

ATS AI/ML infrastructure needs

V. Kain for the ATS ML community forum

Smart and agile accelerator exploitation: Al for

- * Automatic optimisation and control
- * Preventive/prescriptive maintenance and fault analysis
- * Enhanced diagnostics
- * Advanced data-driven modelling: hysteresis compensation, kicker temperatures with intensity,...
- * Simulations into control room: fast executing surrogates
- * Optimised scheduling for accelerators and beam requests

• Smart accelerator design: Al for

- * Speeding up simulations: fully differentiable codes, AI solvers,...
- * Bayesian optimisation

Al assistants

* co-pilot for code development, finding and digesting documentation,...

Key AI/ML use case in ATS

Smart and agile accelerator exploitation: Al for

First operational experience

- * Automatic optimisation and control
- * Preventive/prescriptive maintenance and fault analysis
- * Enhanced diagnostics
- * Advanced data-driven modelling: hysteresis compensation, kicker temperatures with intensity,...
- * Simulations into control room: fast executing surrogates
- * Optimised scheduling for accelerators and beam requests

Smart accelerator design: Al for

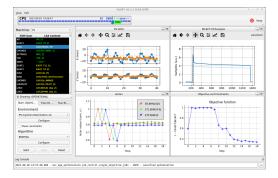
Not started

- * Speeding up simulations: fully differentiable codes, AI solvers,...
- * Bayesian optimisation

Al assistants

Pilot project(s)

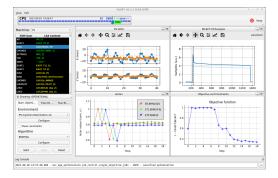
* co-pilot for code development, finding and digesting documentation,...



Smart and agile accelerator exploitation

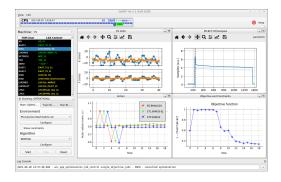
- = AI/ML into the control room, on the tech net (TN) and in the controls middle ware
 - Python in the control room and Python APIs to all databases and equipment communication
 - opensource community spirit: acc-py package index
 - Store and share models: "machine learning platform" on K8s with GPUs
 - UCAP* as online data processing framework

*UCAP=Unified Controls Acquisition and Processing framework

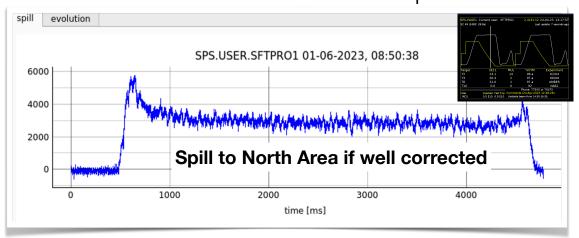

Smart and agile accelerator exploitation

- = AI/ML into the control room, into the tech net (TN) and in the accelerator middle ware
 - Python in the control room and Python APIs to all databases and equipment communication
 - opensource community spirit: acc-py package index
 - Store and share models: "machine learning platform" on K8s with GPUs
 - UCAP* as online data processing framework
 - Framework for optimisation and RL → GPUs on TN; GPUs on UCAP

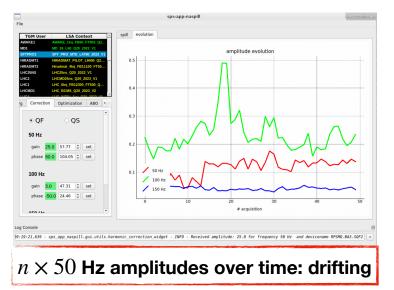
*UCAP=Unified Controls Acquisition and Processing framework

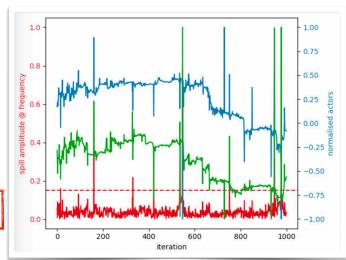

Smart and agile accelerator exploitation

- = AI/ML into the control room, into the tech net (TN) and in the accelerator middle ware
 - Python in the control room and Python APIs to all databases and equipment communication
 - opensource community spirit: acc-py package index
 - Store and share models: "machine learning platform" on K8s with GPUs
 - UCAP* as online data processing framework
 - Framework for optimisation and RL → GPUs on TN; GPUs on UCAP
 - GPUs for offline training → interconnected GPUs to train transformers: VPCs, cloud, ml.cern.ch, ...
 - ightarrow currently not even a handful of single GPUs available on TN for ML, "no" interconnected ones



GPUs in the control room - Example




 $n \times 50$ Hz control of slow extracted spill to the North Area

- → Adaptive Bayesian Optimisation for continuous control
- \rightarrow add dimension t to model and composite kernel including SpectralMixtureKernel: $\sigma^2 \times S(t, t') \times RBF(x, x')$
- → 2 controllers with GPU on UCAP (50 Hz, 100 Hz)

50 Hz controller 17/8/'23

IT ML infrastructure workshop, 11-Oct-2023

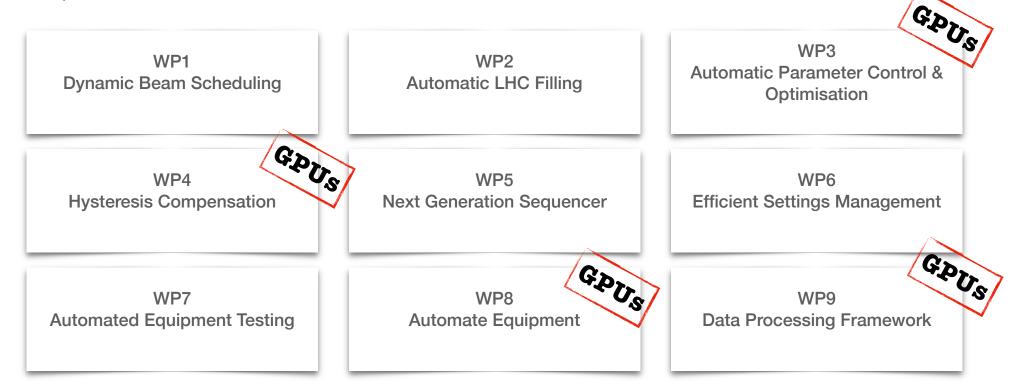
On the horizon: proposal for Efficient Particle Accelerators (EPA) project

- → Automation for more efficiency, flexibility and reliability.
- \rightarrow Prepare the ground for FCC.

WP1
Dynamic Beam Scheduling

WP2 Automatic LHC Filling WP3
Automatic Parameter Control &
Optimisation

WP4 Hysteresis Compensation WP5 Next Generation Sequencer WP6
Efficient Settings Management


WP7
Automated Equipment Testing

WP8 Automate Equipment WP9
Data Processing Framework

On the horizon: proposal for Efficient Particle Accelerators (EPA) project

- → Automation for more efficiency, flexibility and reliability.
- → Prepare the ground for FCC.

Conclusion

AI/ML techniques finally arriving at CERN's particle accelerators.

- ATS has a lot of obvious use case!
- Various already prepared frameworks should ease development, deployment and maintenance
- The current limitation is availability of GPUs.
 - * Collaborating with ATS-IT GPU initiative team, some GPUs should arrive → but orthogonal use case in general (batch system versus interactive setup)
 - * Ideally have powerful enough GPU cluster to train (and serve) GPTs.
- Open to cloud solutions, but only useful for offline use cases.