Linac4 H⁻ Ion Source Work Package

The numerous contributions of the Linac4 ion source and sLHC teams and international colleagues is gratefully acknowledged

Abstact

Linac 4 IS design parameters: 100*+400 μs, 80 mA H⁻ pulses at 45 kV,

Repetition rate: 1-2 Hz, Emittance $0.25 \pi mmrad$

Status of the linac 4 ion source:

An RF driven volume source (copy of the DESY 35 kV, H⁻ source) is operated at the 3 MeV test stand.

The commissioning at 35 kV has been completed.

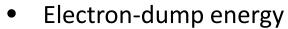
July 2010: Electron dump problems encountered during the upgrade to 45 kV.

The source is converted to a 45 kV proton source used for the RFQ and chopper commissioning until April 2012.

August 2010: Crash program initiated to provide a new Linac4 source design.

SLHCPP EU-project: 50Hz, 1.2 ms, 100kW, 2MHz RF plasma Generator designed, produced and tested. Plasma Generator Test stand is operational.

(*) pre-pulse of 100 µs to neutralize space charge.


Linac4 WPIS status

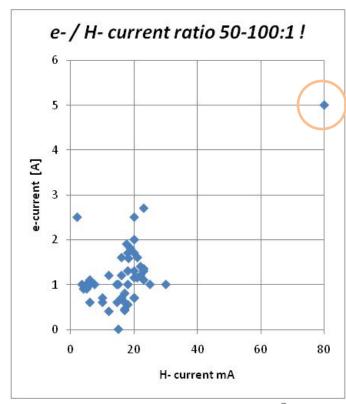
- 2005-July 2010
 - Survey of possible ion source
 - Copy of the DESY drawings
 - 2007, 95 kV and 45 kV design
 - 2008, Production of a Volume source
 - 2009, Commissioning at 35 kV
 - 2010, Commissioning at 45 kV
- Aug-2010 –June 2011
 - Analysis of the commissioning findings
 - Proposition of a draft WPIS amendment
 - Decision to produce a H⁻ ion source test stand and to include Cesiation
 - Review of accelerator H⁻ ion sources; outcome:
 - Baseline is RF driven H- ion source
 - Pulsed power supplies
 - Magnetron H⁻ ion source as backup to be launched asap.
 - March 2011: WPIS vs. shutdown (LS1) schedule
 - Staged approach, 30, 50, 80 mA
 - 30 mA, 45 kV H⁻ source on the 3 MeV test stand by mid 2012!
- Plasma Generator test stand operation:
 - Staff training, vacuum, gas injection
 - RF-Plasma parameters measurement & plasma diagnostics validation

A radio frequency driven H⁻ source for Linac4, Rev. Sci. Instrum. **79**, **02A504 2008**

ENGINEERING PARAMETERS FOR DIAGNOSTICS FOR A SOURCE TEST LINE FOR LINAC 4, https://edms.cern.ch/document/953231/0.1

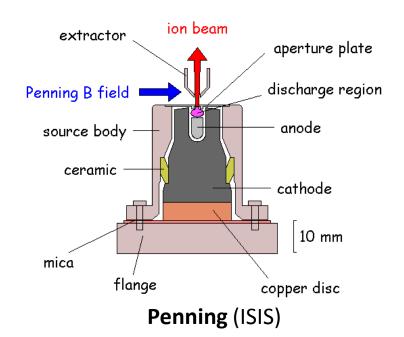
7/2010-8/2011

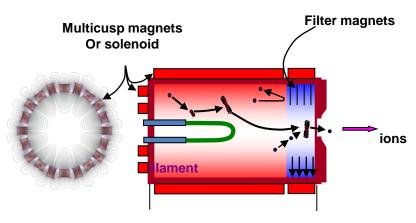
- e/H⁻ from 20 to 100
- 5 Amps @ 45 kV → 225 J/ms/mm²
- 2 orders of magnitude reduction is mandatory
- High voltage


Show stopper

- Sparks (2 μ F @ 45 kV \rightarrow 2 kJ)
- Antenna air ionization
- Internal capacities (sparks to H₂-line)
- Temperature stability
- Alignment, tuning flexibility
- Spare parts policy (fast IS-exchange)
- Emittance is nominal at low current (expected to increase at nominal current)
- Electron to H⁻ ratio (collar-front plate tuning)
- HT power supply requires upgrade for 2 Hz operations
- 3D beam transport simulation mandatory

After solving e-dump issue, It is worth to complete the 45 kV commissioning of a volume source.

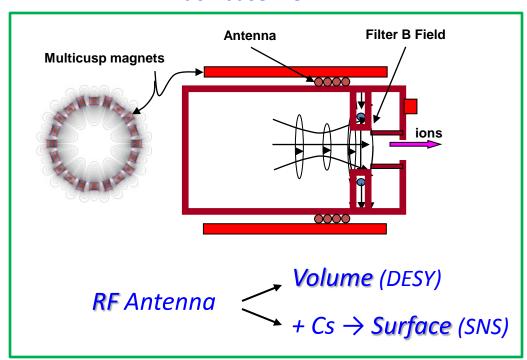

DESY vs. Linac4 ion source parameters

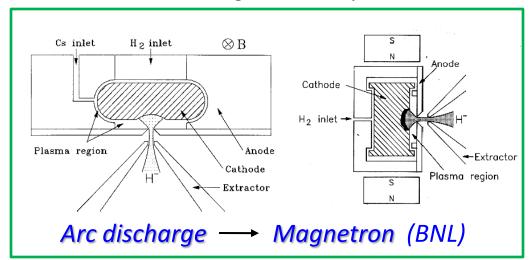

H ⁻ ion source stages		DESY	Linac4 July-2010	Linac4 Nominal	L4-nom / DESY		
Repetition rate	Hz	6		2			
НТ	kV	35	35	45	128%		
RF-power	kW	30	30	100	333%		
RF-pulse	J	4.5	15	70	15.56		
H- current	mA	30	20	60-80	267%		
Pulse duration	ms	0.15	0.5	0.7	467%		
Emittance	πμm	0.25	0.25	?			
Co-extracted electrons	А		2	5			
e-dump energy	J		35	158			

Strategy for ISWP:

- Systematic analysis of all physical processes is mandatory!
- Simulation will be validated by specific measurements
- Linac4 ISs will have limited life time, they will evolve and needs to be swiftly exchangeable.
- Cesiation must be implemented, learned and integrated (reduction of e/H- ratio)
- Spare IS and new IS-prototypes will be tested off-line (IS-test stand acceptance procedure),
- Linac4: on-line conditioning &commissioning of ion sources mandatory.

H⁻ Sources for Linacs




Cathode Discharge (JPARC)

Original drawings, courtesy of Richard Scrivens.

Linac4 baseline:

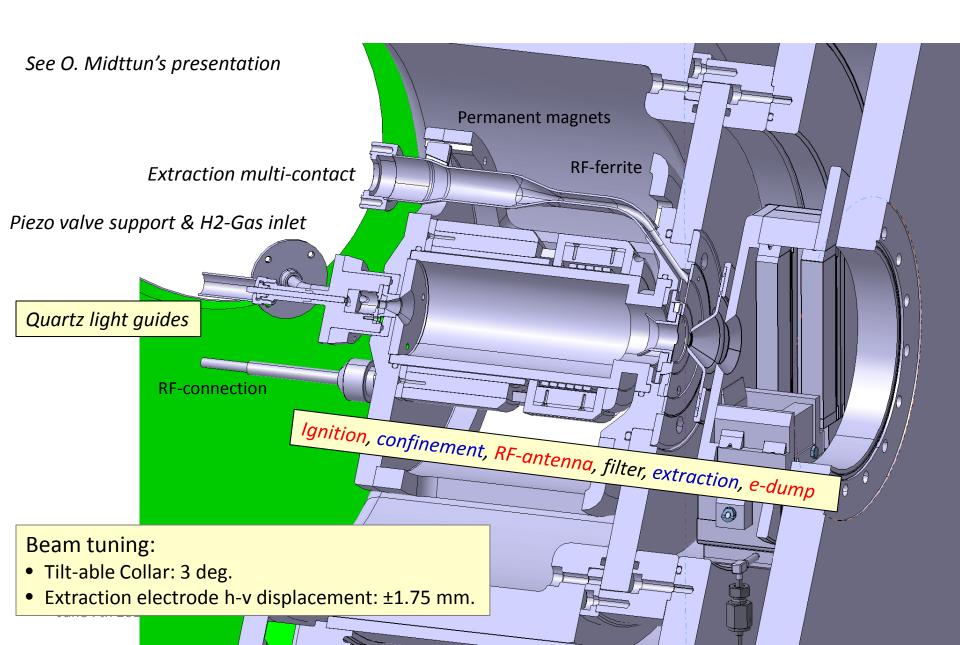
Linac4 high current option:

Outcome of accelerators H⁻ ion sources review Feb. 2011

- Review of world's accelerators H⁻ ion sources completed (Feb)
 - RAL-ISIS
 - BNL Magnetron + Cs metal
 - JPARC
 - SNS inductive RF internal or external antenna + Cs Chromate
 - DESY inductive RF external antenna
- ullet No H $^{\scriptscriptstyle au}$ ion sources within specified emittance @ 45kV & nominal beam intensity !
- Choices for Linac4:
 - L4-inductive external antenna (volume source) + Cs (surface source)
 - > 1 MCHF already invested
 - Existing know how, intrinsic flexibility
 - 2) Upgrade of BNL's magnetron to 45 kV as nominal current option and Risk mitigation
 - Simple and reliable for BNL operations @ 35 kV, 6Hz

Summary:

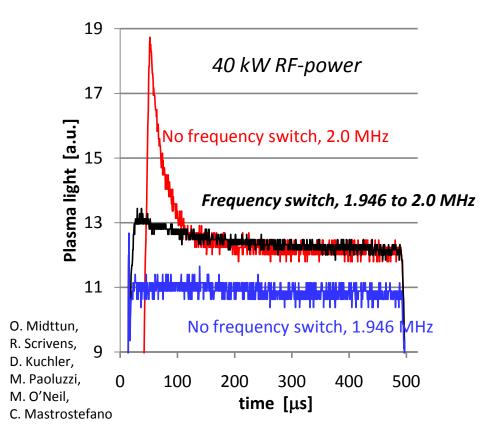
- August 2010 ISWP resource envelope accepted as 0-baseline.
- Pulsed extraction & BNL-IS Mitigation added to the 0-baseline
- Cesiated RF and Magnetron need R&D, learning & demo phase


Cesiated H⁻ ion sources,

Data extracted for specific operation conditions on: Cs-injection rate, H⁻ current, emittance, HV, repetition rate and life time

	Cs consumption	mg/day	H ⁻ current, pulse duration, emittance and extraction voltage	Rate, Life time
LANL	20 g / 30 days	600	40 mA, 1000 μ s, 0.13 $\pi \mu$ m, 80 keV	120 Hz,
DESY		0	25 mA, 150 μ s, 0.25 $\pi \mu$ m, 35 keV	6 Hz, 6 month
J-parc LaB6, W	tested	0 >0	36 mA, 500 μ s, 0.25 $\pi\mu$ m, 50 keV 60 mA	25 Hz, 500 h
SNS Goal:	30 mg / 40 days 3 mg	<0.75 <0.1	56 mA (after RFQ), 1000 μ s, 0.2 $\pi\mu$ m, 65 keV	60 Hz, 5 weeks
RAL	3 g/month	100	35-80 mA, 800 μ s, 0.3 $\pi\mu$ m, 65 keV	50 Hz, 1 month
BNL	< 0.5 mg/h	< 12	90-100 mA, 700 μ s, 0.4 $\pi\mu$ m, 35 keV	6 Hz, 3-9 month

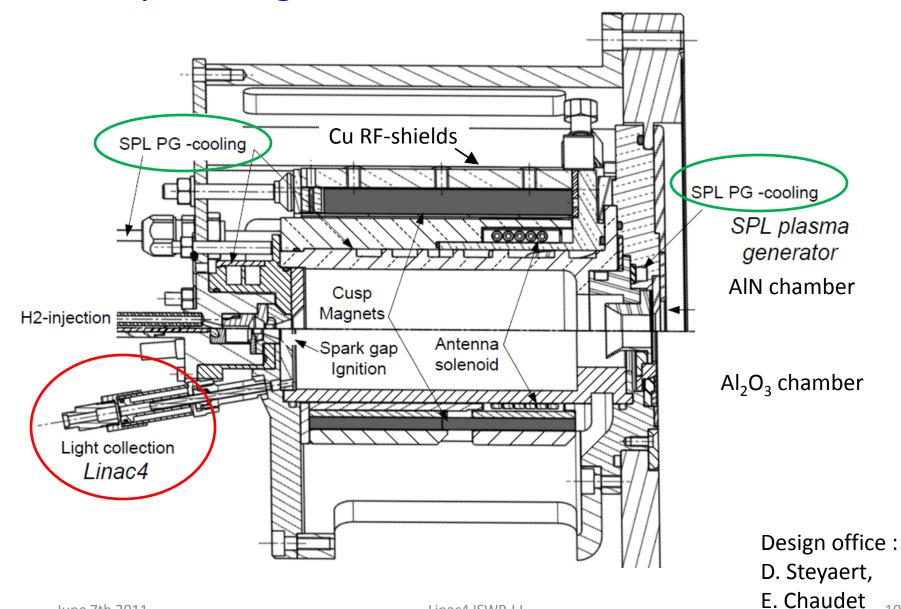
Cesiated IS operation must be demonstrated on the test stand prior to on-line operation! Minimize Cs consumption.


Linac4 H⁻ source; copy of DESY's IS

Linac4-IS Volume source:

Plasma light driven RF frequency switch

- Optimum coupling without and with plasma.
- Reduces jittering of ignition time
- Improves current stability

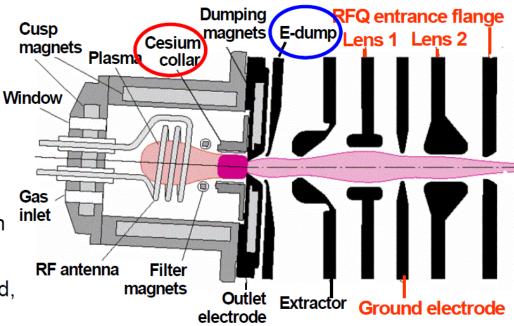

Mandatory parallel tasks:

- > IS-R&D + simulation
- > 3 MeV tests
- > IS Front end design
- ➤ IS Test stand production

Making use of existing equipment;

- **DESY Volume source** kept for 3 MeV commissioning as p-source
- 20-30 mA H⁻ volume source provided following upgrades:
- The e/H⁻ ratio is kept under control (measurement and modelling)
- The dump vaporization issue is solved (modelling the electron surface energy flux and secondary electrons and pulse HV-supplies)
- 3) Modelling the magnetic field, electrode displacement and tilt to understand electron and H⁻ beam alignment features.
- 4) Stable ignition (P, RF-switching, discharge)

SPL plasma generator as H⁻ volume source

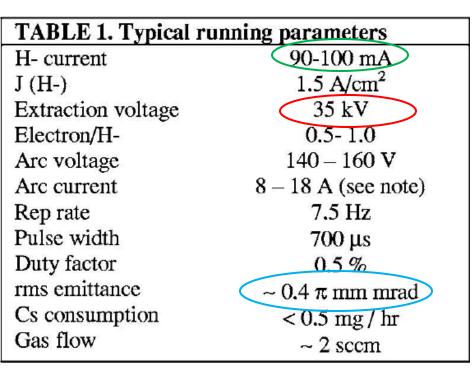

SNS H⁻ ion source, RF internal antenna

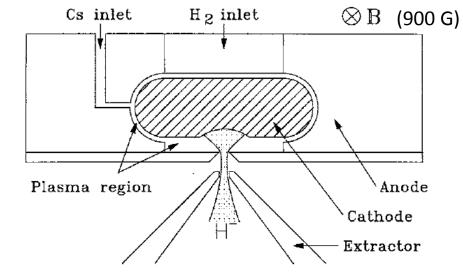
Courtesy form: M. P. Stockli, Presented at NIBS 2010 Takayama

Cs-chromate + Al-Zr getter

The SNS Baseline H⁻ Source

- •LBNL developed the SNS H- source, a cesium-enhanced, multicusp ion source.
- •Typically 250 W from a 600-W, 13-MHz amplifier generate a continuous low power plasma.
- •The high current beam pulses are generated by superimposing 30-70 kW from a pulsed, 80-kW, 2-Mz amplifier.


Low energy e-dump Multistage extraction Einzel lenses Tilt + Steering


- •After significant modifications, the SNS H- source now routinely produces the 38 mA LINAC beam current required for 1-1.4 MW beams!
- •The source service cycle has been increased from 2 weeks in 2008, to 3, and to 4 and 5 weeks without seeing old-age signs or failures.
- •We have demonstrated 56 mA MEBT pulse current and 59 mA MEBT peak current, which is sufficient for 2-3 MW beam power.

An initial injection of ~3 mg Cs is sufficient for Managed by UT->to 5 reweeks of persistent, ~50 mA H- beams. Public for the U.S. Department.

BNL's Magnetron surface plasma H⁻ ion source

- Pulsed H₂ injection
- IS-exchange: 8h
- Life time: 6 month
- Slow buildup of CsOH will gradually block the hydrogen inlet

FIGURE 1. Schematic of the magnetron source.

Ref: Performance of the Magnetron H- Source on the BNL 200 MeV Linac, James G. Alessi,

20th ICFA Advanced Beam Dynamics Workshop on High Intensity and High Brightness Hadron Beams, edited by W. Chou, Y. Mori, D. Neuffer, and I.-F. Ostiguy, 2002

Mandatory R&D for best Linac4 IS-candidates

function	RF-source	BNL Magnetron
Pulsed gas injection	R&D	R&D
Pulsed HT power supplies	R&D	R&D
Pulsed discharge	Ignition, 20A, 1 kV + R&D on uncorrelated ignitions	Discharge, 400-150 V, 15A, R&D
Cesium injection	Cs-Chromate Single injection	Cs-metal cw flow
H-plasma	Inductive coupling, ignition	Cs-Mo-H plasma & metallurgy
Life time extrapolated to L4	5 weeks, 60 Hz > 3 years	6 month, 6 Hz > 1.5 years
Risks , mitigation	60 to 1-2 Hz, thermal control, commissioning time	6 to 1-2 Hz, heating
Tuning	RF pulse and frequency Gas pressure	Arc power, Gas pressure
Extraction	Multistage 65 kV to 45 kV	Single 35 kV to multi 45 kV, e-dump
Dump & min e/H-	3D transport	3D & Increased energy

Both system require very similar development at CERN:

- Pulsed power supplies
- Thermal control, Cs-ovens
- ➤ 3D Simulation of H⁻ extraction & e-dump

Test stand & front end design:

Compatible to RF & Magnetron sources and to the SPL PG or DESY-IS

3MeV & L4 milestones vs. ISWP actions

	date	L4-milestone	ISWP action
	April 2012	3MeV test Protons	Protons
3MeV	May-Aug 2012	LEBT June 2012 H ⁻ beam July 2012	New front-end installation and commissioning Installation of proto #1 at the 3MeV test stand
	Sept-Dec	3MeV test H	H ⁻ 30 mA
IS-test stand	Oct-Dec 2012		Ion source test stand commissioning
	Jan 2013		Installation source in L4
	Tbc.		Test IS exchange procedure (proto #1)
	Dec 2013	Decision to connect	
Linac4	Feb 2014		Installation of proto #2 in linac4
LillaC4	April 2014	L4-160 MeV commissioning completed	20 mA required at the end of the linac4 (40 mA at the source)
	2015	LSS2 or long MD	Installation of proto #3

WPIS H⁻ Ion source: staged approach, 2 units each + spare

	#1 Volume source	#2 Surface source	#3 Magnetron
Operational experience H- current	DESY 30 mA	SNS 50 mA	BNL 80 mA
Plasma Heating process	2 MHz RF Ext. antenna	2 MHz RF Int. & Ext. antenna	Arc discharge
Cesiation		Cs-chromate Single deposition:	Cs metal Constant flow
Cs-Oven test stand		Nov. 2011	Nov. 2011
Electron / H ⁻ ratio	10-100	10	0.5 - 1
357 Plasma test stand (operational)	→ Sept. 2012	2013	2014-2015
3MeV test stand (until Dec-2012) (operational, Bldg. 152)	Jul. 2012- Dec- 2012		
IS test stand (Bldg. 357)		2013	2014
Linac4, building 400	Jan 2012	Oct 2013	2015

Challenges being addressed – Review presentations

- Design, production
 - Front end
 - Plasma generators & extraction
 - LEBT, beam diagnostics
 - Vaporization of e-dump, Electron to H⁻ ion ratio
 - Ab initio simulation vs. observables, Emittance
 - Pulsed power supplies
 - Pulsed gas injection, vacuum
 - Safety
- Commissioning
 - RF-coupling, Plasma characterization
 - High Voltage sparks
 - Impurities
- Operation
 - Graphical user interface
 - Plasma monitoring and diagnostics
 - Stability, Temperature control
 - Beam tuning and alignment
- Identification of Life time limiting processes
 - Antenna ageing
 - Plasma driven abrasion

- D.Steyeart, G. Favre
- R. Scrivens, T. Zickler, J.-B. Lallement
- U. Raich
- T. Kalvas, O. Midttun, H. Pereira
- D. Nisbet, D. Aguglia
- P. Chiggiato
- M. Kronberger, M. Wilhelmsson
- M. Paoluzzi, C. Schmitzer

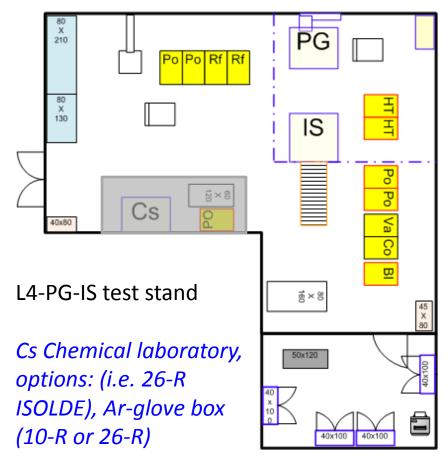
I. Kozsar, G. Bellodi, M. O'Neil

WP Overview:


L4-Milestones:

July 2012 H- tests at 45 keV @3 MeV-TS January 2013 Move into L4 building

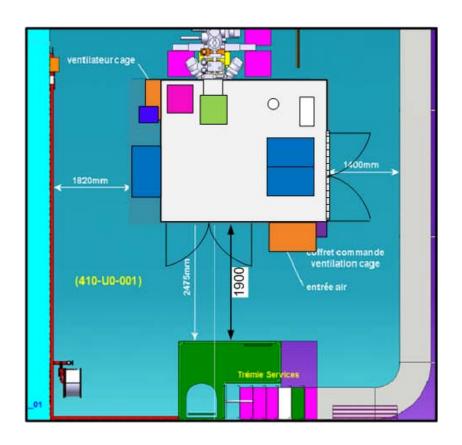
Front-end Vacuum Chamber, Prototypes (6 units) Commissioning and testing LEBT & H⁻ extraction optics 2 units / year 6 month / IS-unit Beam simulation Specification Matching network Test RF-coupling 30, 50, 80 mA **Pumping simulation** Plasma characterization Simulation Design: "front end" chamber (Optical emission spectroscopy, Langmuir Design: plasma generator gauge, e/H- ratio) Production: IS-Test stand electron dump Modify 3MeV TS H- beam characterization extraction 2 Front ends + LEBTs Beam diagnostics Simulation with tuned e/H-Production: plasma generator, extraction and RF-matching Tilt, Electrode displacement *Prototyping ion source* systems & e-dump final settings Commissioning Testing ion source front ends and LEBTs Stability test (90 days) July 2012 3MeV TS (July-Sept 2012) **Production:** Spare Unit Analysis of results; IS-PG-TS (Sept-Dec 2012) Ok for On-line operation


357-R-005; Plasma Generator & Ion source Test stands

Demineralized Water cooling and SPL RF-generator

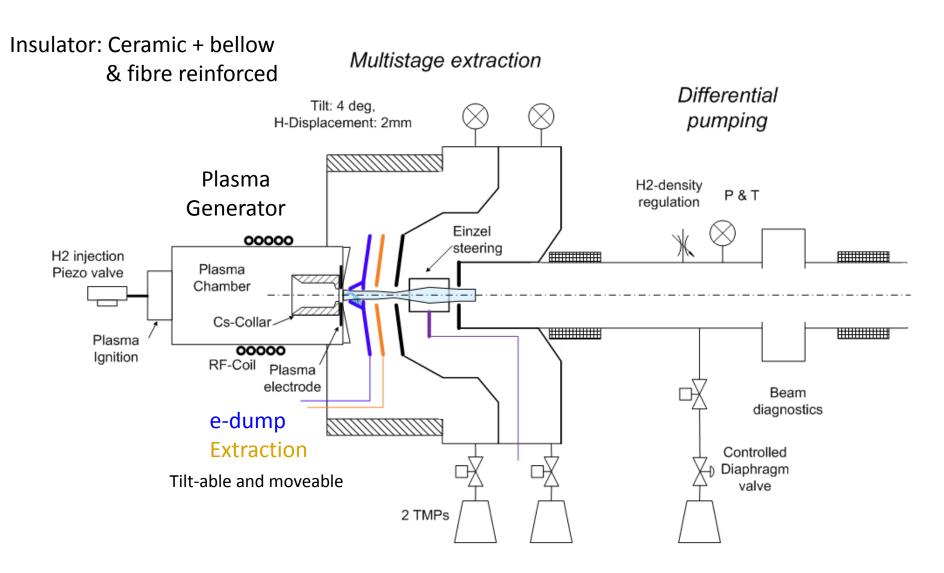

Missing space and not suited for Cs-lab
Challenging handling of equipment
Integration study required
+ Cs-transport under inert gas

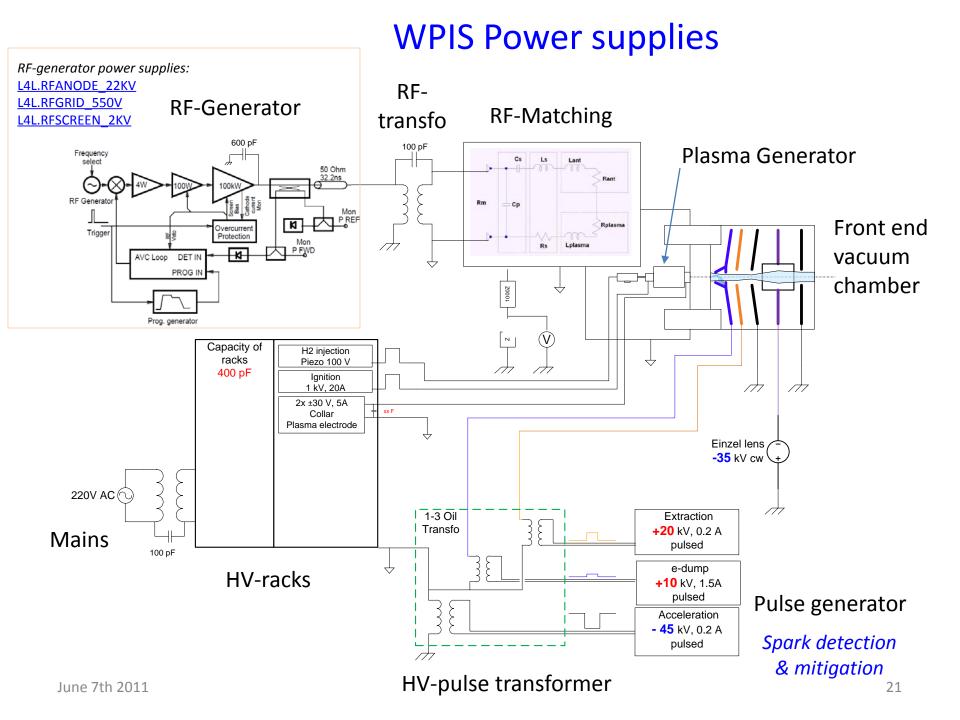
+ access to CERN's chemical lab



Faraday cage

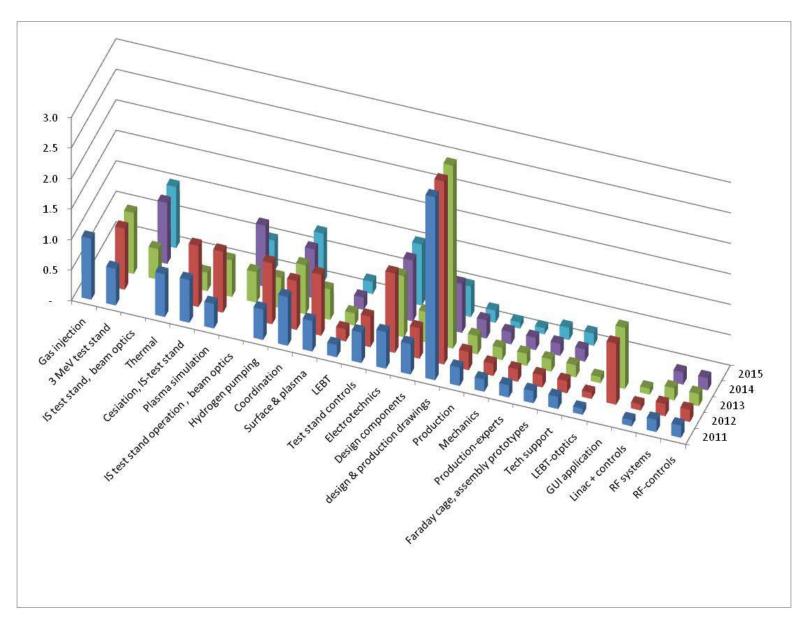
3MeV test stand Faraday cage (origin: 95 kV layout)




Linac4 Faraday cage
Gain in accessibility mandatory to host
pulsed HV-transformers and for "fast"
ion source exchange

H2 gas system out of HV cage and common to LEBT and IS

Diff. Pumping, Insulator, Tilt and Alignment

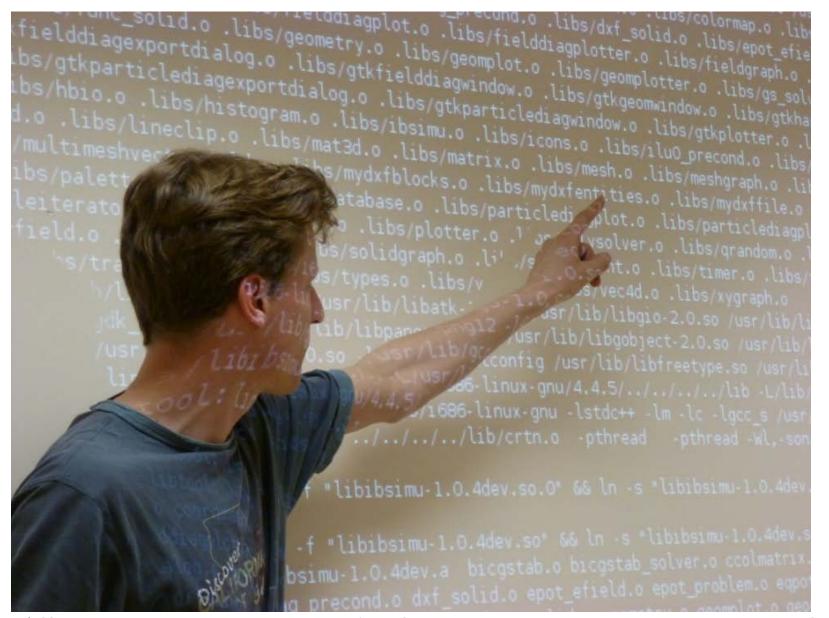


WP-Linac4 ion sources: Teams involved, additional resources

Group	L4-WP	Staff FTE	Fell. FTE	kCHF	Task description
DGS-SSE	1.3				Safety standard
EN-MME	1.5	8.0		1300	Design, integration, production. (* +BI estimation awaiting confirmation)
		3.2		900	2 nd Low Energy Beam Transport (LEBT) + modifs 1 st LEBT
BE-ABP	2.1	28.0	14.0	2150	Faraday cage, Ion source &, Beam optics, Specification, Tests, alignment, monitoring and safety systems, GUI, production
EN-MEF	2.7			275	Gas distribution systems (H2, Ar, N2)
TE-ABT	0.5			100	Pre Chopper driver
BE-RF	2.6	1.5		290	Design, operation and maintenance of the RF systems
BE-BI	2.7	1.0		525	Beam Instrumentation, design and production
TE-MSC	2.9			110	Magnets, magnets supports, production
TE-EPC	2.10			1100	Pulsed HV and Magnet Power supplies
TE-VSC	2.11		1.5	300	Design of vacuum & pumping systems, pumping simulation, LEBT density regulation
BE-CO	2.12	1.2		100	Controls, timing, maintenance of GUI
ISWP	total :	47.1	15.5	7150	(some numbers requiring detailed estimation)

June 7th 2011 Linac4 ISWP J.L. 22

Manpower distribution



Collaborations, sLHC & linac4 IS

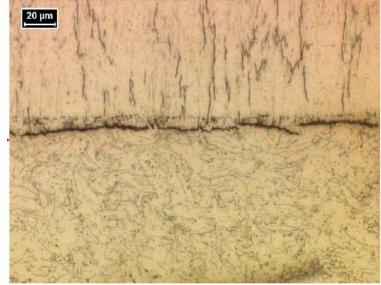
Creative manpower was required to address missing staff and expertise; Fellows, PhDs & Project associates and collaboration to external institutes the list below is our way to address it.

- SNS M.P. Stockli: Visit J. Lettry to SNS (April), Operation and GUI, IS-conditionning, ion source exchange of external, internal antenna plasma Generators (SNS linac and test stand)
- IPP Garching (sLHC): Seminar U. Fantz at CERN,
 - Visit J. Lettry, M. Kronberger (February):
 - Visit Cs-laboratory and ITER ion source
 - Emission spectroscopy and Cs-density diagnostics
 - Interpretation of emission spectroscopy via CR models
- Rutherford Appleton Laboratory, ISIS ion source
 - Visit D. Faircloth December (eddy current shielding), february-March high power operation of SPL plasma Generator
 - Visit J. Lettry to RAL (January), ion source operation and exchange, new test stand.
 - Arc discharge plasma simulation (John Adams Institute)
- Prof. Akiyoshi Hatayama, (KEIO university, Japan)
 - Simulation of e-heating in Hydrogen plasma, undefined schedule, upgrade from arc discharge to external antenna.
- S. Mochalskyy (Orsay & Cadarache), 3D-simulation of the plasma in the CERN linac4 ion source (Plasma parameter measurement pending).
- O. Tarvainen &T. Kalvas(University of Jyvaskyla) *sLHC & Linac4*
 - UV-VUV Lyman lines emission spectroscopy on sLHC plasma. 2 weeks plasma (completed).
 - T. Kalvas code for simulation of multistage extraction with co-extracted electrons (6 weeks lecture)
- BNL, James Alessi, visit R. Scrivens, F. Wenander and J. Lettry (Feb. Apr. 2011)
 - Operation, drawings

Ibsimu/libs/lecture/Taneli Kalvas.uni.jyvaskyla

Sputtering and Mo-deposition under H2-vapours

RAL-penning cathode by Courtesy of D. Faircloth


SEM observations:

Cathode tip: sample 2 section analysis

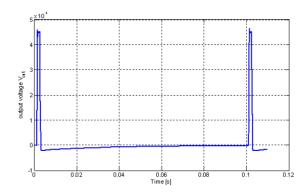
Cs Sputtering of Mo epitaxial Mo-growth under H2 atm.
Generation of brittle Mo-flakes

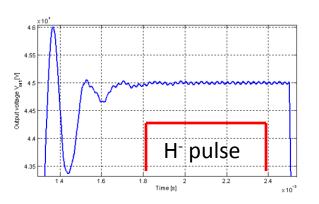
WPIS Controls, Operation, Monitoring

Controls: Settings and readout of effective value

- Power supplies: All currents and voltages (+ timing)
- RF Amplifier:
 - Power setting (time), frequency shift
 - Injected, reflected power
 - Current and voltage phase, Power deposited into the plasma
- Plasma generator: OES-intensities: $H\alpha$, $H\beta$, $H\gamma$ (time)
- Gas injection, settings pulse (time), H2-Pressure
- Vacuum: Pressure of differential pumping tanks (time)
 - H2 Density of LEBT

Graphical user interface software supervision by CO-OP team


FESA: Front End Software Architecture


OASIS: Open Analogue Signal Information System

D. Aguglia

WPIS Power supplies

Name, location		Responsible		Voltage,	Voltage, Load		Pulse duration	Rep. rate	357 test facility's test			3 MeV		Status		
		Group	type	polarity	[A]	[ms]	[ms]	[Hz]	PG	Cs	IS	Linac4	Spares		avail.	need
Acceleration, HT racks	Gnd + transfo	TE/EPC	R&D	-45 kV	0.2	0.7	2-5	2			1	1	1	3		3
Extraction	Gnd + transfo	TE/EPC	R&D	20 kV	0.2	0.7	2-5	2			1	1	1	3		3
Electron dump	Gnd + transfo	TE/EPC	R&D	4 kV	2	0.7	2-5	2			1	1	1	3		3
Insulation transformer	Gnd	*	commercial								1	1	1	3	1	2
Einzel lens	Gnd	TE/EPC	commercial	-40 kV	0.2	0.7	CW				1	1	1	3		3
Collar	HT-racks	BE/ABP	CERN	+/- 30 V			cw		1			1	1	3	2	1
Plasma electrode	HT-racks	BE/ABP	CERN	+/- 30 V			CW		1			1	1	3	2	1
Ignition	HT-racks	BE/ABP	R&D	+ 1 kV	20	0.1	0.1	2	1			1	1	3	2	1
Arc discharge	Gnd + transfo		R&D	400/150 V	20	1					1			1		1
Cs-Cromate Oven	HT-racks		R&D							1		1		2		2
Cs-metal Oven	HT-racks		R&D							1				1		1
LEBT solenoid	Gnd	TE/EPC	commercial		350		CW				2	2	1	5		5
LEBT steerers	Gnd	TE/EPC	commercial		10		CW				4	4	1	9		9
LEBT pre chopper	Gnd		R&D			0.1					1	1	1	3		3
HT- for RF amplifier	Gnd	TE/EPC	CERN	20 kV	2		CW				1	1	1	3	2	1
HT- for commissionning	Gnd		CERN	-50 kV	0.05		cw				1	1		2	1	1

Summary

WPIS review:

- Resources presented by tasks representatives
- LEBT completion realistic
- IS-test stand completion + commissioning is challenging.
- Extraction simulation well under way, mandatory measurements will be available end of 2012.
- Draft differential pumping design in progress, teething front end vacuum chamber and insulator (specification may have to be down graded).

• Risk:

- Delay; design and production under high load (2011-13)
- Technical: installing the pulsed power-front end in the 3MeV test stand will be challenging integration review as soon as all volumes are available (sept. 2011)
- Cs-lab: Chemical laboratory identified for Ar-glove box Option for Cs-Lab at ISOLDE end 2011.
- Installing a new extraction system, new power supplies and a new source mid 2012
 is challenging but leaves 5 month for debugging and commissioning of the
 prototypes This is our baseline.
- Resource estimate: 47 FTE, 7.2 MCHF (16 FTE fellows + PJAS + Phds). Revision of cost attribution within L4-WPs needed.

Acknowledgments, & thank you

Laszlo Abel, James Alessi, Davide Aguglia, Jose Marques Balula, Alessandro Bertarelli, Sebastien Bertolo, Oliver Bruning, Andre Castel, Elodie Chaudet, Paolo Chiggiato, Maryse Da Costa, Alain Demougeot, Jean-Francois Ecarnot, Hugo Estevao, Gilles Favre, Fabrice Fayet, Jean-Marie Geisser, Matthias Haase, Alexandre Habert, Jan Hansen, Stephane Joffe, Matthias Kronberger, Didier Lombard, Alain Marmillon, Serge Mathot, Oystein Midttun, Pierre Moyret, David Nisbet, Michael O'Neil, Mauro Paoluzzi, Laurent Prever-Loiri, Uli Raich, Jose Sanchez Arias, Claus Schmitzer, Richard Scrivens Didier Steyaert, Olli Tarvainen, Henrik Vestergard, Giovanna Vandoni, Mats Wilhelmsson,

Dan Faircloth, Ramon Folch, Philippe Frichot, Roland Garoby, Jonathan Gulley, Alexandre Gerardin, Christophe Jarrige, Erk Jensen, Emmanuel Koutchouk, Detlef Kuchler, Robert Mabillard, Marina Malabaila, Cristiano Mastrostefano, Sophie Meunier, Catherine Montagnier, Jose Monteiro, Mauro Nonis, Julien Parra-Lopez, J. Peters, Stephen Rew, Miguel Riesgo Garcia, Ghislain Roy, Stefano Sgobba, Martin Stockli, Franck Schmitt, Alain Stalder, Laurent Tardi, Dominique Trolliet, Donatino Vernamonte, Fredrik John Carl Wenander, Chiara Pasquino.

Action plan August 2010, (No HV-Pulsing, No Magnetron) draft Schedule & draft Resources: 34 FTE, 4.5 MCHF

L4-IS upgrades

Minimal dump,

protons

sLHC Plasma

Generator test

stand

RF and plasma

diagnostics

Cs Laboratory

Design

H- IS test stand

L4-IS

3 MeV

test stand

Date

2010

L4-IS -tunnel

Bldg. 400

2011	protons, mini H- pu	lse					world's IS WPIS June	Gas Dyna Upgrade		Design, production					
2012							tistage and ump	Test and commissioning			5				
2013	Move to Labuilding 40	Commissioning in L4 building			New HT-supply & extraction		Opera		Opera	peration			Surface source Proto.		
2014		Operation, Upgrade, control			Spare parts				Operation			Test of prototype			
2015											Move test stand to 152				
		mΥ	fraction	kCHF	ho	ours Reso		urces' profile	2	2011	2012	2013	3	2014	2015
total Man	oower	33.9					Hardware	2.1 MCHF					+		
staff		20.3	60%				Design office		kCHF	1062	1637	958	3	494	336
Fellows		13.6	40%, 36%	1632			fellows	1.6 MCHF		2.40/	260/	210	,	110/	70/
FSU+MM	ME 18% 791 15500					24%	36%	21%		11%	7%				
hardware	hardware		46%	2064				3 FTE	FTE	7.9	11.1	7.4		4.7	2.8
total cos	t			4487			fellows 13.	6 FTE		23%	33%	22%	6	14%	8%
· ·															