
Cu-coated graphite TCSPMs - overview of tests and planning

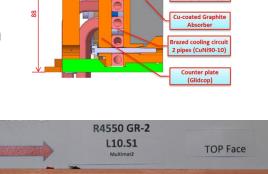
C. Accettura With contribution of C. Antuono, G. Cattenoz, L. Gentini, L. Giacomel, D. Glaude, L. Hannemann, N. Mounet, FX Nuiry, D. Pugnat L. Sito, W. Vollenberg

Special Joint WP2/WP5 meeting CERN, Geneva June, 27th 2023

Why graphite with copper?

- Absorbers for 12 TCSPM collimators should be produced during LS3 (see <u>LHC-TC-ER-0006 v.1</u>)
- Technical material assessment of studied options summarized in the collimator's jaw's materials table <u>LHC-TC-ER-0008 v.1</u>

LHC Collimation


Project

CERN

Why graphite with copper?

- Absorbers for 12 TCSPM collimators should be produced during LS3 (see <u>LHC-TC-ER-0006 v.1</u>)
- Technical material assessment of studied options summarized in the collimator's jaw's materials table <u>LHC-TC-ER-0008 v.1</u>
- Graphite with 3 µm Cu coating selected at the WP5 PSM on 12/07/2022 for the blocks (see F.-X. Nuiry, "Jaw materials option for LS3 collimators", <u>162nd HL-LHC TCC</u>, 14th September 2022)
 - Good HiRadMat results (Multimat 2) (see J. Guardia, 'Report on MultiMAT2', <u>ColUSM#153</u>, 2nd September 2022)
 - Cheaper (see F.-X. Nuiry, "Jaw materials option for LS3 collimators", <u>162nd HL-LHC TCC</u>, 14th September 2022)
 - Good solution for impedance (see N. Mounet, "Impedance consideration in material master table", <u>WP5.2 Technical Meeting</u>, 19th September 2022)
 - Good indication from electrical conductivity measurement (See A. Kurtulus, "Update on Resistivity Measurements Coated Collimators and Control Procedure", EDMS 2735237)

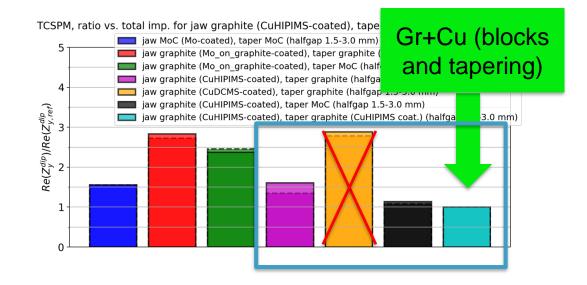
LHC Collimation

tiffener (Glidcop)

clamps (Glidco

Project

CERN



Why graphite with copper?

 It was recently pointed out that the <u>tapering</u> contribution to impedance is not negligible
preferred solution graphite with copper coating

LHC Collimation

Project

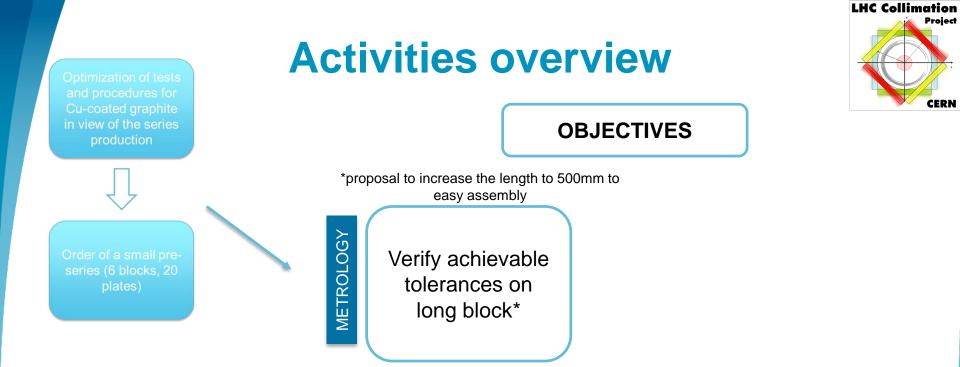
CERN

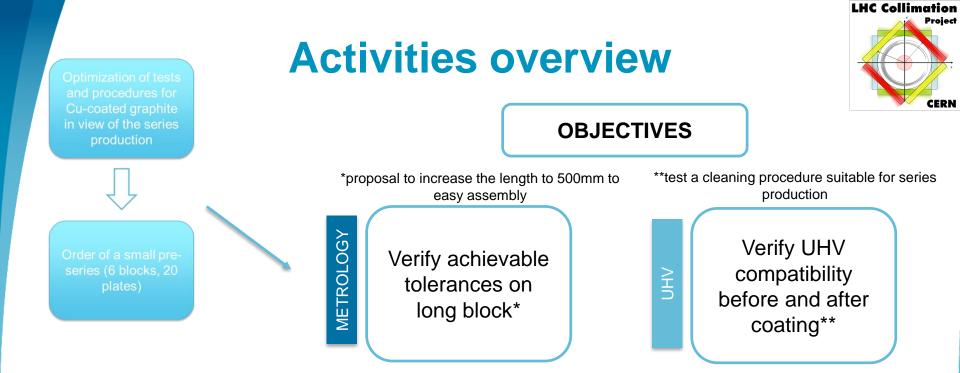
Activities overview

Optimization of tests and procedures for Cu-coated graphite in view of the series production Preparation of the series production (offer request, planning of activities at CERN)

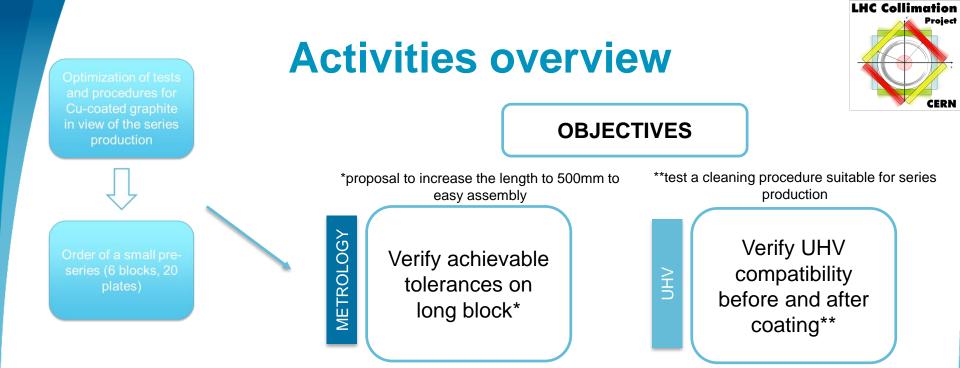
Activities overview

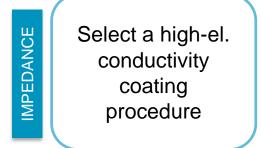
Optimization of tests and procedures for Cu-coated graphite in view of the series production

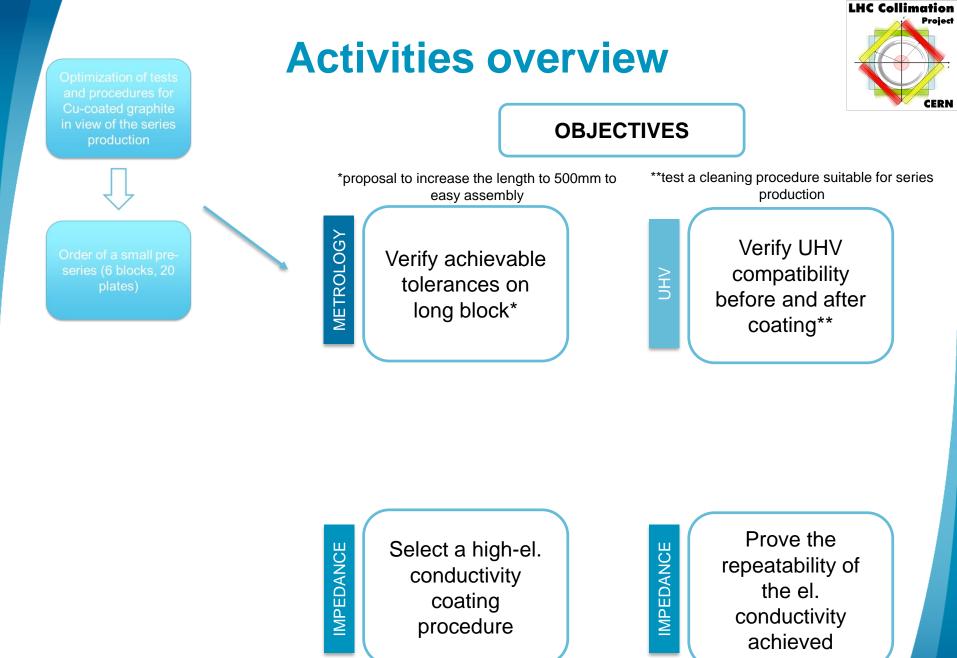

Preparation of the series production (offer request, planning of activities at CERN)

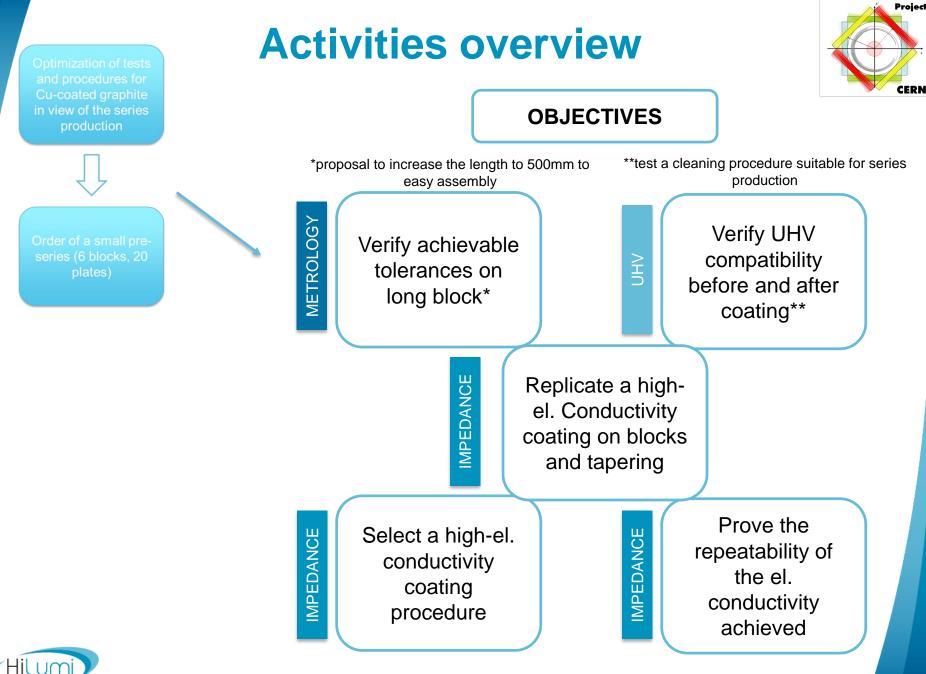

Order of a small preseries (6 blocks, 20 plates)

- Follow-up and reporting:
- WP5.2 #28
- WP5.2 #37
- WP5.2 #38





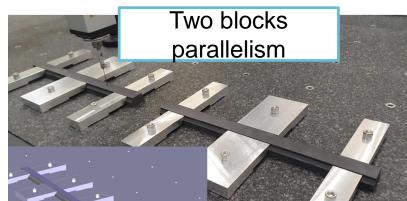




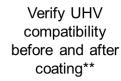
27/06/2023 Special Joint WP2/WP5 Meeting - C. Accettura et al.

LHC Collimation

Verify achievable tolerances on long block*

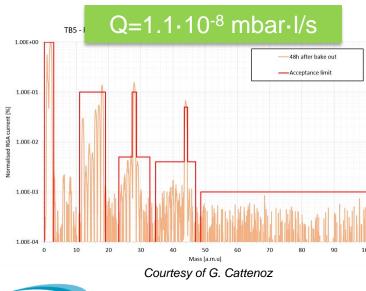

Metrology

- Summary of the results:
- ✓ Required parallelism achieved on the blocks
- \checkmark Coherence with the measurement done at the enterprises



	SGL										
		measure	ment 2x500	2							
block	flatness	position	height	parallelism							
1.1	0.000	0.049	24.976	0.0111							
1.2	0.009	0.048	24.970	0.0114							
2.1	0.01	0.0422	24.070	0.0121							
2.2	0.01	0.0432	24.978	0.0121							
3.1	0.000	0.0522	24.044	0.0110							
3.2	0.009	0.0523	24.944	0.0119							

	CERN									
		measure	ment 2x50	C						
block	flatness	position	height	parallelism						
1.1	0.004	0.042	24.979	0.009						
1.2	0.004	0.042	24.979							
2.1	0.004	0.04	24.98	0.000						
2.2	0.004	0.04	24.98	0.009						
3.1	0.004	0.041	24.070	0.009						
3.2	0.004	0.041	24.979	0.008						

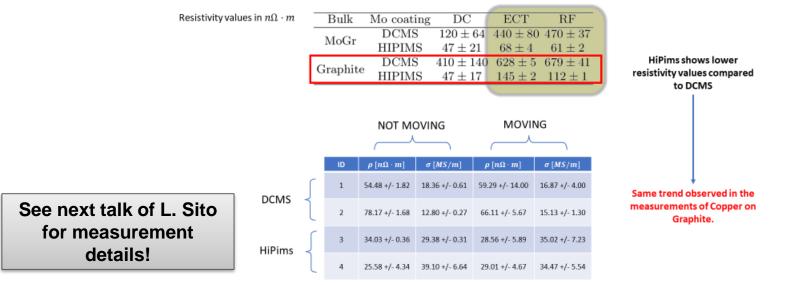


Outgassing test

- Summary of the results:
- First test after cleaning (Firbimatic+US demineralized water)and 16h at 950°C interrupted before bake-out because a contamination was detected → RGA shows a signal compatible with the detergent used during the cleaning
- An additional thermal treatment of 56h was performed
- ✓ UHV test of 4 cleaned blocks **ok** after a total of 72h hour of treatment
- ✓ UHV test of 2 cleaned and coated blocks **ok** (report under preparation)

IMPEDANCE

Select a high-el. conductivity coating procedure


Which coating process?

- HIPIMS generally better that DCMS, but DCMS faster and well mastered at CERN→ test to discard this option on 4 Gr plates
- HIPIMS conductivity (34 MS/m) 2 times higher than DCMS→ go on with the HIPIMS

Comparison with previous measurements

Courtesy of C. Antuono, L. Sito, A.Kurtulus, N. Biancacci, N. Mounet, B. Salvant

Is it reproducible?

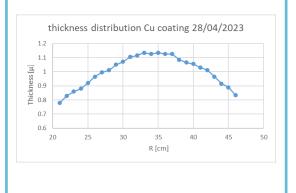
- HIPIMS coating test on 20 Gr plates:
 - Different cleaning
 - Different orientation to mimic the tapering surface

See next talk of L. Sito for measurement details!

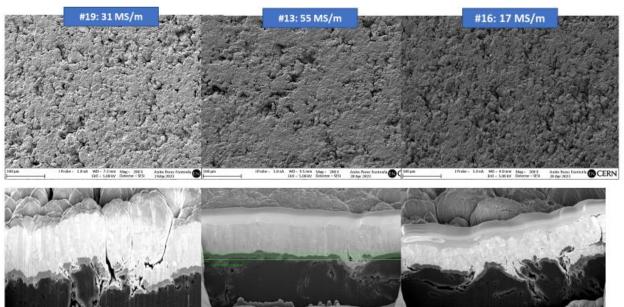
- Different positions
- Average conductivity 34MS/m, but high scattering (min 17MS/m
 - max 55MS/m) and poor statistical analysis to address causes

Is it reproducible?

- From where does it come the difference?
 - Position
 - Orientation
 - Cleaning
 - Material



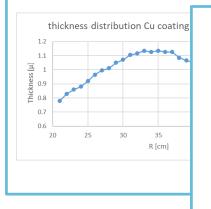
Is it reproducible?



- From where does it come the difference?
 - Position
 - Orientation

1-Test on glass: → thickness as a function of position

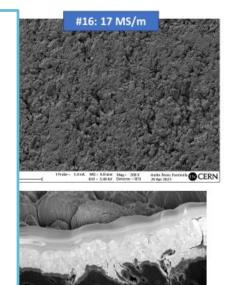
2-Microscopy:
→ Grain size/columnar structure function of the thickness
→ Lower thickness in the low-conductivity sample



Is it reproducible?

- From where does it come the difference?
 - Position
 - Orientation

1-Test on glass: → thickness as a function of position

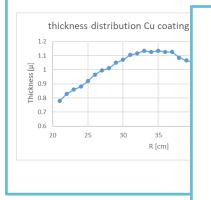


3-Repeat a test only on flat samples:
→ No influence of the cleaning (same sample -50%)
→ Influence of the position

2-Microscopy:

→ Grain size/columnar structure function of the thickness
→ Lower thickness in the low-conductivity sample

	Conduct		
Sample ID	run 3	run 2	R [cm]
SAMPLE 14	22	31	28
SAMPLE 15	26	27	33
SAMPLE 17	28	28	38
SAMPLE 18	22	33	43
SAMPLE 20	26	33	38

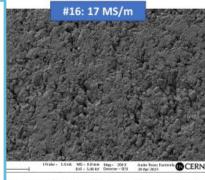


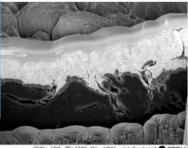
Is it reproducible?

- From where does it come the difference?
 - Position
 - Orientation

1-Test on glass: → thickness as a function of position

3-Repeat a test only on flat samples:
→ No influence of the cleaning (same sample -50%)
→ Influence of the position


2-Microscopy:


 \rightarrow Grain size/columnar structure function of the thickness

 \rightarrow Lower thickness in the low-conductivity sample

	Conduct	Conductivity [MS/m]						
Sample ID	run 3	run 2	R [cm]					
SAMPLE 14	22	31	28					
SAMPLE 15	26	27	33					
SAMPLE 17	28	28	38					
SAMPLE 18	22	33	43					
SAMPLE 20	26	33	38					

Try to increase the coating thickness!

Replicate a highel. Conductivity coating on blocks and tapering

Coating on real blocks

LHC Collimation Project

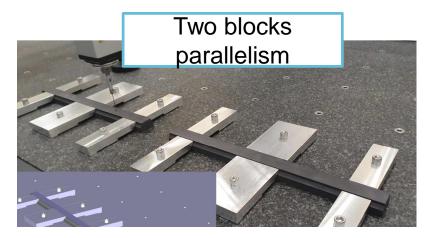
- First positive test on blocks
 - Block 1: average conductivity 33±2.5 MS/m (variation along the length)
 - Block 2: average conductivity 28±2.5 MS/m (variation along the length)
 - Is the difference related to position? Is it repeatable?

See next talk of L. Sito for measurement details!

Conclusions

- Cu-coated graphite is selected as absorber material for LS3 TCSPM
- A small pre-series production has been launched to optimize the postproduction treatments and coating at CERN
- With this pre-production we have positively tested different points:
 - Tight tolerance achievable and CMM report from the company coherent with CERN's one
 - Optimal parameters for the thermal treatment found. UHV compliant after cleaning and after the coating
 - Achievable value of Cu coating~ 34MS/m both on samples and blocks
 - Possibles reason for high conductivity variation analyzed and coating parameters were corrected
- Almost 10 coating runs done and almost 40 samples measured in few months → many thanks to the UHV colleagues and to the impedance team for all the work done!!

Next steps


- 2 blocks and 4 tapering coated
 impedance measurement
 planned
- Definition of coating planning and measurement strategy:
 - If the difference is confirmed, is it worst reducing the coating production rate? (15→30 weeks!!)
 - Should we measure the conductivity of all the blocks? In all the positions?
 - Can we rely on witness samples?
 - What is the minimum acceptable conductivity? Can we rely on the average one (if measured in different longitudinal location?)
 - What are the limits for the tapering?

Metrology

LHC Collimation

CERN

3 measurement required at CERN

	flatness	measurement 500			measurement 2x500				
block	⁻ⁱ latness A	max 45mm	max 500	position	flatness	position	height	parallelism	max length
1.1	0.035	45.026	500.064	500.047	0.004	0.042	24.979	0.000	1000.099
1.2	0.011	45.026	500.035	500.03	0.004	0.042	24.979	0.009	1000.099
2.1	0.025	45.026	500.043	500.04	0.004	0.04	24.98	0.009	1000.112
2.2	0.03	45.026	500.069	500.054	0.004	0.04	24.90	0.009	1000.112
3.1	0.019	45.027	500.04	500.036	0.004	0.004 0.041	0.041 24.979	0.008	1000.109
3.2	0.022	45.025	500.069	500.059	0.004		0.041 24.979		1000.109
max	0.02	45.05	500.05	500.05		0.2		0.01	

all values ok minor values not ok important values not ok

CERN

Metrology

3 measurement required at CERN

	flatness	n	easurem	ent 500			measurement 2x500			
block	flatness A	ma	x 45mm	max 500	position	flatness	position	height	parallelism	max length
1	. 0.035		45.026	500.064	500.047	0.004	0.042	24.979	0.009	1000.099
1	2 0.011		45.026	500.035	500.03	0.004	0.042	24.979	0.009	1000.099
2	. 0.025		45.026	500.043	500.04	0.004	0.04	24.98	0.009	1000.112
2	2 0.03		45.026	500.069	500.054	0.004	0.04	24.90	0.009	1000.112
3	1. 0.019		45.027	500.04	500.036	036 0.004 0.041 24.979 0.008	0.004 0.041		1000 100	
3	2 0.022		45.025	500.069	500.059	0.004		24.979	0.008	1000.109
max	0.02		45.05	500.05	500.05		0.2		0.01	
	<u> </u>	_								

 We are measuring with the clamps; thus the final parallelism of the beam surface would be close to the one measured with the blocks installed in the jaw.
However, a very high tolerances of the flatness could compromise the contact and hence the heat evacuation. These values are considered acceptable.

CERN

3 measurement required at CERN

	flatness	measurem	nent 500			measure			
block	flatness A	max 45mm	max 500	position	flatness	position	height	parallelism	max length
1.	1 0.035	45.026	500.064	500.047	0.004	0.042	24.979	0.000	1000 000
1.	<mark>2</mark> 0.011	45.026	500.035	500.03	0.004	0.042	24.979	0.009	1000.099
2.	1 0.025	45.026	500.043	500.04	0.004	0.04	24.98	0.009	1000.112
2.	<mark>2</mark> 0.03	45.026	500.069	500.054	0.004	0.04	24.90	0.009	1000.112
3.	1 0.019	45.027	500.04	500.036	0.004	0.041	24.979	0.008	1000.109
3.	2 0.022	45.025	500.069	500.059	0.004	0.041	24.979	0.008	1000.109
max	0.02	45.05	500.05	500.05		0.2		0.0	1

Even if the total length does not respect the tolerances, the sum of the 2 blocks allow a safe mounting of the jaw.

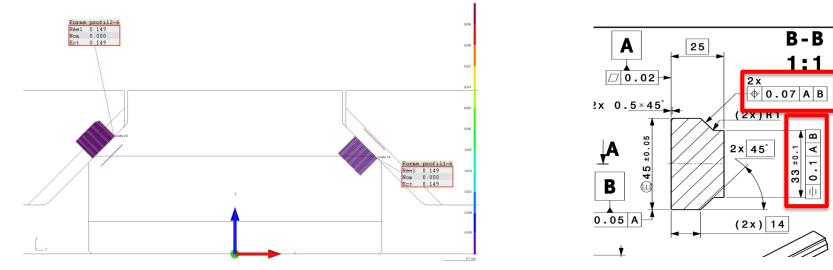
Metrology

Comparison with SGL

- Good agreement on all the measurement, but for the symmetry ad the profile (see next slide)
- An error was detected in the CERN program, reference and tolerance switched to calculate the parallelism \rightarrow does SGL noticed it? To be checked
- CERN 500mm measured with external tangent plane to represent the worst case, not done in SGL \rightarrow to be changed

SGL									
		measurem	ent 500	measurement 2x500					
block	r	max 45mm	position	flatness	position	height	parallelism		
1.	1	45.023	500.0056	0.009	0.048	24.976	0.0114		
1.	2	45.024	500.007	0.009	0.046	24.970	0.0114		
2.	1	45.022	500.0075	0.01	0.0432	24.978	0.0121		
2.	2	45.024	500.0052	0.01	0.0452	24.976	0.0121		
3.	1	45.024	500.0043	0.000	0.0523	24.044	0.0110		
3.	2	45.024	500.0056	0.009	0.0523	24.944	0.0119		

CERN

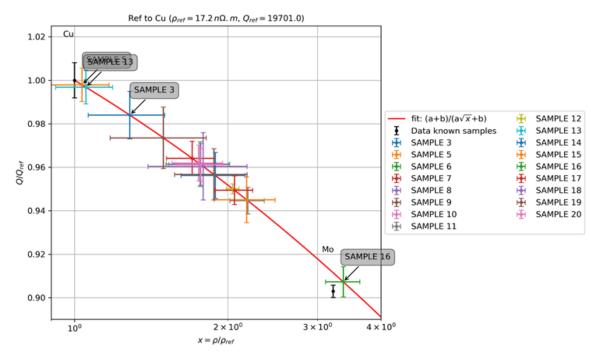

CLININ		-							
		measurement	500	measurement 2x500					
block		max 45mm position		flatness	position	height	parallelism		
	1.1	45.026	500.047						
	1.2	45.026	500.03	0.004	0.042	24.979	0.009		
	2.1	45.026	500.04						
	2.2	45.026	500.054	0.004	0.04	24.98	0.009		
	3.1	45.027	500.036						
	3.2	45.025	500.059	0.004	0.041	24.979	0.008		

- 4 blocks with non-conformities at the level of symmetry and profile (not detected in SGL)
- Worst case analyzed (block 3.2)
- Symmetry 0.226mm→ the gap between the housing and the blocks will be extended to 0.4mm→ this asymmetry can be accepted
- Profile 0.149mm→ this could push the clamp toward the beam. However, the clamp will slight deform the surface and even if the clamp is outward no problem (anticollision mechanism to be aware of this)

Metrology

- Continuous vs by point measurement → some marks appeared on the surface (removed with gloves, to be checked on cleaned blocks)
 - 48min vs 169 min
 - ~40% of difference in the results (probably related to the continuous pressure exerted on the surface)

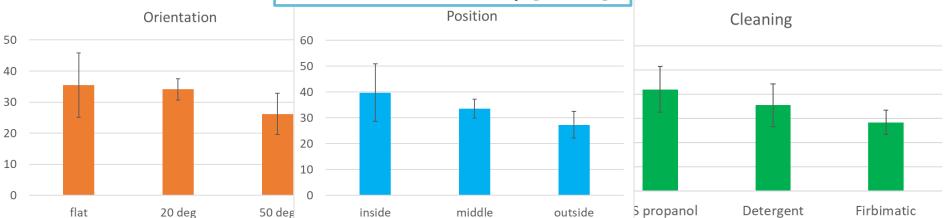
				parallelis
continous	flatness	position	height	m
1.1	0.004	0.042	24.979	0.009
1.2	0.004	0.042	24.979	0.009


by point					
	1.1	0.004	0.041	24.00	0.010
	1.2	0.004	0.041	24.98	0.013

Should we change the program for the series?

Second coating run

- Different cleaning, orientation and position tested
- Different orientation to mimic the tapering surface
- 'Statistical' analysis performed to understand the influence of different parameters
- Topic to be addressed at the WP2 meeting


Courtesy of C. Antuono, L. Sito, A.Kurtulus, N. Biancacci, N. Mounet, B. Salvant

Second coating run

Electrical conductivity [MS/m]

	Conductivity [MS/m]						
Orientation	#sample	average	dev				
flat	10	35.52461	10.33261				
20 deg	3	34.11268	3.42512				
50 deg	2	26.20744	6.654802				
	Conductivity [MS/m]						
Position	#sample	average	dev				
inside	6	39.75345	11.21432				
middle	4	33.49665	3.719578				
outside	6	27.2832	5.178647				
	Conductivity [MS/m]						
Cleaning	#sample	average	dev				
US propanol	2	42.0145	9.418866				
Detergent	7	35.46399	8.81331				
Firbimatic	7	28.43653	5.048292				

 An average conductivity of 34MS/m is reached.

27/06/2023 Special Joint WP2/WP5 Meeting - C. Accettura et al.

LHC Collimation

Project

CERN

	Block 2.1 VS Block 2.2										
				ıl Mumber	Seria					l Number	leitə2
Sample ID	Left far	Left near	Center	Right near	Right far	Sample I	D Left far	Left near	Center	Right near	Right
Resisitvity [nOhm.m]	33.01455	35.238622	39.276428	38.741712	32.727704	Resisitvity [nOhm.n	31.606848	28.743126	26.772739	32.972479	31.6252
Error on Resisitivity	2.413862	1.279696	1.583135	0.686026	1.630721	Error on Resisitivit	y 2.361193	0.440461	1.310587	1.359024	1.4701
Conductivity [MS/m]	30.289676	28.377954	25.460564	25.811973	30.555153	Conductivity [MS/n	31.638713	34.790928	37.351426	30.328323	31.6203
Error on Conductivity [MS/m]	2.214633	1.030549	1.026252	0.45707	1.522469	Error on Conductivity [MS/m	2.363574	0.533138	1.828437	1.25004	1.4699

Average Resistivity: 35.80 [nOhm.m] Average Conductivity: 28.10 [MS/m] Average Resistivity: 30.34 [nOhm.m] Average Conductivity: 33.15 [MS/m]

Next step:

- 1. Repeat 2 blocks coating
- 2. Confirm the difference, evaluate the impact on the production if 4 blocks per batch not 8
- 3. Decide how to measure the blocks during the series (all? Samples?)
- 4. Minimum allowable conductivity? Average ?
- 5. Tapering