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2Plan for today!

The goal of this session is to capture a 
snapshot of the state of the art.

1. Facility

2. Detectors

AI/ML is already playing a critical role in nearly all aspects of 
collider physics.  There is no doubt that it will play a central 

role for the design, operations, and data analysis of the FCC.

3. Data analysis

accelerator design, operations; magnet training, …

detector design, construction (e.g. QA/QC), 
operations, data acquisition, …

reconstruction, simulation, 
statistical analysis, …
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Performance comparison between 0W and 4W results

Energy  resolution with “0W_64Fe”  yields better resolution than  “4W_60Fe”(left plot) and 
basically the same level of “compensation” (right plot)

Baseline, 100% Fe
GNN, 100% Fe

Baseline, 10% W
GNN, 10% W
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FIG. 2: In-distribution evaluation - distributions for jets that are statistically identical to the ones in the training
dataset. (a) - (f) are constituent level and (g) - (l) are jet-level. See the text for variable definitions.
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fundamentally limited by the training dataset size. As a
result, high-dimensional methods struggle to obtain the
relevant sensitivity to rare signals in high-dimensional
feature spaces [21]. Can OmniLearn push the sensitiv-
ity of such methods to find signals that would not have
been found before?

The details of OmniLearn can be found in Ref. [18],
but are briefly summarized in the following. The back-
bone network of OmniLearn leverages modern develop-
ments for jet representation, using a combination of at-
tention mechanisms [22] and dynamic convolutional op-
erations [23] to improve both the global and local de-
scription of particles clustered inside jets. This model is
named a Point-Edge Transformer (PET), consisting of a
shared representation (PET body) and two task specific
heads, used for the tasks of classification and particle gen-
eration. The introduction of tasks specific network com-
ponents makes the model modular, and able to discard
irrelevant heads during downstream tasks, thus reduc-
ing even further the model size during adaptation. Om-

niLearn is trained using the JetClass dataset [24], con-
sisting of 100M jets and featuring 10 different jet classes.
Each jet is represented as a set of constituent particles.

Jets are ubiquitous in high-energy collider physics and
identifying the origin of a jet (‘jet tagging’) is a key com-
ponent of a multitude of direct searches for new phe-
nomena and precision measurements. Improvements in
jet tagging performance directly translate into improved
sensitivity of many analyses. State-of-the-art jet tagging
models require many tens of millions of jets for train-
ing. As full detector simulations are expensive, it is pro-
hibitive to generate large enough datasets for every tag-
ging task and for every time there are changes in the
simulation set (e.g. better particle-level description or
different operational conditions). Our hypothesis is that
we can adapt a foundation model trained on less accu-
rate fast simulation with a small sample of realistic sim-
ulations to achieve competitive performance on the full
realistic problem.

We exemplify this idea showing the results obtained by
OmniLearn adapted to the publicly available ATLAS
Top tagging dataset [25]. In this dataset, 40M events are
generated with Pythia8 using the NNPDF2.3LO [26] set
of parton distribution functions and the A14 [27] set of
tuned parameters. Pileup effects are simulated by over-
laying inelastic interactions on top of the underlying hard
scattering process based on the 2017 data taking period.
Hadronic boosted top quarks are obtained in simulated
events containing the decay of a heavy Z 0 boson with
mass of 2 TeV. Background jets are obtained from simu-
lations of generic dijet events. Unified Flow Objects [28]
are used to determine the jet constituents. Jets are clus-
tered using anti-kT algorithm [29–31] with R=1.0 with
additional pileup mitigation algorithms [32–34] applied.
The Soft-Drop algorithm [35] is also applied to remove
soft and wide-angle radiation. Note that unlike the Jet-

Class dataset, the ATLAS top tagging dataset features
full detector simulation, event reconstruction, and pileup
particles.

We consider the scenario where we use the entire train-
ing data for the adaptation of OmniLearn and when
only 10% of the data is used (4M events). Results are re-
ported in Table. I for four metrics: the area under curve
(AUC), accuracy for a fixed threshold of 0.5, and the
inverse background efficiency at two fixed values of the
signal efficiency. We observe that OmniLearn excels
the performance of all previously reported benchmarks
in this dataset and is able to match the previously best
performing model using only 10% of the data, thus re-
quiring significantly less examples to achieve state-of-the-
art performance.

TABLE I. Comparison between the performance reported for
different classification algorithms on the ATLAS top tagging
dataset. Bold results represent the algorithm with highest
performance.

AUC Acc 1/✏B
✏S = 0.5 ✏S = 0.8

ResNet 50 0.885 0.803 21.4 5.13
EFN 0.901 0.819 26.6 6.12
hlDNN 0.938 0.863 51.5 10.5
DNN 0.942 0.868 67.7 12.0
PFN 0.954 0.882 108.0 15.9
ParticleNet 0.961 0.894 153.7 20.4
PET classifier (4M) 0.959 0.890 146.5 19.4
OmniLearn (4M) 0.961 0.894 172.1 20.8
PET classifier (40M) 0.964 0.898 201.4 23.6
OmniLearn (40M) 0.965 0.899 207.30 24.10

Correcting physics measurements for detector distor-
tions enables efficient comparisons between measure-
ments and theory predictions. This technique is known in
collider physics as unfolding. Machine learning greatly in-
crease the flexibility and potential of unfolding by allow-
ing the simultaneous correction of multiple distributions
without the use of histograms [2]. The OmniFold algo-
rithm [36, 37] introduced an iterative approach for un-
folding based on learned classifiers that use the data col-
lected by experiments to determine the unfolded distri-
butions. Since the methodology relies on the data avail-
ability, physics processes with limited data can severely
restrict the precision the algorithm can achieve. In con-
trast, the general representation of jets learned by Om-

niLearn can compensate for the limited data. We ver-
ify this observation adapting OmniLearn for complete
unfolding using all available features in the dataset intro-
duced in Ref. [36]. The dataset consists of proton-proton
collisions producing a Z boson, generated at a center-
of-mass energy of

p
s = 14 TeV. A sample used as the

‘data’ representative is simulated using particle collisions
with the default tune of Herwig 7.1.5 [38–40]. A sec-
ond dataset, representative of the ‘simulation’ we want
to correct, is simulated using Pythia8 with Tune 26 [41].
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Big science for less $$$

Codesign of EIC calorimeter

definitive answer: do we need W?

These are just examples - we will 
hear more in today’s session!

(+ there is even more - just the tip of the iceberg)

LHC top tagging: 

avoid expensive simulations - 
fine tune a foundation model!

LHC fast simulation & 
reconstruction together - 
address computational 
bottleneck in one go!



4Agenda

See also a number of 
other talks embedded 

in other sessions! 
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