

European Organization for Nuclear Research

BE Beams Department | Accelerators & Beams Physics

BNL-type source & Cesium laboratory

Linac4 ISWP review

Hugo Pereira on behalf of the Linac 4 Ion Source team

June 7th, 2011

Contents

1. BNL source extraction

- 1.1. Extraction observations
- 1.2. Extraction simulation at 35 kV
- 1.3. Extraction simulation positive ions
- 1.4. Extraction simulation power density plots at 35 kV
- 1.5. Extraction at 45 kV

2. Modified BNL-type source extraction

- 2.1. e^{-} dumping
- 2.2. Einzel lens
- 2.3. e⁻/H variation
- 2.4. Beam current variation

3. Cesium laboratory

- 3.1. Cesium oven and dispenser
- 3.2. Schedule and cost

1. BNL source extraction

1.1. Extraction observations

Anode damage

 \Rightarrow Visible damage does not compromise operation of the source.

1.2. Extraction simulation at 35 kV

\Rightarrow Simulation shows e⁻ partially dumped on the puller electrode.

1.3. Extraction simulation - positive ions

\Rightarrow Simulation shows positive ions partially dumped on the cathode and anode.

1.4. Power density plots at 35 kV

 \Rightarrow Power density plots match the damage to the cathode, anode and puller electrode.

- \Rightarrow Sputtering will be studied.
- \Rightarrow Operation at 45 kV must be understood (are the same effects observed?).

1.5. Extraction at 45 kV

 \Rightarrow At 45 kV the e⁻ are dumped on puller similar to the BNL case at 35 kV. \Rightarrow Same effects are expect, but further studies must be made.

2.1 e⁻ dumping

 \Rightarrow Insert dump electrode at a lower potential before puller.

 \Rightarrow e⁻ are totally dumped on first electrode (damage still exists, further optimization required). \Rightarrow production of secondary e⁻ must be studied.

2.2. Einzel lens

 $\varepsilon_{xxLens} = .89 \varepsilon_{xxNoLens}$ $\varepsilon_{yyLens} = .82 \varepsilon_{yyNoLens}$

\Rightarrow Einzel lens improves beam focusing.

2.3. e⁻/H variation

 \Rightarrow Test same configuration with different e⁻/H⁻ ratio.

\Rightarrow Small increase of e⁻/H ratio has no strong influence for tested cases.

2.4. Beam current variation

 \Rightarrow Test same configuration with different beam currents.

 \Rightarrow For 80 mA the emittance is improved. \Rightarrow Further beam current decrease implies new design optimization.

3. Cesium laboratory

- Cesium-coated metal surfaces:
 - have considerably low work function;
 - increase the conversion yield of negative ions from plasma.

- Build and test a **cesium oven**:
 - store and handle cesium;

 $\left| \right|$

- transport cesium and cesium oven;
- assemble test stand;
- clean cesiated elements after test.

3.1. Cesium oven and dispenser

• Elemental Cs oven:

Cs glass ampoule.

• Cs Dispenser:

QMB: quartz micro balance; Cs layers are deposited on a quartz detector plate covered by Au. 14

3.2. Schedule and cost

• Schedule and manpower:

- Source extraction simulation: 6-8 months
- Source thermal analysis: 6-8 months;
- Laboratory and test stand assembly: 6-8 months;
- Test stand source **measurements**: 6-8 months.
- \Rightarrow **Manpower: 2-3 FTE** over 2 years.

• Costs (kCHF):

- Cesium test stand for Cs oven: 126;
- Storage, handling and safety: 90;
- Cleaning system for cesiated elements: 20.
- \Rightarrow Total = 236 kCHF

Cesium test stand

Cacium

CCSIUITI	10
6-way cross vacuum chamber	3
Flanges & other material	5
Power supplies	10
Rack and cabling	5
Vacuum pumps	6
Fabrication and design	60
Quartz Micro Balance	14
Optical Absorption Spectrometer	15
Storage, handling and safety	
Cs and Cs chromate storage	1
Flammable liquids storage	1.5
Argon box	33
Fire protection	3
Ventilation system and refurbishing	50

10

Conclusion

1. BNL source

- Extraction damages cathode, anode and puller electrode.
- Simulated extraction results reproduce experimental data.
- 2. Modified BNL-type source at 45 kV
 - Extraction for a modified BNL-type source at 45 kV is modeled
 - A draft e-dump is proposed and simulated.
 - Further parametric studies (2nd electrons, rest gas ionization) must be peformed.
 - Study thermal behaviour at low repetition rates mandatory.

3. Cesium laboratory

- Create laboratory and assemble a test stand to acquire Cs behaviour.
- 2-3 FTE over 2 years;
- 236 kCHF.