# **ML** activities in ALICE

### Fabio Catalano, Francesco Mazzaschi

2nd CERN IT Machine Learning Infrastructure Workshop 11/10/2023





## TPC PID calibration with neural networks

- NN corrections to the Bethe-Bloch parameterization of particle energy loss (dE/dx)
  - track information as input (p, tan( $\lambda$ ), N<sub>CLS</sub>, ...)
  - n-dimensional (6D) corrections → correlations kept into account
  - o only one iteration needed
- Replaced the Spline corrections of Run 2
  - per-dimension splines assuming factorisation
  - multiple iterations to produce
- Performance comparable or better than Splines on Run 2 data
- Fully data-driven NN corrections now available for all Run 3 pp data

Further details: CERN-THESIS-2022-342



### TPC PID calibration with neural networks

- Fully connected NNs performing a regression
  - PyTorch library used
  - final NN trained on the output of two larger models (12 nodes x 10 layers) for performance reasons at inference time
- Training performed for each data-taking period
  - starting from analysis-object data (AO2D)
  - on GSI SLURM cluster
  - ~7-8 hours of GPU time on Nvidia V100 or AMD MI100
- > ~300 hours of training time per data-taking year
- Trained models uploaded to CCDB and accessible on the WLCG GRID
  - model inference based on ONNXRuntime

Further details: CERN-THESIS-2022-342



### Particle identification with the ITS2

- The new ALICE Inner Tracking System (ITS2) has a binary pixel readout
  - no dE/dx information as present in Run 1 and Run 2
- Topology of the produced signal (cluster) can be used as a proxy for the energy loss of the particle



XGBoost BDT regressor to estimate the particle β

 track information (p, tan(λ)) and properties of clusters (size, shape, ...) in the ITS2 layers as inputs to the model

### Particle identification with the ITS2

#### Training using particles tagged in TPC

- starting from reconstruction output
- not dependent on data taking period
- ~ 30 min on Turin INFN cluster
  - Nvidia RTX A6000 GPU 48 GB
- Method validated on Run 3 MC
  - good separation between e, π, K, p at low momentum
- Encouraging results on Run 3 data
  - further studies using tagging performed with  $K_{c}^{0}$ ,  $\Lambda$ ,  $\Omega$  decays ongoing
  - training on large data samples foresee



#### 11/10/2023

### Combination of detector PID information

- Combine the particle-identification information of different detectors to provide global PID
  - replace hand-crafted combinations and selections
  - provide high purity samples of particles of a given species
- Different NN models trained for each particle species and data-taking period
  - PyTorch library used, ~1h training time per model on Nvidia GTX 1660Ti
  - starting from analysis-object data (AO2D)
  - track information and detector signals related to PID as input



- Information from one or more detector could be missing
  - typical for low  $p_T$  particles
  - solution: model based on feature set embedding (FSE) with multi-head self-attention mechanism

#### 11/10/2023

### Combination of detector PID information

On Run 2 pp MC, NN with self-attention + FSE shows better performance than other approaches for incomplete data

>

- data imputation
  - mean
  - linear regression
- NN ensemble

|                 | Π      |            |                | p      |            |                | К      |            |                |
|-----------------|--------|------------|----------------|--------|------------|----------------|--------|------------|----------------|
| model           | purity | efficiency | F <sub>1</sub> | purity | efficiency | F <sub>1</sub> | purity | efficiency | F <sub>1</sub> |
| mean            | 0.9718 | 0.9934     | 0.9825         | 0.9559 | 0.8927     | 0.9232         | 0.8858 | 0.8081     | 0.8452         |
| regression      | 0.9723 | 0.9931     | 0.9826         | 0.9520 | 0.8973     | 0.9238         | 0.8795 | 0.8168     | 0.8470         |
| case deletion   | -      | -          | -              | _      | -          | -              | -      | -          | -              |
| NN ensemble     | 0.9745 | 0.9914     | 0.9829         | 0.9607 | 0.8895     | 0.9237         | 0.8751 | 0.8207     | 0.8470         |
| attention + FSE | 0.9734 | 0.9937     | 0.9835         | 0.9648 | 0.9009     | 0.9318         | 0.8841 | 0.8337     | 0.8581         |

#### Particle classification Feature mapping spou of real Domain classification spou of real provide real provide

Further details: M. Kabus talk at CHEP 2023

#### Further developments

- address data-to-MC discrepancies using domain adversarial neural networks
- define approach to systematic uncertainty estimation

#### 11/10/2023

#### F. Catalano

2<sup>nd</sup> best model

best model

### Resources for large scale ML trainings

- How to provide resources to support the use cases shown before?
  - systematically train and validate the output of ML models
  - relatively light trainings, but many models and/or frequent re-training needed
- Possibility to use ALICE resources under consideration
  - opportunistic use of ALICE EPN farm
    - composed by ~350 servers, each one equipped with 8 AMD MI50 or MI100 GPUs (plus 2x 32-core AMD CPUs and 512 GB of RAM)
    - used for synchronous and asynchronous reconstruction (w.r.t. data taking)
  - HPC Perlmutter in Berkeley
    - on nodes equipped with Nvidia A100 GPUs
  - resources accessible via batch jobs (similar to GRID analysis model)
- Any resource available/foreseen from CERN?

> ALICE is potentially able to provide in-house resources for large(-ish) scale ML projects

What about hardware resources for analysers and early/cutting-edge developments?
o dedicated resources for ML usually provided to developer/analyser by his/her institution

### Central resources from CERN available/foreseen?

- interested in easy access  $\rightarrow$  shell and/or Jupyter notebook
- SWAN very nice but limited in term of resources

### Integrate ML model inference in ALICE software

- Inference of ML models in ALICE software implemented via ONNX + ONNXRuntime
  - positive experience so far



- Models, usually trained with Python software, exported to <u>ONNX</u> format
  - supports most ML models (BDT, NN, ...) and libraries (XGBoost, PyTorch, TensorFlow, ...)
  - $\circ$  stable format  $\rightarrow$  good for model preservation
  - industry standard
- Inference of models in ONNX format performed by <u>ONNXRuntime</u> library
  - integrated in ALICE software stack
  - C++ API available, some custom classes developed to simplify usage
  - mainly used on the GRID at the moment
  - ML models stored in CCDB and retrieved at runtime, possible also to use CVMFS

### Integrate ML model inference in ALICE software

#### Under investigation

- provide data from Apache Arrow tables (ALICE Run 3 data format) to ONNXRuntime efficiently and with flexibility
- TMVA SOFIE as inference provider
  - experimental tool in ROOT to read and perform inference for ONNX models
  - pros: easy integration, possibly better support for ALICE data format through RDataFrame Arrow backend
  - cons: limited number of ONNX operators supported

- Problem of inference of ML models on large amount of data probably common to all LHC experiments
  - expertise transfer and/or common developments would be beneficial

### Heavy-flavour hadron trigger for pp collisions

- Software trigger for ALICE high-energy pp program includes selection of interesting events for heavy-flavour (HF) hadron studies <u>CERN-LHCC-2020-018</u>
  - running at the analysis level on AO2Ds
  - o intervals of raw-data frames selected and subsequently re-reconstructed
- HF selections based on XGBoost multi-class BDTs
  - training time negligible
  - inference on all collected data using ONNXRuntime
    - 10x speedup if BDTs converted into tensor format with <u>hummingbird</u>
- Currently being used in the skimming of all 2022 and 2023 pp data collected by ALICE





### Signal-vs-background classification

• BDTs and NN replacing "traditional" linear selections

### **Particle identification (PID)**

- exploit complex relationship between track properties and PID
  - NNs to combine info from different detectors
  - PID with ITS2 using BDT regression

### **TPC response calibration**

- ML to compute corrections of spatial charge distortions
- NN for energy-loss (dE/dx) calibration

#### **General framework developments**

• common tools and procedures

#### **HF-hadron trigger**

• BDTs to trigger on displaced decay-vertex topologies

### **MFT-MCH track matching**

• NN classification giving the score for a correct match

#### **ML for EMCal QC/calibration**

• alert experts quickly and accurately about issues in data-taking, flag bad towers

#### **Fast simulation**

 ZDC calorimeter simulation with Generative Adversarial Networks and Variational Autoencoders

#### ... not a comprehensive list!

#### 11/10/2023

### TPC PID calibration with neural networks



#### Further details: CERN-THESIS-2022-342

11/10/2023

[d] dE/dx<sub>TPC</sub> - dE/dx<sub>c</sub> dE/dx<sub>cor</sub> 10<sup>1</sup> Pions Pions 102 H Binned mean and sigma H Binned mean and sigma <u>۳</u>[] dE/dx, dE/dx<sub>TPC</sub> - u dE/dx<sub>C</sub> Protons Protons H Binned mean and sigma H Binned mean and sigma [0] 101 dE/dx<sub>TPC</sub> - dE/dx<sub>corr</sub> dE/dx<sub>corr</sub> -1 $\sigma$  = detector resolution on dE/dx 101 100 100-11 100 p [GeV/c] p [GeV/c] F. Catalano

Electrons

H Binned mean and sigma

NN

Mean correction and sigma estimation, NN

Electrons

ΙJ

Binned mean and sigma

Mean correction and sigma estimation. Run 2

**Splines** 

### Combination of detector PID information

Tests of domain adversarial neural networks on Run 2 pp MC



**Figure 3.** Preliminary result of DANN PID for the TPC detector signal (dE/dx) as a function of particle momentum for particles identified as protons without domain adaptation (left) and with domain adaptation (right).

### Software for ML

- ML applications in ALICE based either on
  - ROOT TMVA
  - python software stack (<u>scikit-learn</u>, <u>XGBoost</u>, <u>TensorFlow</u>, <u>PyTorch</u>, ...)



- Well integrated in ALICE analysis software and on the GRID
- Limited selection of ML models and tools
- X Limited documentation



- Videly used outside HEP
- Many ML models and techniques available
- Need interfaces with the ALICE environment (<u>uproot</u>, <u>treelite</u>, <u>ONNXRuntime</u>)

### **BDT** inference optimisations

- ONNXRuntime is optimised for the tensor computations typical of NNs
  - not so efficient for the inference of BDTs (used in many ALICE analyses) and classical ML algorithms
- hummingbird (python library)



• converts trained ML models into tensor computation for faster inference









### **BDT** inference optimisations

- Performance improvement given by humminbird tested in the context of heavy-flavour hadron trigger studies
  - ONNX multi-class BDTs used as software 0 10-2 trigger for pp events hf-filter (ONNX) CPU time / event (s) about 10x speedup compared to Ο non-converted models hf-track-indexhf-filter CPU time / event comparable to skims-creator Ο (hummingbird) rectangular selections rectangular selections  $10^{-4}$ Mind the log scale!