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Introduction APPLE “95

Arcing in plasma process Aopiod Bhysics o or PLasrs st

Applied high voltage in electrode, arcing can generate on electrode
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Arcing Induced Damage in plasma processing APPIEE‘”‘S
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Literature review : Plasma analysis with arcing
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Fig. 4. Typical floating potential variation during micro-arc at argon
pressure = 50 mTorr and RF power = 50 W.
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Figure 4. Floating potential spectra of arcing for mode D at
different RF power levels.
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Motivation : Lack of the plasma behavior when the arcing generaffeff ™' "esmeEnaneerns
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I Experiment details “
Experimental configuration and condition APPI;E
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How to improve arcing rate and localization &A% 0w

<+ Arcing rate: Allowing DC current* (V, ~ 200 V¢ by an emissive probe**)
** Localization: Arcing Inducing Probe (AIP) with DC Bias, -25 V¢

Enhancing arcing rate Localizing arcing

Conventional CCP (Allowing DC current*) (DC Bias on AIP**)
DC yoltage | | | |
block A A A
cap.\ <V (t)>; < () >;
(i?—”— <V, (1) >, i?_ ] 1
/ distance / ) —
N Vaip [ _———
Continuous ion IVA'P
bombardment -
without electron large voltage
suction phase* difference
N A\ A\ J

*Y.Yin et al. J. Phys. D: Appl. Phys. 37 2871-2875 (2004)
**S. J. Kim et al., Sci. Reports 12 20976 (2022)
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Experiment details

Method of electron density, sheath thickness

Electron density measurement method

Signal Intensity [a.u.]
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ref) Kim, J.-H., Choi, S.-C., Shin, Y.-H., & Chung, K.-H. (200
4). Wave cutoff method to measure absolute electron densit
y in cold plasma. Review of Scientific Instruments, 75(8), 27
06-2710. doi:10.1063/1.1771487

<+ Electron density : n, =

(
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Ref) S.J. Kim et al. Analysis on crossing frequency in transmission microwave frequency spectru
m of the cutoff probe, Physics of Plasmas, 30, 024501 (2023)
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Experiment details
Method of electron density, sheath thickness

Sheath thickness measurement method
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Front view of AIP

Recording Rate:
Shutter Speed: 1/1,095,900 sec (=0.91 ps)
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Electrical signal analysis APPLEGW.
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Electrical signal analysis APPLEGW.
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Electron density and sheath thickness APPLE‘"W
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Electron density and sheath thickness

Plasma potential (V)
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<+ Sheath thickness « Plasma potential
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Electron density and sheath thickness
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Plasma behavior with arcing initiation ApAPPl;EZZ
' Arcing initiation
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I Results and discussion | o APPLE ©
Power system change with plasmavariation  fAh. 0w e

with sheath collapse ®

< Impedance matching should be change
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RF impedance calculation APPI—E“'24
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< Impedance : Z = YW it ¢y = LVt 5,
(i) tRF

“» Reactance change minus to plus (Main impedance change from Cto L)

< Impedance variation causes RF mismatching.
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Plasma behavior with arcing initiation APPLEW.
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Concluding Remarks

Conclusion

We established arcing initiation and diagnostic system

Sheath thickness and electron density were obtained by cutoff probe.
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The sheath collapsed when the arcing initiation, but electron density does not change.
The impedance is changed by arcing, and applied RF is decreased by RF mismatching
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Electrical signal analysis APP LEG.
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Electron density and sheath thickness APPLE‘"
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Method — Verifying sheath thickness measurement method with circuit
simulation

Circuit model simulation (b)

2 L] L] L] L] L] L] L) L) L] L] v ' ' . ' N '

i . -f input _
10 1Crossing 4 cutoff L en™ 0.381 GHz
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- = E 3 - in S21 ,A«‘-'f:rr.
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g e || =25 GHE
920 " M 0 07 i : ! : ! 5 1 i
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Frequency (GHz) Setting thickness (mm) 2s/(d-2r) (%)

The cutoff probe is simulated with circuit model. (Setting electron density = 2*101° cm3, pressure = 170 mTor

y

When the setting sheath thickness increases, cutoff frequency is not change but crossing frequency shift
toward right.

Therefore, crossing frequency is closed to cutoff frequency when the sheath thickness increases.

Obtained f,ossing/feutorr from second figure, it can change sheath thickness by substituting third figure
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= Method - Verifying sheath thickness measurement method with circuit
simulation

Circuit model simulation

~—~
=

E
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0

()

c 3F

X
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(@)
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< 1f

5 —a— Calculating thickness

(&} —eo— y =x fitting

E O- '] '] '] '] '] '] '] ']

Q 00 05 10 15 20 25 30 35 40 45

Setting thickness (mm)
* From the above results, sheath thickness is calculated.
* The X axis is setting thickness, and Y axis is calculating thickness. It shows that almost same.

« Calculating R?, it is almost 1.
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= Experiment set-up
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Orange line : Cutoff probe measurement set — up (Cutoff probe, oscilloscope, delay generator)
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= Experiment set-up : Data Acquisition
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Plasma analysis — Electron density, sheath thickness

= Results and discussion : Cutoff probe results
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——0us

fcrossing =869 MHz ]

\

fcutoff =893 MHZ.
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« There’re the cutoff probe results via arcing initiation.
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30 30
20 Vacuum « 20 Vacuum «
10k —— 0.6 us 10k ——0.8us

Of 0] §
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Frequency (GHz)
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- To obtain the crossing frequency vacuum spectrum and plasma spectrum are measured.

«  The cross point with black and red line is crossing frequency, and the minimum value in N- shape is the cutoff

frequency.

*  The cutoff frequency is not changed with varying time, but the crossing frequency decreases.

* Note that, the floating potential is decrease with flowing time, so we expected that sheath thickness is decrea

se.
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Results and discussion : Sheath thickness in arcing
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When we plot the crossing frequency and cutoff frequency as time, we can check that crossing/cutoff ratio
stiffly decrease.

Using the crossing/cutoff frequency ratio, the sheath thickness can be obtained. In here, the cutoff probe
distance is 10 mm.

Before the arcing initiation, the sheath thickness is near 4.5 mm, it is the highest value. This is because,
the floating potential is very high, so sheath thickness is also thick.

After the arcing initiation, the thickness is decreases, near 1.3 mm at 0.4 us.

When the floating potential value is near zero, the sheath is almost collapse, the value is near zero.
However, the electron density is not changed (Cutoff frequency is not differ). n, ~ 101 m=3

The sheath thickness from cutoff probe is matched well with floating potential tendency.

Therefore, it is certain that the sheath collapses as arcing occurs.
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Results and discussion : Sheath thickness in arcing
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When we plot the crossing frequency and cutoff frequency as time, we can check that crossing/cutoff ratio
stiffly decrease.

Using the crossing/cutoff frequency ratio, the sheath thickness can be obtained. In here, the cutoff probe
distance is 10 mm.

Before the arcing initiation, the sheath thickness is near 4.5 mm, it is the highest value. This is because,
the floating potential is very high, so sheath thickness is also thick.

After the arcing initiation, the thickness is decreases, near 1.3 mm at 0.4 us.

When the floating potential value is near zero, the sheath is almost collapse, the value is near zero.
However, the electron density is not changed (Cutoff frequency is not differ). n, ~ 101 m=3

The sheath thickness from cutoff probe is matched well with floating potential tendency.

Therefore, it is certain that the sheath collapses as arcing occurs.
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+ Using the high voltage probe, and current probe, the arcing is analyzed.
« Making the hypothesis : Plasma sheath is collapse from floating potential decreases.

- The hypothesis is verified : Sheath thickness calculated method by Cutoff — Crossing frequency method
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= Cutoff probe measurement with delay generator (FCP

method)

RF generator
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Raw data of the signal

6 Y Y Y Y T 0.06

5 = Transmitter
4 Receiver 4 0.04 9
S Z
O 2 1002 @
o ! o
.'CE O VAV| o m v owwd ol b VORISRV OOO _ICE
— _1 6
g -2 = -0.02 >

_3 ] ] ] ]

0 5 10 15 20 25 30
Time (ns)

6 T T T Y T 0.06

5pk = Transmitter
4k Receiver 4 0.04 ,;
> s} 2
O 2Fk 1002 @
o lF (=2
T o e N L AT veentaccf 4 000 O
_— -1 I V 6
g 2pk -0.02 >

_3 ] ] ] ] ]

0 5 10 15 20 25 30

Time (ns)



Appendix

APPLE®

Applied Physics lab for PLasma Engineering

= Time-gating, experiment order

S21 = 20logqg
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(b)

fioeut g 381 GHz

10} pe,min \_
) = Weross — — =
—o0—f___inS,
cross 21
—o—f ineq.(9)

cross

2
©
T

where Z,, is the total impedance of the circuit model domain. Circuit
elements are as follows: Cg, is 2megh/log ((r+s)/r); Co is
negh/acosh(d/(2(r +s))); Ly is I/wgeCU; and R, is vy L, where 1, d,
h, and s are the probe tip radius, tip distance, tip length, and sheath
width, respectively. Here, s is assumed as the floating sheath, which is
the five times of the Debye length, Ap. (5 X Ape). Here, R is the same

f_If
cross pe

=
@
T

input
pe,max

=6.35 GHz

with Ref. 7. In this paper, the probe tip length (5.0 mm), tip radius
(0.26 mm), and tip distance (3.0 mm) are fixed.
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