Note that for the ResNeXt-50
model, only the version without PID inputs is presented,
as it is based on jet images which cannot incorporate
PID information straightforwardly. The corresponding
ROC curves are shown in Fig. 3 (right). Overall, the
addition of PID inputs has a large impact on the per-
formance, increasing the background rejection power by
10–15% compared to the same model without using PID
information. This clearly demonstrates the advantage
of particle-based jet representations, including the parti-
cle cloud representation, as they can easily integrate any
additional information for each particle. The best per-
formance is obtained by the ParticleNet model with PID
inputs, achieving almost 10% improvement on the back-

ground rejection power compared to the PFN-Ex model.

V. CONCLUSION

In this paper, we present a new approach for machine
learning on jets. The core of this approach is to treat
jets as particle clouds, i.e., unordered sets of particles.
Based on this particle cloud representation, we introduce
ParticleNet, a network architecture tailored to jet tagging
tasks. The ParticleNet architecture achieves state-of-the-
art performance on the top tagging and the quark-gluon
tagging benchmarks and improves significantly over ex-
isting methods.
While we only demonstrate the power of the particle

cloud representation in jet tagging tasks, we think that
it is a natural and generic way of representing jets (and
even the whole collision event) and can be applied to a
broad range of particle physics problems. Applications
of the particle cloud approach to, e.g., pileup identifica-
tion, jet grooming, jet energy calibration, etc., would be
particularly interesting and worth further investigation.
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Dynamic Graph CNN for Learning on Point Clouds • 1:3

Fig. 2. Le�: Computing an edge feature, ei j (top), from a point pair, xi and xj (bo�om). In this example, h�() is instantiated using a fully connected layer,
and the learnable parameters are its associated weights. Right: The EdgeConv operation. The output of EdgeConv is calculated by aggregating the edge
features associated with all the edges emanating from each connected vertex.

expressed in terms of the metric are invariant to isometric defor-
mation. Representatives of this class include spectral descriptors
such as global point signatures [Rustamov 2007], the heat and wave
kernel signatures [Aubry et al. 2011; Sun et al. 2009], and variants
[Bronstein and Kokkinos 2010]. Most recently, several approaches
wrap machine learning schemes around standard descriptors [Guo
et al. 2014; Shah et al. 2013].

Deep learning on geometry. Following the breakthrough results of
convolutional neural networks (CNNs) in vision [Krizhevsky et al.
2012; LeCun et al. 1989], there has been strong interest to adapt
such methods to geometric data. Unlike images, geometry usually
does not have an underlying grid, requiring new building blocks
replacing convolution and pooling or adaptation to a grid structure.

As a simple way to overcome this issue, view-based [Su et al. 2015;
Wei et al. 2016] and volumetric representations [Klokov and Lempit-
sky 2017; Maturana and Scherer 2015; Tatarchenko et al. 2017; Wu
et al. 2015]—or their combination [Qi et al. 2016]—“place” geometric
data onto a grid. More recently, PointNet [Qi et al. 2017b,c] exempli-
�es a broad class of deep learning architectures on non-Euclidean
data (graphs and manifolds) termed geometric deep learning [Bron-
stein et al. 2017]. These date back to early methods to construct
neural networks on graphs [Scarselli et al. 2009], recently improved
with gated recurrent units [Li et al. 2016] and neural message pass-
ing [Gilmer et al. 2017]. Bruna et al. [2013] and Hena� et al. [2015]
generalized convolution to graphs via the Laplacian eigenvectors
[Shuman et al. 2013]. Computational drawbacks of this foundational
approach were alleviated in follow-up works using polynomial [Def-
ferrard et al. 2016; Kipf and Welling 2017; Monti et al. 2017b, 2018],
or rational [Levie et al. 2017] spectral �lters that avoid Laplacian
eigendecomposition and guarantee localization. An alternative def-
inition of non-Euclidean convolution employs spatial rather than
spectral �lters. The Geodesic CNN (GCNN) is a deep CNN on meshes
generalizing the notion of patches using local intrinsic parameteriza-
tion [Masci et al. 2015]. Its key advantage over spectral approaches
is better generalization as well as a simple way of constructing
directional �lters. Follow-up work proposed di�erent local chart-
ing techniques using anisotropic di�usion [Boscaini et al. 2016]
or Gaussian mixture models [Monti et al. 2017a; Veličković et al.
2017]. In [Halimi et al. 2018; Litany et al. 2017b], a di�erentiable
functional map [Ovsjanikov et al. 2012] layer was incorporated into

a geometric deep neural network, allowing to do intrinsic structured
prediction of correspondence between nonrigid shapes.
The last class of geometric deep learning approaches attempts

to pull back a convolution operation by embedding the shape into
a domain with shift-invariant structure such as the sphere [Sinha
et al. 2016], torus [Maron et al. 2017], plane [Ezuz et al. 2017], sparse
network lattice [Su et al. 2018], or spline [Fey et al. 2018].
Finally, we should mention geometric generative models, which

attempt to generalize models such as autoencoders, variational au-
toencoders (VAE) [Kingma and Welling 2013], and generative adver-
sarial networks (GAN) [Goodfellow et al. 2014] to the non-Euclidean
setting. One of the fundamental di�erences between these two set-
tings is the lack of canonical order between the input and the output
vertices, thus requiring an input-output correspondence problem
to be solved. In 3D mesh generation, it is commonly assumed that
the mesh is given and its vertices are canonically ordered; the gen-
eration problem thus amounts only to determining the embedding
of the mesh vertices. Kostrikov et al. [2017] proposed SurfaceNets
based on the extrinsic Dirac operator for this task. Litany et al.
[2017a] introduced the intrinsic VAE for meshes and applied it to
shape completion; a similar architecture was used by Ranjan et al.
[2018] for 3D face synthesis. For point clouds, multiple generative
architectures have been proposed [Fan et al. 2017; Li et al. 2018b;
Yang et al. 2018].

3 OUR APPROACH
We propose an approach inspired by PointNet and convolution
operations. Instead of working on individual points like PointNet,
however, we exploit local geometric structures by constructing a
local neighborhood graph and applying convolution-like operations
on the edges connecting neighboring pairs of points, in the spirit
of graph neural networks. We show in the following that such an
operation, dubbed edge convolution (EdgeConv), has properties lying
between translation-invariance and non-locality.
Unlike graph CNNs, our graph is not �xed but rather is dynam-

ically updated after each layer of the network. That is, the set of
k-nearest neighbors of a point changes from layer to layer of the
network and is computed from the sequence of embeddings. Prox-
imity in feature space di�ers from proximity in the input, leading
to nonlocal di�usion of information throughout the point cloud. As

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2019.

ParticleNet

Representation in (η, ϕ) − plane

Jet as Point Cloud

[5]
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Experiment - 4. Calibration
• Jets from b-quarks have large invisible (neutrino) contribution 
• Calibrate the momentum of the jets with feed forward DNN regression 
• Improved di-jet resolution by ~15% compared to baseline
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Figure 5: Dijet invariant mass distributions for simulated samples of Z(! `+`�)H(! bb) events,
where two jets and two leptons were selected. Distributions are shown before (dotted blue) and after
(solid red) applying the b jet energy corrections. A Bukin function [44] was used to fit the distribution.
The fitted mean and width of the core of each distribution are displayed in the figure.

In addition, a dedicated study was performed to test how well the algorithm performance can
be transferred from Monte Carlo simulations to the domain of pp collision data. A set of Z bo-
son candidates decaying to a pair of charged leptons was extracted from pp collisions recorded
by the CMS experiment in 2017. A standard set of requirements [28, 45] was applied to se-
lect events with electron or muon pairs compatible with having originated from the decay of
a Z boson. Events were further required to have at least one b-tagged jet. The jet with the
largest pT was required to have |h| < 2, while the pT of the dilepton system was required to
be larger than 100 GeV. The pT balance between the Z boson and the b-tagged jet candidate
was enforced by requiring that extra jets have a pT less than 30% of the Z pT to suppress events
with additional hadronic activity. Events satisfying these requirements were used to evaluate
the agreement between data and MC simulations. In addition, the resolution of the jets was
measured by extrapolating to zero additional hadronic activity following the methodology de-
scribed in Ref. [28].

Figure 6 shows the ratio between the pT of the leading jet and that of the dilepton system for
events in which the pT of the subleading jet is less than 15 GeV. The left and right panels show
the distributions obtained before and after applying the DNN-based corrections, respectively.
It can be seen that the effect of the corrections is to reduce the width of the distribution. Using
the method detailed in Ref. [28], the double ratio of the relative jet resolution s measured in data
and in simulated events was found to be 1.1 ± 0.1 before and after applying the DNN-based
corrections. This validates that the resolution improvement achieved in simulated events is
successfully transferred to the data domain.

8 Summary

We have described an algorithm that makes it possible to obtain point and dispersion estimates
of the energy of jets arising from b quarks in proton-proton collisions. We trained a deep, feed-
forward neural network, with inputs based on jet composition and shape information, and
on properties of the associated reconstructed secondary vertex for a sample of simulated b

• Jet kinematics 
• Jet composition 
• PU info

pT,true 
pT,reco

[6]
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Experiment: 
• Tracking 
• MLPF 
• Tagging 
• Calibration
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Experiment: 
• Tracking 
• MLPF 
• Tagging 
• Calibration
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Simulation - Introduction
• Experiments spend significant computing budget on simulations 
• Can make simulations much more efficient using ML 
• Simulations have different levels (full detector vs. particles), data types, complexities, …

11

Simulation / 
Recorded Data Oversampled

Generative 
Model 

(surrogate)• GANs 
• Variational AEs 
• Normalizing Flows 
• Diffusion Models 
• …

[1]
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Simulation - Detector Level (Showers)
• Simulate regular spatial shower profiles with ML 
• Using generative adversarial networks (GANs) 
• Parametrized by particle energy, calorimeter configuration, impact point 
• Three networks: Generator, Critic, Energy Critic

12

[7]

Random Noise

Eparticle 
Calorimeter 

Impact

GEANT 
Simulation
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Simulation - Particle Level
• Skip detector simulation and directly model reconstructed particles 
• New ML method Parnassus [8]: 

• Normalizing Flow with Neural Ordinary Differential Equations 
• Transformer architecture (particle relations)

13

p p

Detector Simulation

High-level 
Features

Collision

Reconstruction

Hadrons

Reconstr. Particles

Method Results

Parnassus

[8]
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Experiment: 
• Tracking 
• MLPF 
• Tagging 
• Calibration

Simulation: 
• Shower-level 
• Particle-level
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Experiment: 
• Tracking 
• MLPF 
• Tagging 
• Calibration

Simulation: 
• Shower-level 
• Particle-level
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Regular Analysis
16
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Figure 7.6: Distributions of the six output units of the deep neural network for single-lepton
events with at least six jets, namely tt̄H (a), tt̄+bb̄ (b), tt̄+b/b̄ (c), tt̄+2b (d), tt̄+cc̄ (e), and tt̄+lf
(f). The output of each unit is shown separately for tt̄H and tt̄ processes. The value range is
adjusted individually per unit for visualizing shape differences. For the output units tt̄H (a),
tt̄+bb̄ (b), and tt̄+2b (d), the shape of the corresponding physics process yields clear differences
with respect to other processes, which is also reflected by the ROC AUC scores.

115

• Challenge: Decrease dimensionality of data (x) but keep physics information 
• Optimal feature is probability of a new model p(x|θnew) vs p(x|θold) 
• Multi-class classification trained with categorical cross-entropy (e.g. ttH measurement)

[9]
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Simulation-Based Inference (SBI)
• Techniques to directly infer p(θ|x) without using summary statistics / histograms 
• Train networks to directly model likelihood ratio: 

• Trained via simple classification (e.g. p(x|θBSM) / p(x|θSM)) 
• DNN can use low or high-dimensional data x

17

9

FIG. 6: Log-likelihood ratio test statistics in terms of 1� (for HL-LHC) or 3� (for 100 TeV) confidence intervals for
one non-zero Wilson coe�cient at a time. Data generation and test set size reflect the collider setup.

Fig. 7, only the two scanned Wilson coe�cients are non-
zero. The non-zero coe�cients cover the prior ranges
c� 2 (�14,+4), c�d 2 (�4,+5), and ct� 2 (�5,+7). For
the test sets, we generate a set of events following the
expected event yields from Table II.

All classifiers are parameterized as relatively small,
dense neural networks consisting of 2 layers with 32 hid-
den nodes. We use a batch size of 1024, a weight decay

10�4, and an initial learning rate of 10�3. The learn-
ing rate reduces by half if the validation loss does not
decrease for 5 epochs. We train for up to 1600 epochs,
stopping when the validation loss does not decrease for
20 epochs and evaluating the networks at the epoch of
lowest validation loss. In practice, the classifiers trained
on data for the 100 TeV collider often converged in fewer
than 200 epochs. We use an 80:20 training-validation

Cɸ=1.0

Cɸ=0.1

…

Training Evaluation

Cɸ=0.0

S
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ul
at

io
ns

[10,11]
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Anomaly Detection (AD)
18

• Search for BSM in a model agnostic way 
• Let machine figure out: 

• Interesting parts of phase space 
• How to look at them

2 Approaches Assumption Drawback

Unsupervised ML Signal is rare Not universal [14]

Weakly 
Supervised ML Signal is peak Need Bkg. Est.

mjj

#

SRSB SB

1. Define SR/SB 
2. ML Bkg. Estimate 
3. ML Class.    vs. 
4. Bump Hunt

Weakly Supervised AD 
in a Nutshell:

[12,13]
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Experiment: 
• Tracking 
• MLPF 
• Tagging 
• Calibration

Simulation: 
• Shower-level 
• Particle-level

Comparison: 
• Classification 
• SBI 
• AD
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Experiment: 
• Tracking 
• MLPF 
• Tagging 
• Calibration

Simulation: 
• Shower-level 
• Particle-level

Comparison: 
• Classification 
• SBI 
• AD
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Foundation Models (Motivation)
21
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Foundation Models (Physics - OmniLearn)
22

Massive Jet 
Dataset

M
an

y 
Ta

sk
sJet Tagging

Calibration

Generation

…

Adaption:

Jet 
Model

Anomaly Det.

Calibration

• OmniLearn: 
• Train foundation model for many jet-related tasks 
• Transformer model with Graph-attention networks 

• Learns general World (Jet) Model 
• Adaption better and more cost-efficient than training from scratch

13

FIG. 8. Validation loss curves obtained in the first iteration
and first step of the OmniFold dataset. The OmniLearn

validation loss is compared with the PET classifier trained
from scratch.

amounts of signal events. The background-only distri-
bution consists of 350k independently simulated back-
ground events. Differently to previous applications of
OmniLearn described in this paper, here, we need to
include the information of both jets in the classifier. We
modify the PET classifier to accommodate the changes in
the dataset while also preserving the permutation equiv-
ariance of the complete network. This is achieved by first
passing the particles present in each jet through the PET

body independently, such that particles belonging to dif-
ferent jets do not interact with each other. The outputs
of the PET body are then shifted and scaled by the out-
puts of the jet embedding block that takes as input the
kinematic information of each jet. This strategy allows
us to maintain the permutation equivariance of the model
while giving jet specific information to each particle. The
shifted and scaled particles are then passed to the clas-
sifier head, reshaped as if all particles belonged to the
same jet. Since the shift and scaling operations are jet-
dependent, the reshaping operation allows all particles
to be conditionally mapped to the same space without
loss of information. The classifier head is unchanged,
with a class token used to summarize the information of
all particles before the classification output. We use the
output of the classifier as the anomaly score to determine
the sensitivity to this specific new physics scenario. We
quantify the performance based on the maximum value of
the significance improvement characteristic curve (SIC)
defined as the signal efficiency divided by the square root
of the background efficiency versus the signal efficiency.
The SIC represents a multiplicative factor by which the
initial significance of a signal present in the data would
increase when a particular threshold of the classifier out-
put is chosen. Maximum SIC values above unity indi-
cate value added. We show the results in Figure 10 and

compare the results obtained by OmniLearn and PET

classifier with the results reported in [53]. Since the ref-
erence background process is statistically identical to the
background presented in the ‘data’ construction, we call
this scenario idealized2.

OmniLearn shows non-negligible signal sensitivity for
signals injections above 600, corresponding to an initial
significance S/

p
B ⇠ 2, representing a large increase in

sensitivity compared to previous results where signal sen-
sitivity was only achieved for signal injections above 1500
(S/

p
B ⇠ 5). Compared to previous results, we also ob-

serve the performance of PET classifier to be similar at
lower signal injections to the results reported in [53] and
performing worse at higher signal injections. The reason
for this difference is due to the limited amount of data
in the signal region (around 100k). Even with the larger
generated background of 350k events, the dataset size of
this application is at least 2 times smaller than all previ-
ous datasets investigated so far. In the low data regimes,
data efficient models are often observed to perform bet-
ter than large transformer models, a limitation that is
mitigated by OmniLearn.

In general, a pure background process in the region
of interest is often not readily available, requiring alter-
native strategies to produce a background-only descrip-
tion. In the resonant case, a natural strategy is to use
sidebands around the region of interest to determine the
properties of the background process. As in a number
of previous weakly supervised studies [53, 131, 132, 135–
140, 142, 143], a generative model conditioned on the
resonant variable and trained only in the sidebands can
be used to interpolate the background description in the
region of interest. We use this strategy to train Om-

niLearn in the sidebands using the dijet mass value as
a conditional variable replacing the class labels as inputs
to the PET generator head. After training of the gener-
ative model, predicted background events in the region
of interest are created by generating 350k background
events. The same classifier used in the weakly supervi-
sion case is used to separate events from the generated
background and ‘data’, created using true background
events and different amounts of signal injected. Even
though the training of the generative model is carried
out using all clustered particles, we require particles in
the generated and data samples to have pT > 1 GeV,
to reduce the impact of low energy particles driving the
classifier performance. Results are shown in Figure 11
with idealized results also included for completion.

Similarly to the idealized scenario, OmniLearn in-
creases the reach in signal sensitivity to signal injections
above 700 (S/

p
B ⇠ 2.2) and greatly improving upon

previous results. While the Cathode method, using 6

2 The authors of Ref. [140] show that it is possible to achieve even
better performance if the functional form is known - it would be
interesting to see such a strategy combined with OmniLearn in
the future.

Different dataset 
Different task

[16]
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Experiment: 
• Tracking 
• MLPF 
• Tagging 
• Calibration

Simulation: 
• Shower-level 
• Particle-level

Comparison: 
• Classification 
• SBI 
• AD

Foundation 
Models

ML
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Contact

• First year postdoc at Berkeley Lab 
• Since >7 years working in data analysis for CERN experiments 

• Physics: Higgs, Anomaly Detection 
• Deep Learning: Supervised, Unsupervised, Reinforcement 
• Computing: Fast O(TB) Data Processing & Computing Pipelines
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